1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/ethtool.h> 10 #include <linux/ethtool_netlink.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/string.h> 15 #include <linux/list.h> 16 #include <linux/errno.h> 17 #include <linux/skbuff.h> 18 #include <linux/math64.h> 19 #include <linux/module.h> 20 #include <linux/spinlock.h> 21 #include <linux/rcupdate.h> 22 #include <linux/time.h> 23 #include <net/gso.h> 24 #include <net/netlink.h> 25 #include <net/pkt_sched.h> 26 #include <net/pkt_cls.h> 27 #include <net/sch_generic.h> 28 #include <net/sock.h> 29 #include <net/tcp.h> 30 31 #define TAPRIO_STAT_NOT_SET (~0ULL) 32 33 #include "sch_mqprio_lib.h" 34 35 static LIST_HEAD(taprio_list); 36 static struct static_key_false taprio_have_broken_mqprio; 37 static struct static_key_false taprio_have_working_mqprio; 38 39 #define TAPRIO_ALL_GATES_OPEN -1 40 41 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 42 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 43 #define TAPRIO_FLAGS_INVALID U32_MAX 44 45 struct sched_entry { 46 /* Durations between this GCL entry and the GCL entry where the 47 * respective traffic class gate closes 48 */ 49 u64 gate_duration[TC_MAX_QUEUE]; 50 atomic_t budget[TC_MAX_QUEUE]; 51 /* The qdisc makes some effort so that no packet leaves 52 * after this time 53 */ 54 ktime_t gate_close_time[TC_MAX_QUEUE]; 55 struct list_head list; 56 /* Used to calculate when to advance the schedule */ 57 ktime_t end_time; 58 ktime_t next_txtime; 59 int index; 60 u32 gate_mask; 61 u32 interval; 62 u8 command; 63 }; 64 65 struct sched_gate_list { 66 /* Longest non-zero contiguous gate durations per traffic class, 67 * or 0 if a traffic class gate never opens during the schedule. 68 */ 69 u64 max_open_gate_duration[TC_MAX_QUEUE]; 70 u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */ 71 u32 max_sdu[TC_MAX_QUEUE]; /* for dump */ 72 struct rcu_head rcu; 73 struct list_head entries; 74 size_t num_entries; 75 ktime_t cycle_end_time; 76 s64 cycle_time; 77 s64 cycle_time_extension; 78 s64 base_time; 79 }; 80 81 struct taprio_sched { 82 struct Qdisc **qdiscs; 83 struct Qdisc *root; 84 u32 flags; 85 enum tk_offsets tk_offset; 86 int clockid; 87 bool offloaded; 88 bool detected_mqprio; 89 bool broken_mqprio; 90 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 91 * speeds it's sub-nanoseconds per byte 92 */ 93 94 /* Protects the update side of the RCU protected current_entry */ 95 spinlock_t current_entry_lock; 96 struct sched_entry __rcu *current_entry; 97 struct sched_gate_list __rcu *oper_sched; 98 struct sched_gate_list __rcu *admin_sched; 99 struct hrtimer advance_timer; 100 struct list_head taprio_list; 101 int cur_txq[TC_MAX_QUEUE]; 102 u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */ 103 u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */ 104 u32 txtime_delay; 105 }; 106 107 struct __tc_taprio_qopt_offload { 108 refcount_t users; 109 struct tc_taprio_qopt_offload offload; 110 }; 111 112 static void taprio_calculate_gate_durations(struct taprio_sched *q, 113 struct sched_gate_list *sched) 114 { 115 struct net_device *dev = qdisc_dev(q->root); 116 int num_tc = netdev_get_num_tc(dev); 117 struct sched_entry *entry, *cur; 118 int tc; 119 120 list_for_each_entry(entry, &sched->entries, list) { 121 u32 gates_still_open = entry->gate_mask; 122 123 /* For each traffic class, calculate each open gate duration, 124 * starting at this schedule entry and ending at the schedule 125 * entry containing a gate close event for that TC. 126 */ 127 cur = entry; 128 129 do { 130 if (!gates_still_open) 131 break; 132 133 for (tc = 0; tc < num_tc; tc++) { 134 if (!(gates_still_open & BIT(tc))) 135 continue; 136 137 if (cur->gate_mask & BIT(tc)) 138 entry->gate_duration[tc] += cur->interval; 139 else 140 gates_still_open &= ~BIT(tc); 141 } 142 143 cur = list_next_entry_circular(cur, &sched->entries, list); 144 } while (cur != entry); 145 146 /* Keep track of the maximum gate duration for each traffic 147 * class, taking care to not confuse a traffic class which is 148 * temporarily closed with one that is always closed. 149 */ 150 for (tc = 0; tc < num_tc; tc++) 151 if (entry->gate_duration[tc] && 152 sched->max_open_gate_duration[tc] < entry->gate_duration[tc]) 153 sched->max_open_gate_duration[tc] = entry->gate_duration[tc]; 154 } 155 } 156 157 static bool taprio_entry_allows_tx(ktime_t skb_end_time, 158 struct sched_entry *entry, int tc) 159 { 160 return ktime_before(skb_end_time, entry->gate_close_time[tc]); 161 } 162 163 static ktime_t sched_base_time(const struct sched_gate_list *sched) 164 { 165 if (!sched) 166 return KTIME_MAX; 167 168 return ns_to_ktime(sched->base_time); 169 } 170 171 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono) 172 { 173 /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */ 174 enum tk_offsets tk_offset = READ_ONCE(q->tk_offset); 175 176 switch (tk_offset) { 177 case TK_OFFS_MAX: 178 return mono; 179 default: 180 return ktime_mono_to_any(mono, tk_offset); 181 } 182 } 183 184 static ktime_t taprio_get_time(const struct taprio_sched *q) 185 { 186 return taprio_mono_to_any(q, ktime_get()); 187 } 188 189 static void taprio_free_sched_cb(struct rcu_head *head) 190 { 191 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 192 struct sched_entry *entry, *n; 193 194 list_for_each_entry_safe(entry, n, &sched->entries, list) { 195 list_del(&entry->list); 196 kfree(entry); 197 } 198 199 kfree(sched); 200 } 201 202 static void switch_schedules(struct taprio_sched *q, 203 struct sched_gate_list **admin, 204 struct sched_gate_list **oper) 205 { 206 rcu_assign_pointer(q->oper_sched, *admin); 207 rcu_assign_pointer(q->admin_sched, NULL); 208 209 if (*oper) 210 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 211 212 *oper = *admin; 213 *admin = NULL; 214 } 215 216 /* Get how much time has been already elapsed in the current cycle. */ 217 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 218 { 219 ktime_t time_since_sched_start; 220 s32 time_elapsed; 221 222 time_since_sched_start = ktime_sub(time, sched->base_time); 223 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 224 225 return time_elapsed; 226 } 227 228 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 229 struct sched_gate_list *admin, 230 struct sched_entry *entry, 231 ktime_t intv_start) 232 { 233 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 234 ktime_t intv_end, cycle_ext_end, cycle_end; 235 236 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 237 intv_end = ktime_add_ns(intv_start, entry->interval); 238 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 239 240 if (ktime_before(intv_end, cycle_end)) 241 return intv_end; 242 else if (admin && admin != sched && 243 ktime_after(admin->base_time, cycle_end) && 244 ktime_before(admin->base_time, cycle_ext_end)) 245 return admin->base_time; 246 else 247 return cycle_end; 248 } 249 250 static int length_to_duration(struct taprio_sched *q, int len) 251 { 252 return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC); 253 } 254 255 static int duration_to_length(struct taprio_sched *q, u64 duration) 256 { 257 return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte)); 258 } 259 260 /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the 261 * q->max_sdu[] requested by the user and the max_sdu dynamically determined by 262 * the maximum open gate durations at the given link speed. 263 */ 264 static void taprio_update_queue_max_sdu(struct taprio_sched *q, 265 struct sched_gate_list *sched, 266 struct qdisc_size_table *stab) 267 { 268 struct net_device *dev = qdisc_dev(q->root); 269 int num_tc = netdev_get_num_tc(dev); 270 u32 max_sdu_from_user; 271 u32 max_sdu_dynamic; 272 u32 max_sdu; 273 int tc; 274 275 for (tc = 0; tc < num_tc; tc++) { 276 max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX; 277 278 /* TC gate never closes => keep the queueMaxSDU 279 * selected by the user 280 */ 281 if (sched->max_open_gate_duration[tc] == sched->cycle_time) { 282 max_sdu_dynamic = U32_MAX; 283 } else { 284 u32 max_frm_len; 285 286 max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]); 287 /* Compensate for L1 overhead from size table, 288 * but don't let the frame size go negative 289 */ 290 if (stab) { 291 max_frm_len -= stab->szopts.overhead; 292 max_frm_len = max_t(int, max_frm_len, 293 dev->hard_header_len + 1); 294 } 295 max_sdu_dynamic = max_frm_len - dev->hard_header_len; 296 if (max_sdu_dynamic > dev->max_mtu) 297 max_sdu_dynamic = U32_MAX; 298 } 299 300 max_sdu = min(max_sdu_dynamic, max_sdu_from_user); 301 302 if (max_sdu != U32_MAX) { 303 sched->max_frm_len[tc] = max_sdu + dev->hard_header_len; 304 sched->max_sdu[tc] = max_sdu; 305 } else { 306 sched->max_frm_len[tc] = U32_MAX; /* never oversized */ 307 sched->max_sdu[tc] = 0; 308 } 309 } 310 } 311 312 /* Returns the entry corresponding to next available interval. If 313 * validate_interval is set, it only validates whether the timestamp occurs 314 * when the gate corresponding to the skb's traffic class is open. 315 */ 316 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 317 struct Qdisc *sch, 318 struct sched_gate_list *sched, 319 struct sched_gate_list *admin, 320 ktime_t time, 321 ktime_t *interval_start, 322 ktime_t *interval_end, 323 bool validate_interval) 324 { 325 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 326 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 327 struct sched_entry *entry = NULL, *entry_found = NULL; 328 struct taprio_sched *q = qdisc_priv(sch); 329 struct net_device *dev = qdisc_dev(sch); 330 bool entry_available = false; 331 s32 cycle_elapsed; 332 int tc, n; 333 334 tc = netdev_get_prio_tc_map(dev, skb->priority); 335 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 336 337 *interval_start = 0; 338 *interval_end = 0; 339 340 if (!sched) 341 return NULL; 342 343 cycle = sched->cycle_time; 344 cycle_elapsed = get_cycle_time_elapsed(sched, time); 345 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 346 cycle_end = ktime_add_ns(curr_intv_end, cycle); 347 348 list_for_each_entry(entry, &sched->entries, list) { 349 curr_intv_start = curr_intv_end; 350 curr_intv_end = get_interval_end_time(sched, admin, entry, 351 curr_intv_start); 352 353 if (ktime_after(curr_intv_start, cycle_end)) 354 break; 355 356 if (!(entry->gate_mask & BIT(tc)) || 357 packet_transmit_time > entry->interval) 358 continue; 359 360 txtime = entry->next_txtime; 361 362 if (ktime_before(txtime, time) || validate_interval) { 363 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 364 if ((ktime_before(curr_intv_start, time) && 365 ktime_before(transmit_end_time, curr_intv_end)) || 366 (ktime_after(curr_intv_start, time) && !validate_interval)) { 367 entry_found = entry; 368 *interval_start = curr_intv_start; 369 *interval_end = curr_intv_end; 370 break; 371 } else if (!entry_available && !validate_interval) { 372 /* Here, we are just trying to find out the 373 * first available interval in the next cycle. 374 */ 375 entry_available = true; 376 entry_found = entry; 377 *interval_start = ktime_add_ns(curr_intv_start, cycle); 378 *interval_end = ktime_add_ns(curr_intv_end, cycle); 379 } 380 } else if (ktime_before(txtime, earliest_txtime) && 381 !entry_available) { 382 earliest_txtime = txtime; 383 entry_found = entry; 384 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 385 *interval_start = ktime_add(curr_intv_start, n * cycle); 386 *interval_end = ktime_add(curr_intv_end, n * cycle); 387 } 388 } 389 390 return entry_found; 391 } 392 393 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 394 { 395 struct taprio_sched *q = qdisc_priv(sch); 396 struct sched_gate_list *sched, *admin; 397 ktime_t interval_start, interval_end; 398 struct sched_entry *entry; 399 400 rcu_read_lock(); 401 sched = rcu_dereference(q->oper_sched); 402 admin = rcu_dereference(q->admin_sched); 403 404 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 405 &interval_start, &interval_end, true); 406 rcu_read_unlock(); 407 408 return entry; 409 } 410 411 static bool taprio_flags_valid(u32 flags) 412 { 413 /* Make sure no other flag bits are set. */ 414 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | 415 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 416 return false; 417 /* txtime-assist and full offload are mutually exclusive */ 418 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 419 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 420 return false; 421 return true; 422 } 423 424 /* This returns the tstamp value set by TCP in terms of the set clock. */ 425 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 426 { 427 unsigned int offset = skb_network_offset(skb); 428 const struct ipv6hdr *ipv6h; 429 const struct iphdr *iph; 430 struct ipv6hdr _ipv6h; 431 432 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 433 if (!ipv6h) 434 return 0; 435 436 if (ipv6h->version == 4) { 437 iph = (struct iphdr *)ipv6h; 438 offset += iph->ihl * 4; 439 440 /* special-case 6in4 tunnelling, as that is a common way to get 441 * v6 connectivity in the home 442 */ 443 if (iph->protocol == IPPROTO_IPV6) { 444 ipv6h = skb_header_pointer(skb, offset, 445 sizeof(_ipv6h), &_ipv6h); 446 447 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 448 return 0; 449 } else if (iph->protocol != IPPROTO_TCP) { 450 return 0; 451 } 452 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 453 return 0; 454 } 455 456 return taprio_mono_to_any(q, skb->skb_mstamp_ns); 457 } 458 459 /* There are a few scenarios where we will have to modify the txtime from 460 * what is read from next_txtime in sched_entry. They are: 461 * 1. If txtime is in the past, 462 * a. The gate for the traffic class is currently open and packet can be 463 * transmitted before it closes, schedule the packet right away. 464 * b. If the gate corresponding to the traffic class is going to open later 465 * in the cycle, set the txtime of packet to the interval start. 466 * 2. If txtime is in the future, there are packets corresponding to the 467 * current traffic class waiting to be transmitted. So, the following 468 * possibilities exist: 469 * a. We can transmit the packet before the window containing the txtime 470 * closes. 471 * b. The window might close before the transmission can be completed 472 * successfully. So, schedule the packet in the next open window. 473 */ 474 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 475 { 476 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 477 struct taprio_sched *q = qdisc_priv(sch); 478 struct sched_gate_list *sched, *admin; 479 ktime_t minimum_time, now, txtime; 480 int len, packet_transmit_time; 481 struct sched_entry *entry; 482 bool sched_changed; 483 484 now = taprio_get_time(q); 485 minimum_time = ktime_add_ns(now, q->txtime_delay); 486 487 tcp_tstamp = get_tcp_tstamp(q, skb); 488 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 489 490 rcu_read_lock(); 491 admin = rcu_dereference(q->admin_sched); 492 sched = rcu_dereference(q->oper_sched); 493 if (admin && ktime_after(minimum_time, admin->base_time)) 494 switch_schedules(q, &admin, &sched); 495 496 /* Until the schedule starts, all the queues are open */ 497 if (!sched || ktime_before(minimum_time, sched->base_time)) { 498 txtime = minimum_time; 499 goto done; 500 } 501 502 len = qdisc_pkt_len(skb); 503 packet_transmit_time = length_to_duration(q, len); 504 505 do { 506 sched_changed = false; 507 508 entry = find_entry_to_transmit(skb, sch, sched, admin, 509 minimum_time, 510 &interval_start, &interval_end, 511 false); 512 if (!entry) { 513 txtime = 0; 514 goto done; 515 } 516 517 txtime = entry->next_txtime; 518 txtime = max_t(ktime_t, txtime, minimum_time); 519 txtime = max_t(ktime_t, txtime, interval_start); 520 521 if (admin && admin != sched && 522 ktime_after(txtime, admin->base_time)) { 523 sched = admin; 524 sched_changed = true; 525 continue; 526 } 527 528 transmit_end_time = ktime_add(txtime, packet_transmit_time); 529 minimum_time = transmit_end_time; 530 531 /* Update the txtime of current entry to the next time it's 532 * interval starts. 533 */ 534 if (ktime_after(transmit_end_time, interval_end)) 535 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 536 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 537 538 entry->next_txtime = transmit_end_time; 539 540 done: 541 rcu_read_unlock(); 542 return txtime; 543 } 544 545 /* Devices with full offload are expected to honor this in hardware */ 546 static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch, 547 struct sk_buff *skb) 548 { 549 struct taprio_sched *q = qdisc_priv(sch); 550 struct net_device *dev = qdisc_dev(sch); 551 struct sched_gate_list *sched; 552 int prio = skb->priority; 553 bool exceeds = false; 554 u8 tc; 555 556 tc = netdev_get_prio_tc_map(dev, prio); 557 558 rcu_read_lock(); 559 sched = rcu_dereference(q->oper_sched); 560 if (sched && skb->len > sched->max_frm_len[tc]) 561 exceeds = true; 562 rcu_read_unlock(); 563 564 return exceeds; 565 } 566 567 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, 568 struct Qdisc *child, struct sk_buff **to_free) 569 { 570 struct taprio_sched *q = qdisc_priv(sch); 571 572 /* sk_flags are only safe to use on full sockets. */ 573 if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) { 574 if (!is_valid_interval(skb, sch)) 575 return qdisc_drop(skb, sch, to_free); 576 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 577 skb->tstamp = get_packet_txtime(skb, sch); 578 if (!skb->tstamp) 579 return qdisc_drop(skb, sch, to_free); 580 } 581 582 qdisc_qstats_backlog_inc(sch, skb); 583 sch->q.qlen++; 584 585 return qdisc_enqueue(skb, child, to_free); 586 } 587 588 static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch, 589 struct Qdisc *child, 590 struct sk_buff **to_free) 591 { 592 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); 593 netdev_features_t features = netif_skb_features(skb); 594 struct sk_buff *segs, *nskb; 595 int ret; 596 597 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 598 if (IS_ERR_OR_NULL(segs)) 599 return qdisc_drop(skb, sch, to_free); 600 601 skb_list_walk_safe(segs, segs, nskb) { 602 skb_mark_not_on_list(segs); 603 qdisc_skb_cb(segs)->pkt_len = segs->len; 604 slen += segs->len; 605 606 /* FIXME: we should be segmenting to a smaller size 607 * rather than dropping these 608 */ 609 if (taprio_skb_exceeds_queue_max_sdu(sch, segs)) 610 ret = qdisc_drop(segs, sch, to_free); 611 else 612 ret = taprio_enqueue_one(segs, sch, child, to_free); 613 614 if (ret != NET_XMIT_SUCCESS) { 615 if (net_xmit_drop_count(ret)) 616 qdisc_qstats_drop(sch); 617 } else { 618 numsegs++; 619 } 620 } 621 622 if (numsegs > 1) 623 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); 624 consume_skb(skb); 625 626 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; 627 } 628 629 /* Will not be called in the full offload case, since the TX queues are 630 * attached to the Qdisc created using qdisc_create_dflt() 631 */ 632 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 633 struct sk_buff **to_free) 634 { 635 struct taprio_sched *q = qdisc_priv(sch); 636 struct Qdisc *child; 637 int queue; 638 639 queue = skb_get_queue_mapping(skb); 640 641 child = q->qdiscs[queue]; 642 if (unlikely(!child)) 643 return qdisc_drop(skb, sch, to_free); 644 645 if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) { 646 /* Large packets might not be transmitted when the transmission 647 * duration exceeds any configured interval. Therefore, segment 648 * the skb into smaller chunks. Drivers with full offload are 649 * expected to handle this in hardware. 650 */ 651 if (skb_is_gso(skb)) 652 return taprio_enqueue_segmented(skb, sch, child, 653 to_free); 654 655 return qdisc_drop(skb, sch, to_free); 656 } 657 658 return taprio_enqueue_one(skb, sch, child, to_free); 659 } 660 661 static struct sk_buff *taprio_peek(struct Qdisc *sch) 662 { 663 WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented"); 664 return NULL; 665 } 666 667 static void taprio_set_budgets(struct taprio_sched *q, 668 struct sched_gate_list *sched, 669 struct sched_entry *entry) 670 { 671 struct net_device *dev = qdisc_dev(q->root); 672 int num_tc = netdev_get_num_tc(dev); 673 int tc, budget; 674 675 for (tc = 0; tc < num_tc; tc++) { 676 /* Traffic classes which never close have infinite budget */ 677 if (entry->gate_duration[tc] == sched->cycle_time) 678 budget = INT_MAX; 679 else 680 budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC, 681 atomic64_read(&q->picos_per_byte)); 682 683 atomic_set(&entry->budget[tc], budget); 684 } 685 } 686 687 /* When an skb is sent, it consumes from the budget of all traffic classes */ 688 static int taprio_update_budgets(struct sched_entry *entry, size_t len, 689 int tc_consumed, int num_tc) 690 { 691 int tc, budget, new_budget = 0; 692 693 for (tc = 0; tc < num_tc; tc++) { 694 budget = atomic_read(&entry->budget[tc]); 695 /* Don't consume from infinite budget */ 696 if (budget == INT_MAX) { 697 if (tc == tc_consumed) 698 new_budget = budget; 699 continue; 700 } 701 702 if (tc == tc_consumed) 703 new_budget = atomic_sub_return(len, &entry->budget[tc]); 704 else 705 atomic_sub(len, &entry->budget[tc]); 706 } 707 708 return new_budget; 709 } 710 711 static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq, 712 struct sched_entry *entry, 713 u32 gate_mask) 714 { 715 struct taprio_sched *q = qdisc_priv(sch); 716 struct net_device *dev = qdisc_dev(sch); 717 struct Qdisc *child = q->qdiscs[txq]; 718 int num_tc = netdev_get_num_tc(dev); 719 struct sk_buff *skb; 720 ktime_t guard; 721 int prio; 722 int len; 723 u8 tc; 724 725 if (unlikely(!child)) 726 return NULL; 727 728 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 729 goto skip_peek_checks; 730 731 skb = child->ops->peek(child); 732 if (!skb) 733 return NULL; 734 735 prio = skb->priority; 736 tc = netdev_get_prio_tc_map(dev, prio); 737 738 if (!(gate_mask & BIT(tc))) 739 return NULL; 740 741 len = qdisc_pkt_len(skb); 742 guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len)); 743 744 /* In the case that there's no gate entry, there's no 745 * guard band ... 746 */ 747 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 748 !taprio_entry_allows_tx(guard, entry, tc)) 749 return NULL; 750 751 /* ... and no budget. */ 752 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 753 taprio_update_budgets(entry, len, tc, num_tc) < 0) 754 return NULL; 755 756 skip_peek_checks: 757 skb = child->ops->dequeue(child); 758 if (unlikely(!skb)) 759 return NULL; 760 761 qdisc_bstats_update(sch, skb); 762 qdisc_qstats_backlog_dec(sch, skb); 763 sch->q.qlen--; 764 765 return skb; 766 } 767 768 static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq) 769 { 770 int offset = dev->tc_to_txq[tc].offset; 771 int count = dev->tc_to_txq[tc].count; 772 773 (*txq)++; 774 if (*txq == offset + count) 775 *txq = offset; 776 } 777 778 /* Prioritize higher traffic classes, and select among TXQs belonging to the 779 * same TC using round robin 780 */ 781 static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch, 782 struct sched_entry *entry, 783 u32 gate_mask) 784 { 785 struct taprio_sched *q = qdisc_priv(sch); 786 struct net_device *dev = qdisc_dev(sch); 787 int num_tc = netdev_get_num_tc(dev); 788 struct sk_buff *skb; 789 int tc; 790 791 for (tc = num_tc - 1; tc >= 0; tc--) { 792 int first_txq = q->cur_txq[tc]; 793 794 if (!(gate_mask & BIT(tc))) 795 continue; 796 797 do { 798 skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc], 799 entry, gate_mask); 800 801 taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]); 802 803 if (q->cur_txq[tc] >= dev->num_tx_queues) 804 q->cur_txq[tc] = first_txq; 805 806 if (skb) 807 return skb; 808 } while (q->cur_txq[tc] != first_txq); 809 } 810 811 return NULL; 812 } 813 814 /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic 815 * class other than to determine whether the gate is open or not 816 */ 817 static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch, 818 struct sched_entry *entry, 819 u32 gate_mask) 820 { 821 struct net_device *dev = qdisc_dev(sch); 822 struct sk_buff *skb; 823 int i; 824 825 for (i = 0; i < dev->num_tx_queues; i++) { 826 skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask); 827 if (skb) 828 return skb; 829 } 830 831 return NULL; 832 } 833 834 /* Will not be called in the full offload case, since the TX queues are 835 * attached to the Qdisc created using qdisc_create_dflt() 836 */ 837 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 838 { 839 struct taprio_sched *q = qdisc_priv(sch); 840 struct sk_buff *skb = NULL; 841 struct sched_entry *entry; 842 u32 gate_mask; 843 844 rcu_read_lock(); 845 entry = rcu_dereference(q->current_entry); 846 /* if there's no entry, it means that the schedule didn't 847 * start yet, so force all gates to be open, this is in 848 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 849 * "AdminGateStates" 850 */ 851 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 852 if (!gate_mask) 853 goto done; 854 855 if (static_branch_unlikely(&taprio_have_broken_mqprio) && 856 !static_branch_likely(&taprio_have_working_mqprio)) { 857 /* Single NIC kind which is broken */ 858 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); 859 } else if (static_branch_likely(&taprio_have_working_mqprio) && 860 !static_branch_unlikely(&taprio_have_broken_mqprio)) { 861 /* Single NIC kind which prioritizes properly */ 862 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); 863 } else { 864 /* Mixed NIC kinds present in system, need dynamic testing */ 865 if (q->broken_mqprio) 866 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); 867 else 868 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); 869 } 870 871 done: 872 rcu_read_unlock(); 873 874 return skb; 875 } 876 877 static bool should_restart_cycle(const struct sched_gate_list *oper, 878 const struct sched_entry *entry) 879 { 880 if (list_is_last(&entry->list, &oper->entries)) 881 return true; 882 883 if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0) 884 return true; 885 886 return false; 887 } 888 889 static bool should_change_schedules(const struct sched_gate_list *admin, 890 const struct sched_gate_list *oper, 891 ktime_t end_time) 892 { 893 ktime_t next_base_time, extension_time; 894 895 if (!admin) 896 return false; 897 898 next_base_time = sched_base_time(admin); 899 900 /* This is the simple case, the end_time would fall after 901 * the next schedule base_time. 902 */ 903 if (ktime_compare(next_base_time, end_time) <= 0) 904 return true; 905 906 /* This is the cycle_time_extension case, if the end_time 907 * plus the amount that can be extended would fall after the 908 * next schedule base_time, we can extend the current schedule 909 * for that amount. 910 */ 911 extension_time = ktime_add_ns(end_time, oper->cycle_time_extension); 912 913 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 914 * how precisely the extension should be made. So after 915 * conformance testing, this logic may change. 916 */ 917 if (ktime_compare(next_base_time, extension_time) <= 0) 918 return true; 919 920 return false; 921 } 922 923 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 924 { 925 struct taprio_sched *q = container_of(timer, struct taprio_sched, 926 advance_timer); 927 struct net_device *dev = qdisc_dev(q->root); 928 struct sched_gate_list *oper, *admin; 929 int num_tc = netdev_get_num_tc(dev); 930 struct sched_entry *entry, *next; 931 struct Qdisc *sch = q->root; 932 ktime_t end_time; 933 int tc; 934 935 spin_lock(&q->current_entry_lock); 936 entry = rcu_dereference_protected(q->current_entry, 937 lockdep_is_held(&q->current_entry_lock)); 938 oper = rcu_dereference_protected(q->oper_sched, 939 lockdep_is_held(&q->current_entry_lock)); 940 admin = rcu_dereference_protected(q->admin_sched, 941 lockdep_is_held(&q->current_entry_lock)); 942 943 if (!oper) 944 switch_schedules(q, &admin, &oper); 945 946 /* This can happen in two cases: 1. this is the very first run 947 * of this function (i.e. we weren't running any schedule 948 * previously); 2. The previous schedule just ended. The first 949 * entry of all schedules are pre-calculated during the 950 * schedule initialization. 951 */ 952 if (unlikely(!entry || entry->end_time == oper->base_time)) { 953 next = list_first_entry(&oper->entries, struct sched_entry, 954 list); 955 end_time = next->end_time; 956 goto first_run; 957 } 958 959 if (should_restart_cycle(oper, entry)) { 960 next = list_first_entry(&oper->entries, struct sched_entry, 961 list); 962 oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time, 963 oper->cycle_time); 964 } else { 965 next = list_next_entry(entry, list); 966 } 967 968 end_time = ktime_add_ns(entry->end_time, next->interval); 969 end_time = min_t(ktime_t, end_time, oper->cycle_end_time); 970 971 for (tc = 0; tc < num_tc; tc++) { 972 if (next->gate_duration[tc] == oper->cycle_time) 973 next->gate_close_time[tc] = KTIME_MAX; 974 else 975 next->gate_close_time[tc] = ktime_add_ns(entry->end_time, 976 next->gate_duration[tc]); 977 } 978 979 if (should_change_schedules(admin, oper, end_time)) { 980 /* Set things so the next time this runs, the new 981 * schedule runs. 982 */ 983 end_time = sched_base_time(admin); 984 switch_schedules(q, &admin, &oper); 985 } 986 987 next->end_time = end_time; 988 taprio_set_budgets(q, oper, next); 989 990 first_run: 991 rcu_assign_pointer(q->current_entry, next); 992 spin_unlock(&q->current_entry_lock); 993 994 hrtimer_set_expires(&q->advance_timer, end_time); 995 996 rcu_read_lock(); 997 __netif_schedule(sch); 998 rcu_read_unlock(); 999 1000 return HRTIMER_RESTART; 1001 } 1002 1003 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 1004 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 1005 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 1006 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 1007 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 1008 }; 1009 1010 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { 1011 [TCA_TAPRIO_TC_ENTRY_INDEX] = { .type = NLA_U32 }, 1012 [TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 }, 1013 [TCA_TAPRIO_TC_ENTRY_FP] = NLA_POLICY_RANGE(NLA_U32, 1014 TC_FP_EXPRESS, 1015 TC_FP_PREEMPTIBLE), 1016 }; 1017 1018 static struct netlink_range_validation_signed taprio_cycle_time_range = { 1019 .min = 0, 1020 .max = INT_MAX, 1021 }; 1022 1023 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 1024 [TCA_TAPRIO_ATTR_PRIOMAP] = { 1025 .len = sizeof(struct tc_mqprio_qopt) 1026 }, 1027 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 1028 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 1029 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 1030 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 1031 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = 1032 NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range), 1033 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 1034 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, 1035 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, 1036 [TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED }, 1037 }; 1038 1039 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, 1040 struct sched_entry *entry, 1041 struct netlink_ext_ack *extack) 1042 { 1043 int min_duration = length_to_duration(q, ETH_ZLEN); 1044 u32 interval = 0; 1045 1046 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 1047 entry->command = nla_get_u8( 1048 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 1049 1050 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 1051 entry->gate_mask = nla_get_u32( 1052 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 1053 1054 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 1055 interval = nla_get_u32( 1056 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 1057 1058 /* The interval should allow at least the minimum ethernet 1059 * frame to go out. 1060 */ 1061 if (interval < min_duration) { 1062 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 1063 return -EINVAL; 1064 } 1065 1066 entry->interval = interval; 1067 1068 return 0; 1069 } 1070 1071 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, 1072 struct sched_entry *entry, int index, 1073 struct netlink_ext_ack *extack) 1074 { 1075 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 1076 int err; 1077 1078 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 1079 entry_policy, NULL); 1080 if (err < 0) { 1081 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 1082 return -EINVAL; 1083 } 1084 1085 entry->index = index; 1086 1087 return fill_sched_entry(q, tb, entry, extack); 1088 } 1089 1090 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, 1091 struct sched_gate_list *sched, 1092 struct netlink_ext_ack *extack) 1093 { 1094 struct nlattr *n; 1095 int err, rem; 1096 int i = 0; 1097 1098 if (!list) 1099 return -EINVAL; 1100 1101 nla_for_each_nested(n, list, rem) { 1102 struct sched_entry *entry; 1103 1104 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 1105 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 1106 continue; 1107 } 1108 1109 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 1110 if (!entry) { 1111 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 1112 return -ENOMEM; 1113 } 1114 1115 err = parse_sched_entry(q, n, entry, i, extack); 1116 if (err < 0) { 1117 kfree(entry); 1118 return err; 1119 } 1120 1121 list_add_tail(&entry->list, &sched->entries); 1122 i++; 1123 } 1124 1125 sched->num_entries = i; 1126 1127 return i; 1128 } 1129 1130 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, 1131 struct sched_gate_list *new, 1132 struct netlink_ext_ack *extack) 1133 { 1134 int err = 0; 1135 1136 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 1137 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 1138 return -ENOTSUPP; 1139 } 1140 1141 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 1142 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 1143 1144 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 1145 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 1146 1147 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 1148 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 1149 1150 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 1151 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], 1152 new, extack); 1153 if (err < 0) 1154 return err; 1155 1156 if (!new->cycle_time) { 1157 struct sched_entry *entry; 1158 ktime_t cycle = 0; 1159 1160 list_for_each_entry(entry, &new->entries, list) 1161 cycle = ktime_add_ns(cycle, entry->interval); 1162 1163 if (!cycle) { 1164 NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0"); 1165 return -EINVAL; 1166 } 1167 1168 if (cycle < 0 || cycle > INT_MAX) { 1169 NL_SET_ERR_MSG(extack, "'cycle_time' is too big"); 1170 return -EINVAL; 1171 } 1172 1173 new->cycle_time = cycle; 1174 } 1175 1176 taprio_calculate_gate_durations(q, new); 1177 1178 return 0; 1179 } 1180 1181 static int taprio_parse_mqprio_opt(struct net_device *dev, 1182 struct tc_mqprio_qopt *qopt, 1183 struct netlink_ext_ack *extack, 1184 u32 taprio_flags) 1185 { 1186 bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags); 1187 1188 if (!qopt && !dev->num_tc) { 1189 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 1190 return -EINVAL; 1191 } 1192 1193 /* If num_tc is already set, it means that the user already 1194 * configured the mqprio part 1195 */ 1196 if (dev->num_tc) 1197 return 0; 1198 1199 /* taprio imposes that traffic classes map 1:n to tx queues */ 1200 if (qopt->num_tc > dev->num_tx_queues) { 1201 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 1202 return -EINVAL; 1203 } 1204 1205 /* For some reason, in txtime-assist mode, we allow TXQ ranges for 1206 * different TCs to overlap, and just validate the TXQ ranges. 1207 */ 1208 return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs, 1209 extack); 1210 } 1211 1212 static int taprio_get_start_time(struct Qdisc *sch, 1213 struct sched_gate_list *sched, 1214 ktime_t *start) 1215 { 1216 struct taprio_sched *q = qdisc_priv(sch); 1217 ktime_t now, base, cycle; 1218 s64 n; 1219 1220 base = sched_base_time(sched); 1221 now = taprio_get_time(q); 1222 1223 if (ktime_after(base, now)) { 1224 *start = base; 1225 return 0; 1226 } 1227 1228 cycle = sched->cycle_time; 1229 1230 /* The qdisc is expected to have at least one sched_entry. Moreover, 1231 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 1232 * something went really wrong. In that case, we should warn about this 1233 * inconsistent state and return error. 1234 */ 1235 if (WARN_ON(!cycle)) 1236 return -EFAULT; 1237 1238 /* Schedule the start time for the beginning of the next 1239 * cycle. 1240 */ 1241 n = div64_s64(ktime_sub_ns(now, base), cycle); 1242 *start = ktime_add_ns(base, (n + 1) * cycle); 1243 return 0; 1244 } 1245 1246 static void setup_first_end_time(struct taprio_sched *q, 1247 struct sched_gate_list *sched, ktime_t base) 1248 { 1249 struct net_device *dev = qdisc_dev(q->root); 1250 int num_tc = netdev_get_num_tc(dev); 1251 struct sched_entry *first; 1252 ktime_t cycle; 1253 int tc; 1254 1255 first = list_first_entry(&sched->entries, 1256 struct sched_entry, list); 1257 1258 cycle = sched->cycle_time; 1259 1260 /* FIXME: find a better place to do this */ 1261 sched->cycle_end_time = ktime_add_ns(base, cycle); 1262 1263 first->end_time = ktime_add_ns(base, first->interval); 1264 taprio_set_budgets(q, sched, first); 1265 1266 for (tc = 0; tc < num_tc; tc++) { 1267 if (first->gate_duration[tc] == sched->cycle_time) 1268 first->gate_close_time[tc] = KTIME_MAX; 1269 else 1270 first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]); 1271 } 1272 1273 rcu_assign_pointer(q->current_entry, NULL); 1274 } 1275 1276 static void taprio_start_sched(struct Qdisc *sch, 1277 ktime_t start, struct sched_gate_list *new) 1278 { 1279 struct taprio_sched *q = qdisc_priv(sch); 1280 ktime_t expires; 1281 1282 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1283 return; 1284 1285 expires = hrtimer_get_expires(&q->advance_timer); 1286 if (expires == 0) 1287 expires = KTIME_MAX; 1288 1289 /* If the new schedule starts before the next expiration, we 1290 * reprogram it to the earliest one, so we change the admin 1291 * schedule to the operational one at the right time. 1292 */ 1293 start = min_t(ktime_t, start, expires); 1294 1295 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1296 } 1297 1298 static void taprio_set_picos_per_byte(struct net_device *dev, 1299 struct taprio_sched *q) 1300 { 1301 struct ethtool_link_ksettings ecmd; 1302 int speed = SPEED_10; 1303 int picos_per_byte; 1304 int err; 1305 1306 err = __ethtool_get_link_ksettings(dev, &ecmd); 1307 if (err < 0) 1308 goto skip; 1309 1310 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1311 speed = ecmd.base.speed; 1312 1313 skip: 1314 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1315 1316 atomic64_set(&q->picos_per_byte, picos_per_byte); 1317 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1318 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1319 ecmd.base.speed); 1320 } 1321 1322 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1323 void *ptr) 1324 { 1325 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1326 struct sched_gate_list *oper, *admin; 1327 struct qdisc_size_table *stab; 1328 struct taprio_sched *q; 1329 1330 ASSERT_RTNL(); 1331 1332 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1333 return NOTIFY_DONE; 1334 1335 list_for_each_entry(q, &taprio_list, taprio_list) { 1336 if (dev != qdisc_dev(q->root)) 1337 continue; 1338 1339 taprio_set_picos_per_byte(dev, q); 1340 1341 stab = rtnl_dereference(q->root->stab); 1342 1343 oper = rtnl_dereference(q->oper_sched); 1344 if (oper) 1345 taprio_update_queue_max_sdu(q, oper, stab); 1346 1347 admin = rtnl_dereference(q->admin_sched); 1348 if (admin) 1349 taprio_update_queue_max_sdu(q, admin, stab); 1350 1351 break; 1352 } 1353 1354 return NOTIFY_DONE; 1355 } 1356 1357 static void setup_txtime(struct taprio_sched *q, 1358 struct sched_gate_list *sched, ktime_t base) 1359 { 1360 struct sched_entry *entry; 1361 u64 interval = 0; 1362 1363 list_for_each_entry(entry, &sched->entries, list) { 1364 entry->next_txtime = ktime_add_ns(base, interval); 1365 interval += entry->interval; 1366 } 1367 } 1368 1369 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1370 { 1371 struct __tc_taprio_qopt_offload *__offload; 1372 1373 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), 1374 GFP_KERNEL); 1375 if (!__offload) 1376 return NULL; 1377 1378 refcount_set(&__offload->users, 1); 1379 1380 return &__offload->offload; 1381 } 1382 1383 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1384 *offload) 1385 { 1386 struct __tc_taprio_qopt_offload *__offload; 1387 1388 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1389 offload); 1390 1391 refcount_inc(&__offload->users); 1392 1393 return offload; 1394 } 1395 EXPORT_SYMBOL_GPL(taprio_offload_get); 1396 1397 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1398 { 1399 struct __tc_taprio_qopt_offload *__offload; 1400 1401 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1402 offload); 1403 1404 if (!refcount_dec_and_test(&__offload->users)) 1405 return; 1406 1407 kfree(__offload); 1408 } 1409 EXPORT_SYMBOL_GPL(taprio_offload_free); 1410 1411 /* The function will only serve to keep the pointers to the "oper" and "admin" 1412 * schedules valid in relation to their base times, so when calling dump() the 1413 * users looks at the right schedules. 1414 * When using full offload, the admin configuration is promoted to oper at the 1415 * base_time in the PHC time domain. But because the system time is not 1416 * necessarily in sync with that, we can't just trigger a hrtimer to call 1417 * switch_schedules at the right hardware time. 1418 * At the moment we call this by hand right away from taprio, but in the future 1419 * it will be useful to create a mechanism for drivers to notify taprio of the 1420 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1421 * This is left as TODO. 1422 */ 1423 static void taprio_offload_config_changed(struct taprio_sched *q) 1424 { 1425 struct sched_gate_list *oper, *admin; 1426 1427 oper = rtnl_dereference(q->oper_sched); 1428 admin = rtnl_dereference(q->admin_sched); 1429 1430 switch_schedules(q, &admin, &oper); 1431 } 1432 1433 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) 1434 { 1435 u32 i, queue_mask = 0; 1436 1437 for (i = 0; i < dev->num_tc; i++) { 1438 u32 offset, count; 1439 1440 if (!(tc_mask & BIT(i))) 1441 continue; 1442 1443 offset = dev->tc_to_txq[i].offset; 1444 count = dev->tc_to_txq[i].count; 1445 1446 queue_mask |= GENMASK(offset + count - 1, offset); 1447 } 1448 1449 return queue_mask; 1450 } 1451 1452 static void taprio_sched_to_offload(struct net_device *dev, 1453 struct sched_gate_list *sched, 1454 struct tc_taprio_qopt_offload *offload, 1455 const struct tc_taprio_caps *caps) 1456 { 1457 struct sched_entry *entry; 1458 int i = 0; 1459 1460 offload->base_time = sched->base_time; 1461 offload->cycle_time = sched->cycle_time; 1462 offload->cycle_time_extension = sched->cycle_time_extension; 1463 1464 list_for_each_entry(entry, &sched->entries, list) { 1465 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1466 1467 e->command = entry->command; 1468 e->interval = entry->interval; 1469 if (caps->gate_mask_per_txq) 1470 e->gate_mask = tc_map_to_queue_mask(dev, 1471 entry->gate_mask); 1472 else 1473 e->gate_mask = entry->gate_mask; 1474 1475 i++; 1476 } 1477 1478 offload->num_entries = i; 1479 } 1480 1481 static void taprio_detect_broken_mqprio(struct taprio_sched *q) 1482 { 1483 struct net_device *dev = qdisc_dev(q->root); 1484 struct tc_taprio_caps caps; 1485 1486 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, 1487 &caps, sizeof(caps)); 1488 1489 q->broken_mqprio = caps.broken_mqprio; 1490 if (q->broken_mqprio) 1491 static_branch_inc(&taprio_have_broken_mqprio); 1492 else 1493 static_branch_inc(&taprio_have_working_mqprio); 1494 1495 q->detected_mqprio = true; 1496 } 1497 1498 static void taprio_cleanup_broken_mqprio(struct taprio_sched *q) 1499 { 1500 if (!q->detected_mqprio) 1501 return; 1502 1503 if (q->broken_mqprio) 1504 static_branch_dec(&taprio_have_broken_mqprio); 1505 else 1506 static_branch_dec(&taprio_have_working_mqprio); 1507 } 1508 1509 static int taprio_enable_offload(struct net_device *dev, 1510 struct taprio_sched *q, 1511 struct sched_gate_list *sched, 1512 struct netlink_ext_ack *extack) 1513 { 1514 const struct net_device_ops *ops = dev->netdev_ops; 1515 struct tc_taprio_qopt_offload *offload; 1516 struct tc_taprio_caps caps; 1517 int tc, err = 0; 1518 1519 if (!ops->ndo_setup_tc) { 1520 NL_SET_ERR_MSG(extack, 1521 "Device does not support taprio offload"); 1522 return -EOPNOTSUPP; 1523 } 1524 1525 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, 1526 &caps, sizeof(caps)); 1527 1528 if (!caps.supports_queue_max_sdu) { 1529 for (tc = 0; tc < TC_MAX_QUEUE; tc++) { 1530 if (q->max_sdu[tc]) { 1531 NL_SET_ERR_MSG_MOD(extack, 1532 "Device does not handle queueMaxSDU"); 1533 return -EOPNOTSUPP; 1534 } 1535 } 1536 } 1537 1538 offload = taprio_offload_alloc(sched->num_entries); 1539 if (!offload) { 1540 NL_SET_ERR_MSG(extack, 1541 "Not enough memory for enabling offload mode"); 1542 return -ENOMEM; 1543 } 1544 offload->cmd = TAPRIO_CMD_REPLACE; 1545 offload->extack = extack; 1546 mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt); 1547 offload->mqprio.extack = extack; 1548 taprio_sched_to_offload(dev, sched, offload, &caps); 1549 mqprio_fp_to_offload(q->fp, &offload->mqprio); 1550 1551 for (tc = 0; tc < TC_MAX_QUEUE; tc++) 1552 offload->max_sdu[tc] = q->max_sdu[tc]; 1553 1554 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1555 if (err < 0) { 1556 NL_SET_ERR_MSG_WEAK(extack, 1557 "Device failed to setup taprio offload"); 1558 goto done; 1559 } 1560 1561 q->offloaded = true; 1562 1563 done: 1564 /* The offload structure may linger around via a reference taken by the 1565 * device driver, so clear up the netlink extack pointer so that the 1566 * driver isn't tempted to dereference data which stopped being valid 1567 */ 1568 offload->extack = NULL; 1569 offload->mqprio.extack = NULL; 1570 taprio_offload_free(offload); 1571 1572 return err; 1573 } 1574 1575 static int taprio_disable_offload(struct net_device *dev, 1576 struct taprio_sched *q, 1577 struct netlink_ext_ack *extack) 1578 { 1579 const struct net_device_ops *ops = dev->netdev_ops; 1580 struct tc_taprio_qopt_offload *offload; 1581 int err; 1582 1583 if (!q->offloaded) 1584 return 0; 1585 1586 offload = taprio_offload_alloc(0); 1587 if (!offload) { 1588 NL_SET_ERR_MSG(extack, 1589 "Not enough memory to disable offload mode"); 1590 return -ENOMEM; 1591 } 1592 offload->cmd = TAPRIO_CMD_DESTROY; 1593 1594 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1595 if (err < 0) { 1596 NL_SET_ERR_MSG(extack, 1597 "Device failed to disable offload"); 1598 goto out; 1599 } 1600 1601 q->offloaded = false; 1602 1603 out: 1604 taprio_offload_free(offload); 1605 1606 return err; 1607 } 1608 1609 /* If full offload is enabled, the only possible clockid is the net device's 1610 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1611 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1612 * in sync with the specified clockid via a user space daemon such as phc2sys. 1613 * For both software taprio and txtime-assist, the clockid is used for the 1614 * hrtimer that advances the schedule and hence mandatory. 1615 */ 1616 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1617 struct netlink_ext_ack *extack) 1618 { 1619 struct taprio_sched *q = qdisc_priv(sch); 1620 struct net_device *dev = qdisc_dev(sch); 1621 int err = -EINVAL; 1622 1623 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1624 const struct ethtool_ops *ops = dev->ethtool_ops; 1625 struct ethtool_ts_info info = { 1626 .cmd = ETHTOOL_GET_TS_INFO, 1627 .phc_index = -1, 1628 }; 1629 1630 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1631 NL_SET_ERR_MSG(extack, 1632 "The 'clockid' cannot be specified for full offload"); 1633 goto out; 1634 } 1635 1636 if (ops && ops->get_ts_info) 1637 err = ops->get_ts_info(dev, &info); 1638 1639 if (err || info.phc_index < 0) { 1640 NL_SET_ERR_MSG(extack, 1641 "Device does not have a PTP clock"); 1642 err = -ENOTSUPP; 1643 goto out; 1644 } 1645 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1646 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1647 enum tk_offsets tk_offset; 1648 1649 /* We only support static clockids and we don't allow 1650 * for it to be modified after the first init. 1651 */ 1652 if (clockid < 0 || 1653 (q->clockid != -1 && q->clockid != clockid)) { 1654 NL_SET_ERR_MSG(extack, 1655 "Changing the 'clockid' of a running schedule is not supported"); 1656 err = -ENOTSUPP; 1657 goto out; 1658 } 1659 1660 switch (clockid) { 1661 case CLOCK_REALTIME: 1662 tk_offset = TK_OFFS_REAL; 1663 break; 1664 case CLOCK_MONOTONIC: 1665 tk_offset = TK_OFFS_MAX; 1666 break; 1667 case CLOCK_BOOTTIME: 1668 tk_offset = TK_OFFS_BOOT; 1669 break; 1670 case CLOCK_TAI: 1671 tk_offset = TK_OFFS_TAI; 1672 break; 1673 default: 1674 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1675 err = -EINVAL; 1676 goto out; 1677 } 1678 /* This pairs with READ_ONCE() in taprio_mono_to_any */ 1679 WRITE_ONCE(q->tk_offset, tk_offset); 1680 1681 q->clockid = clockid; 1682 } else { 1683 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1684 goto out; 1685 } 1686 1687 /* Everything went ok, return success. */ 1688 err = 0; 1689 1690 out: 1691 return err; 1692 } 1693 1694 static int taprio_parse_tc_entry(struct Qdisc *sch, 1695 struct nlattr *opt, 1696 u32 max_sdu[TC_QOPT_MAX_QUEUE], 1697 u32 fp[TC_QOPT_MAX_QUEUE], 1698 unsigned long *seen_tcs, 1699 struct netlink_ext_ack *extack) 1700 { 1701 struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { }; 1702 struct net_device *dev = qdisc_dev(sch); 1703 int err, tc; 1704 u32 val; 1705 1706 err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt, 1707 taprio_tc_policy, extack); 1708 if (err < 0) 1709 return err; 1710 1711 if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) { 1712 NL_SET_ERR_MSG_MOD(extack, "TC entry index missing"); 1713 return -EINVAL; 1714 } 1715 1716 tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]); 1717 if (tc >= TC_QOPT_MAX_QUEUE) { 1718 NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range"); 1719 return -ERANGE; 1720 } 1721 1722 if (*seen_tcs & BIT(tc)) { 1723 NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry"); 1724 return -EINVAL; 1725 } 1726 1727 *seen_tcs |= BIT(tc); 1728 1729 if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) { 1730 val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]); 1731 if (val > dev->max_mtu) { 1732 NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU"); 1733 return -ERANGE; 1734 } 1735 1736 max_sdu[tc] = val; 1737 } 1738 1739 if (tb[TCA_TAPRIO_TC_ENTRY_FP]) 1740 fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]); 1741 1742 return 0; 1743 } 1744 1745 static int taprio_parse_tc_entries(struct Qdisc *sch, 1746 struct nlattr *opt, 1747 struct netlink_ext_ack *extack) 1748 { 1749 struct taprio_sched *q = qdisc_priv(sch); 1750 struct net_device *dev = qdisc_dev(sch); 1751 u32 max_sdu[TC_QOPT_MAX_QUEUE]; 1752 bool have_preemption = false; 1753 unsigned long seen_tcs = 0; 1754 u32 fp[TC_QOPT_MAX_QUEUE]; 1755 struct nlattr *n; 1756 int tc, rem; 1757 int err = 0; 1758 1759 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { 1760 max_sdu[tc] = q->max_sdu[tc]; 1761 fp[tc] = q->fp[tc]; 1762 } 1763 1764 nla_for_each_nested(n, opt, rem) { 1765 if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY) 1766 continue; 1767 1768 err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs, 1769 extack); 1770 if (err) 1771 return err; 1772 } 1773 1774 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { 1775 q->max_sdu[tc] = max_sdu[tc]; 1776 q->fp[tc] = fp[tc]; 1777 if (fp[tc] != TC_FP_EXPRESS) 1778 have_preemption = true; 1779 } 1780 1781 if (have_preemption) { 1782 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1783 NL_SET_ERR_MSG(extack, 1784 "Preemption only supported with full offload"); 1785 return -EOPNOTSUPP; 1786 } 1787 1788 if (!ethtool_dev_mm_supported(dev)) { 1789 NL_SET_ERR_MSG(extack, 1790 "Device does not support preemption"); 1791 return -EOPNOTSUPP; 1792 } 1793 } 1794 1795 return err; 1796 } 1797 1798 static int taprio_mqprio_cmp(const struct net_device *dev, 1799 const struct tc_mqprio_qopt *mqprio) 1800 { 1801 int i; 1802 1803 if (!mqprio || mqprio->num_tc != dev->num_tc) 1804 return -1; 1805 1806 for (i = 0; i < mqprio->num_tc; i++) 1807 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1808 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1809 return -1; 1810 1811 for (i = 0; i <= TC_BITMASK; i++) 1812 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1813 return -1; 1814 1815 return 0; 1816 } 1817 1818 /* The semantics of the 'flags' argument in relation to 'change()' 1819 * requests, are interpreted following two rules (which are applied in 1820 * this order): (1) an omitted 'flags' argument is interpreted as 1821 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1822 * changed. 1823 */ 1824 static int taprio_new_flags(const struct nlattr *attr, u32 old, 1825 struct netlink_ext_ack *extack) 1826 { 1827 u32 new = 0; 1828 1829 if (attr) 1830 new = nla_get_u32(attr); 1831 1832 if (old != TAPRIO_FLAGS_INVALID && old != new) { 1833 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1834 return -EOPNOTSUPP; 1835 } 1836 1837 if (!taprio_flags_valid(new)) { 1838 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1839 return -EINVAL; 1840 } 1841 1842 return new; 1843 } 1844 1845 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1846 struct netlink_ext_ack *extack) 1847 { 1848 struct qdisc_size_table *stab = rtnl_dereference(sch->stab); 1849 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1850 struct sched_gate_list *oper, *admin, *new_admin; 1851 struct taprio_sched *q = qdisc_priv(sch); 1852 struct net_device *dev = qdisc_dev(sch); 1853 struct tc_mqprio_qopt *mqprio = NULL; 1854 unsigned long flags; 1855 ktime_t start; 1856 int i, err; 1857 1858 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1859 taprio_policy, extack); 1860 if (err < 0) 1861 return err; 1862 1863 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1864 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1865 1866 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], 1867 q->flags, extack); 1868 if (err < 0) 1869 return err; 1870 1871 q->flags = err; 1872 1873 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1874 if (err < 0) 1875 return err; 1876 1877 err = taprio_parse_tc_entries(sch, opt, extack); 1878 if (err) 1879 return err; 1880 1881 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1882 if (!new_admin) { 1883 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1884 return -ENOMEM; 1885 } 1886 INIT_LIST_HEAD(&new_admin->entries); 1887 1888 oper = rtnl_dereference(q->oper_sched); 1889 admin = rtnl_dereference(q->admin_sched); 1890 1891 /* no changes - no new mqprio settings */ 1892 if (!taprio_mqprio_cmp(dev, mqprio)) 1893 mqprio = NULL; 1894 1895 if (mqprio && (oper || admin)) { 1896 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1897 err = -ENOTSUPP; 1898 goto free_sched; 1899 } 1900 1901 if (mqprio) { 1902 err = netdev_set_num_tc(dev, mqprio->num_tc); 1903 if (err) 1904 goto free_sched; 1905 for (i = 0; i < mqprio->num_tc; i++) { 1906 netdev_set_tc_queue(dev, i, 1907 mqprio->count[i], 1908 mqprio->offset[i]); 1909 q->cur_txq[i] = mqprio->offset[i]; 1910 } 1911 1912 /* Always use supplied priority mappings */ 1913 for (i = 0; i <= TC_BITMASK; i++) 1914 netdev_set_prio_tc_map(dev, i, 1915 mqprio->prio_tc_map[i]); 1916 } 1917 1918 err = parse_taprio_schedule(q, tb, new_admin, extack); 1919 if (err < 0) 1920 goto free_sched; 1921 1922 if (new_admin->num_entries == 0) { 1923 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1924 err = -EINVAL; 1925 goto free_sched; 1926 } 1927 1928 err = taprio_parse_clockid(sch, tb, extack); 1929 if (err < 0) 1930 goto free_sched; 1931 1932 taprio_set_picos_per_byte(dev, q); 1933 taprio_update_queue_max_sdu(q, new_admin, stab); 1934 1935 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1936 err = taprio_enable_offload(dev, q, new_admin, extack); 1937 else 1938 err = taprio_disable_offload(dev, q, extack); 1939 if (err) 1940 goto free_sched; 1941 1942 /* Protects against enqueue()/dequeue() */ 1943 spin_lock_bh(qdisc_lock(sch)); 1944 1945 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1946 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1947 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1948 err = -EINVAL; 1949 goto unlock; 1950 } 1951 1952 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1953 } 1954 1955 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1956 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1957 !hrtimer_active(&q->advance_timer)) { 1958 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1959 q->advance_timer.function = advance_sched; 1960 } 1961 1962 err = taprio_get_start_time(sch, new_admin, &start); 1963 if (err < 0) { 1964 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1965 goto unlock; 1966 } 1967 1968 setup_txtime(q, new_admin, start); 1969 1970 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1971 if (!oper) { 1972 rcu_assign_pointer(q->oper_sched, new_admin); 1973 err = 0; 1974 new_admin = NULL; 1975 goto unlock; 1976 } 1977 1978 rcu_assign_pointer(q->admin_sched, new_admin); 1979 if (admin) 1980 call_rcu(&admin->rcu, taprio_free_sched_cb); 1981 } else { 1982 setup_first_end_time(q, new_admin, start); 1983 1984 /* Protects against advance_sched() */ 1985 spin_lock_irqsave(&q->current_entry_lock, flags); 1986 1987 taprio_start_sched(sch, start, new_admin); 1988 1989 rcu_assign_pointer(q->admin_sched, new_admin); 1990 if (admin) 1991 call_rcu(&admin->rcu, taprio_free_sched_cb); 1992 1993 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1994 1995 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1996 taprio_offload_config_changed(q); 1997 } 1998 1999 new_admin = NULL; 2000 err = 0; 2001 2002 if (!stab) 2003 NL_SET_ERR_MSG_MOD(extack, 2004 "Size table not specified, frame length estimations may be inaccurate"); 2005 2006 unlock: 2007 spin_unlock_bh(qdisc_lock(sch)); 2008 2009 free_sched: 2010 if (new_admin) 2011 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 2012 2013 return err; 2014 } 2015 2016 static void taprio_reset(struct Qdisc *sch) 2017 { 2018 struct taprio_sched *q = qdisc_priv(sch); 2019 struct net_device *dev = qdisc_dev(sch); 2020 int i; 2021 2022 hrtimer_cancel(&q->advance_timer); 2023 2024 if (q->qdiscs) { 2025 for (i = 0; i < dev->num_tx_queues; i++) 2026 if (q->qdiscs[i]) 2027 qdisc_reset(q->qdiscs[i]); 2028 } 2029 } 2030 2031 static void taprio_destroy(struct Qdisc *sch) 2032 { 2033 struct taprio_sched *q = qdisc_priv(sch); 2034 struct net_device *dev = qdisc_dev(sch); 2035 struct sched_gate_list *oper, *admin; 2036 unsigned int i; 2037 2038 list_del(&q->taprio_list); 2039 2040 /* Note that taprio_reset() might not be called if an error 2041 * happens in qdisc_create(), after taprio_init() has been called. 2042 */ 2043 hrtimer_cancel(&q->advance_timer); 2044 qdisc_synchronize(sch); 2045 2046 taprio_disable_offload(dev, q, NULL); 2047 2048 if (q->qdiscs) { 2049 for (i = 0; i < dev->num_tx_queues; i++) 2050 qdisc_put(q->qdiscs[i]); 2051 2052 kfree(q->qdiscs); 2053 } 2054 q->qdiscs = NULL; 2055 2056 netdev_reset_tc(dev); 2057 2058 oper = rtnl_dereference(q->oper_sched); 2059 admin = rtnl_dereference(q->admin_sched); 2060 2061 if (oper) 2062 call_rcu(&oper->rcu, taprio_free_sched_cb); 2063 2064 if (admin) 2065 call_rcu(&admin->rcu, taprio_free_sched_cb); 2066 2067 taprio_cleanup_broken_mqprio(q); 2068 } 2069 2070 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 2071 struct netlink_ext_ack *extack) 2072 { 2073 struct taprio_sched *q = qdisc_priv(sch); 2074 struct net_device *dev = qdisc_dev(sch); 2075 int i, tc; 2076 2077 spin_lock_init(&q->current_entry_lock); 2078 2079 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 2080 q->advance_timer.function = advance_sched; 2081 2082 q->root = sch; 2083 2084 /* We only support static clockids. Use an invalid value as default 2085 * and get the valid one on taprio_change(). 2086 */ 2087 q->clockid = -1; 2088 q->flags = TAPRIO_FLAGS_INVALID; 2089 2090 list_add(&q->taprio_list, &taprio_list); 2091 2092 if (sch->parent != TC_H_ROOT) { 2093 NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc"); 2094 return -EOPNOTSUPP; 2095 } 2096 2097 if (!netif_is_multiqueue(dev)) { 2098 NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required"); 2099 return -EOPNOTSUPP; 2100 } 2101 2102 q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]), 2103 GFP_KERNEL); 2104 if (!q->qdiscs) 2105 return -ENOMEM; 2106 2107 if (!opt) 2108 return -EINVAL; 2109 2110 for (i = 0; i < dev->num_tx_queues; i++) { 2111 struct netdev_queue *dev_queue; 2112 struct Qdisc *qdisc; 2113 2114 dev_queue = netdev_get_tx_queue(dev, i); 2115 qdisc = qdisc_create_dflt(dev_queue, 2116 &pfifo_qdisc_ops, 2117 TC_H_MAKE(TC_H_MAJ(sch->handle), 2118 TC_H_MIN(i + 1)), 2119 extack); 2120 if (!qdisc) 2121 return -ENOMEM; 2122 2123 if (i < dev->real_num_tx_queues) 2124 qdisc_hash_add(qdisc, false); 2125 2126 q->qdiscs[i] = qdisc; 2127 } 2128 2129 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) 2130 q->fp[tc] = TC_FP_EXPRESS; 2131 2132 taprio_detect_broken_mqprio(q); 2133 2134 return taprio_change(sch, opt, extack); 2135 } 2136 2137 static void taprio_attach(struct Qdisc *sch) 2138 { 2139 struct taprio_sched *q = qdisc_priv(sch); 2140 struct net_device *dev = qdisc_dev(sch); 2141 unsigned int ntx; 2142 2143 /* Attach underlying qdisc */ 2144 for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { 2145 struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx); 2146 struct Qdisc *old, *dev_queue_qdisc; 2147 2148 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2149 struct Qdisc *qdisc = q->qdiscs[ntx]; 2150 2151 /* In offload mode, the root taprio qdisc is bypassed 2152 * and the netdev TX queues see the children directly 2153 */ 2154 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 2155 dev_queue_qdisc = qdisc; 2156 } else { 2157 /* In software mode, attach the root taprio qdisc 2158 * to all netdev TX queues, so that dev_qdisc_enqueue() 2159 * goes through taprio_enqueue(). 2160 */ 2161 dev_queue_qdisc = sch; 2162 } 2163 old = dev_graft_qdisc(dev_queue, dev_queue_qdisc); 2164 /* The qdisc's refcount requires to be elevated once 2165 * for each netdev TX queue it is grafted onto 2166 */ 2167 qdisc_refcount_inc(dev_queue_qdisc); 2168 if (old) 2169 qdisc_put(old); 2170 } 2171 } 2172 2173 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 2174 unsigned long cl) 2175 { 2176 struct net_device *dev = qdisc_dev(sch); 2177 unsigned long ntx = cl - 1; 2178 2179 if (ntx >= dev->num_tx_queues) 2180 return NULL; 2181 2182 return netdev_get_tx_queue(dev, ntx); 2183 } 2184 2185 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 2186 struct Qdisc *new, struct Qdisc **old, 2187 struct netlink_ext_ack *extack) 2188 { 2189 struct taprio_sched *q = qdisc_priv(sch); 2190 struct net_device *dev = qdisc_dev(sch); 2191 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2192 2193 if (!dev_queue) 2194 return -EINVAL; 2195 2196 if (dev->flags & IFF_UP) 2197 dev_deactivate(dev); 2198 2199 /* In offload mode, the child Qdisc is directly attached to the netdev 2200 * TX queue, and thus, we need to keep its refcount elevated in order 2201 * to counteract qdisc_graft()'s call to qdisc_put() once per TX queue. 2202 * However, save the reference to the new qdisc in the private array in 2203 * both software and offload cases, to have an up-to-date reference to 2204 * our children. 2205 */ 2206 *old = q->qdiscs[cl - 1]; 2207 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2208 WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old); 2209 if (new) 2210 qdisc_refcount_inc(new); 2211 if (*old) 2212 qdisc_put(*old); 2213 } 2214 2215 q->qdiscs[cl - 1] = new; 2216 if (new) 2217 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 2218 2219 if (dev->flags & IFF_UP) 2220 dev_activate(dev); 2221 2222 return 0; 2223 } 2224 2225 static int dump_entry(struct sk_buff *msg, 2226 const struct sched_entry *entry) 2227 { 2228 struct nlattr *item; 2229 2230 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 2231 if (!item) 2232 return -ENOSPC; 2233 2234 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 2235 goto nla_put_failure; 2236 2237 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 2238 goto nla_put_failure; 2239 2240 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 2241 entry->gate_mask)) 2242 goto nla_put_failure; 2243 2244 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 2245 entry->interval)) 2246 goto nla_put_failure; 2247 2248 return nla_nest_end(msg, item); 2249 2250 nla_put_failure: 2251 nla_nest_cancel(msg, item); 2252 return -1; 2253 } 2254 2255 static int dump_schedule(struct sk_buff *msg, 2256 const struct sched_gate_list *root) 2257 { 2258 struct nlattr *entry_list; 2259 struct sched_entry *entry; 2260 2261 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 2262 root->base_time, TCA_TAPRIO_PAD)) 2263 return -1; 2264 2265 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 2266 root->cycle_time, TCA_TAPRIO_PAD)) 2267 return -1; 2268 2269 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 2270 root->cycle_time_extension, TCA_TAPRIO_PAD)) 2271 return -1; 2272 2273 entry_list = nla_nest_start_noflag(msg, 2274 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 2275 if (!entry_list) 2276 goto error_nest; 2277 2278 list_for_each_entry(entry, &root->entries, list) { 2279 if (dump_entry(msg, entry) < 0) 2280 goto error_nest; 2281 } 2282 2283 nla_nest_end(msg, entry_list); 2284 return 0; 2285 2286 error_nest: 2287 nla_nest_cancel(msg, entry_list); 2288 return -1; 2289 } 2290 2291 static int taprio_dump_tc_entries(struct sk_buff *skb, 2292 struct taprio_sched *q, 2293 struct sched_gate_list *sched) 2294 { 2295 struct nlattr *n; 2296 int tc; 2297 2298 for (tc = 0; tc < TC_MAX_QUEUE; tc++) { 2299 n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY); 2300 if (!n) 2301 return -EMSGSIZE; 2302 2303 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc)) 2304 goto nla_put_failure; 2305 2306 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU, 2307 sched->max_sdu[tc])) 2308 goto nla_put_failure; 2309 2310 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc])) 2311 goto nla_put_failure; 2312 2313 nla_nest_end(skb, n); 2314 } 2315 2316 return 0; 2317 2318 nla_put_failure: 2319 nla_nest_cancel(skb, n); 2320 return -EMSGSIZE; 2321 } 2322 2323 static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype) 2324 { 2325 if (val == TAPRIO_STAT_NOT_SET) 2326 return 0; 2327 if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD)) 2328 return -EMSGSIZE; 2329 return 0; 2330 } 2331 2332 static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d, 2333 struct tc_taprio_qopt_offload *offload, 2334 struct tc_taprio_qopt_stats *stats) 2335 { 2336 struct net_device *dev = qdisc_dev(sch); 2337 const struct net_device_ops *ops; 2338 struct sk_buff *skb = d->skb; 2339 struct nlattr *xstats; 2340 int err; 2341 2342 ops = qdisc_dev(sch)->netdev_ops; 2343 2344 /* FIXME I could use qdisc_offload_dump_helper(), but that messes 2345 * with sch->flags depending on whether the device reports taprio 2346 * stats, and I'm not sure whether that's a good idea, considering 2347 * that stats are optional to the offload itself 2348 */ 2349 if (!ops->ndo_setup_tc) 2350 return 0; 2351 2352 memset(stats, 0xff, sizeof(*stats)); 2353 2354 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 2355 if (err == -EOPNOTSUPP) 2356 return 0; 2357 if (err) 2358 return err; 2359 2360 xstats = nla_nest_start(skb, TCA_STATS_APP); 2361 if (!xstats) 2362 goto err; 2363 2364 if (taprio_put_stat(skb, stats->window_drops, 2365 TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) || 2366 taprio_put_stat(skb, stats->tx_overruns, 2367 TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS)) 2368 goto err_cancel; 2369 2370 nla_nest_end(skb, xstats); 2371 2372 return 0; 2373 2374 err_cancel: 2375 nla_nest_cancel(skb, xstats); 2376 err: 2377 return -EMSGSIZE; 2378 } 2379 2380 static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 2381 { 2382 struct tc_taprio_qopt_offload offload = { 2383 .cmd = TAPRIO_CMD_STATS, 2384 }; 2385 2386 return taprio_dump_xstats(sch, d, &offload, &offload.stats); 2387 } 2388 2389 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 2390 { 2391 struct taprio_sched *q = qdisc_priv(sch); 2392 struct net_device *dev = qdisc_dev(sch); 2393 struct sched_gate_list *oper, *admin; 2394 struct tc_mqprio_qopt opt = { 0 }; 2395 struct nlattr *nest, *sched_nest; 2396 2397 oper = rtnl_dereference(q->oper_sched); 2398 admin = rtnl_dereference(q->admin_sched); 2399 2400 mqprio_qopt_reconstruct(dev, &opt); 2401 2402 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 2403 if (!nest) 2404 goto start_error; 2405 2406 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 2407 goto options_error; 2408 2409 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 2410 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 2411 goto options_error; 2412 2413 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 2414 goto options_error; 2415 2416 if (q->txtime_delay && 2417 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 2418 goto options_error; 2419 2420 if (oper && taprio_dump_tc_entries(skb, q, oper)) 2421 goto options_error; 2422 2423 if (oper && dump_schedule(skb, oper)) 2424 goto options_error; 2425 2426 if (!admin) 2427 goto done; 2428 2429 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 2430 if (!sched_nest) 2431 goto options_error; 2432 2433 if (dump_schedule(skb, admin)) 2434 goto admin_error; 2435 2436 nla_nest_end(skb, sched_nest); 2437 2438 done: 2439 return nla_nest_end(skb, nest); 2440 2441 admin_error: 2442 nla_nest_cancel(skb, sched_nest); 2443 2444 options_error: 2445 nla_nest_cancel(skb, nest); 2446 2447 start_error: 2448 return -ENOSPC; 2449 } 2450 2451 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 2452 { 2453 struct taprio_sched *q = qdisc_priv(sch); 2454 struct net_device *dev = qdisc_dev(sch); 2455 unsigned int ntx = cl - 1; 2456 2457 if (ntx >= dev->num_tx_queues) 2458 return NULL; 2459 2460 return q->qdiscs[ntx]; 2461 } 2462 2463 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 2464 { 2465 unsigned int ntx = TC_H_MIN(classid); 2466 2467 if (!taprio_queue_get(sch, ntx)) 2468 return 0; 2469 return ntx; 2470 } 2471 2472 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 2473 struct sk_buff *skb, struct tcmsg *tcm) 2474 { 2475 struct Qdisc *child = taprio_leaf(sch, cl); 2476 2477 tcm->tcm_parent = TC_H_ROOT; 2478 tcm->tcm_handle |= TC_H_MIN(cl); 2479 tcm->tcm_info = child->handle; 2480 2481 return 0; 2482 } 2483 2484 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 2485 struct gnet_dump *d) 2486 __releases(d->lock) 2487 __acquires(d->lock) 2488 { 2489 struct Qdisc *child = taprio_leaf(sch, cl); 2490 struct tc_taprio_qopt_offload offload = { 2491 .cmd = TAPRIO_CMD_QUEUE_STATS, 2492 .queue_stats = { 2493 .queue = cl - 1, 2494 }, 2495 }; 2496 2497 if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 || 2498 qdisc_qstats_copy(d, child) < 0) 2499 return -1; 2500 2501 return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats); 2502 } 2503 2504 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 2505 { 2506 struct net_device *dev = qdisc_dev(sch); 2507 unsigned long ntx; 2508 2509 if (arg->stop) 2510 return; 2511 2512 arg->count = arg->skip; 2513 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 2514 if (!tc_qdisc_stats_dump(sch, ntx + 1, arg)) 2515 break; 2516 } 2517 } 2518 2519 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 2520 struct tcmsg *tcm) 2521 { 2522 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 2523 } 2524 2525 static const struct Qdisc_class_ops taprio_class_ops = { 2526 .graft = taprio_graft, 2527 .leaf = taprio_leaf, 2528 .find = taprio_find, 2529 .walk = taprio_walk, 2530 .dump = taprio_dump_class, 2531 .dump_stats = taprio_dump_class_stats, 2532 .select_queue = taprio_select_queue, 2533 }; 2534 2535 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 2536 .cl_ops = &taprio_class_ops, 2537 .id = "taprio", 2538 .priv_size = sizeof(struct taprio_sched), 2539 .init = taprio_init, 2540 .change = taprio_change, 2541 .destroy = taprio_destroy, 2542 .reset = taprio_reset, 2543 .attach = taprio_attach, 2544 .peek = taprio_peek, 2545 .dequeue = taprio_dequeue, 2546 .enqueue = taprio_enqueue, 2547 .dump = taprio_dump, 2548 .dump_stats = taprio_dump_stats, 2549 .owner = THIS_MODULE, 2550 }; 2551 2552 static struct notifier_block taprio_device_notifier = { 2553 .notifier_call = taprio_dev_notifier, 2554 }; 2555 2556 static int __init taprio_module_init(void) 2557 { 2558 int err = register_netdevice_notifier(&taprio_device_notifier); 2559 2560 if (err) 2561 return err; 2562 2563 return register_qdisc(&taprio_qdisc_ops); 2564 } 2565 2566 static void __exit taprio_module_exit(void) 2567 { 2568 unregister_qdisc(&taprio_qdisc_ops); 2569 unregister_netdevice_notifier(&taprio_device_notifier); 2570 } 2571 2572 module_init(taprio_module_init); 2573 module_exit(taprio_module_exit); 2574 MODULE_LICENSE("GPL"); 2575