1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/ethtool.h> 10 #include <linux/ethtool_netlink.h> 11 #include <linux/types.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/string.h> 15 #include <linux/list.h> 16 #include <linux/errno.h> 17 #include <linux/skbuff.h> 18 #include <linux/math64.h> 19 #include <linux/module.h> 20 #include <linux/spinlock.h> 21 #include <linux/rcupdate.h> 22 #include <linux/time.h> 23 #include <net/netlink.h> 24 #include <net/pkt_sched.h> 25 #include <net/pkt_cls.h> 26 #include <net/sch_generic.h> 27 #include <net/sock.h> 28 #include <net/tcp.h> 29 30 #include "sch_mqprio_lib.h" 31 32 static LIST_HEAD(taprio_list); 33 static struct static_key_false taprio_have_broken_mqprio; 34 static struct static_key_false taprio_have_working_mqprio; 35 36 #define TAPRIO_ALL_GATES_OPEN -1 37 38 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 39 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 40 #define TAPRIO_FLAGS_INVALID U32_MAX 41 42 struct sched_entry { 43 /* Durations between this GCL entry and the GCL entry where the 44 * respective traffic class gate closes 45 */ 46 u64 gate_duration[TC_MAX_QUEUE]; 47 atomic_t budget[TC_MAX_QUEUE]; 48 /* The qdisc makes some effort so that no packet leaves 49 * after this time 50 */ 51 ktime_t gate_close_time[TC_MAX_QUEUE]; 52 struct list_head list; 53 /* Used to calculate when to advance the schedule */ 54 ktime_t end_time; 55 ktime_t next_txtime; 56 int index; 57 u32 gate_mask; 58 u32 interval; 59 u8 command; 60 }; 61 62 struct sched_gate_list { 63 /* Longest non-zero contiguous gate durations per traffic class, 64 * or 0 if a traffic class gate never opens during the schedule. 65 */ 66 u64 max_open_gate_duration[TC_MAX_QUEUE]; 67 u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */ 68 u32 max_sdu[TC_MAX_QUEUE]; /* for dump */ 69 struct rcu_head rcu; 70 struct list_head entries; 71 size_t num_entries; 72 ktime_t cycle_end_time; 73 s64 cycle_time; 74 s64 cycle_time_extension; 75 s64 base_time; 76 }; 77 78 struct taprio_sched { 79 struct Qdisc **qdiscs; 80 struct Qdisc *root; 81 u32 flags; 82 enum tk_offsets tk_offset; 83 int clockid; 84 bool offloaded; 85 bool detected_mqprio; 86 bool broken_mqprio; 87 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 88 * speeds it's sub-nanoseconds per byte 89 */ 90 91 /* Protects the update side of the RCU protected current_entry */ 92 spinlock_t current_entry_lock; 93 struct sched_entry __rcu *current_entry; 94 struct sched_gate_list __rcu *oper_sched; 95 struct sched_gate_list __rcu *admin_sched; 96 struct hrtimer advance_timer; 97 struct list_head taprio_list; 98 int cur_txq[TC_MAX_QUEUE]; 99 u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */ 100 u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */ 101 u32 txtime_delay; 102 }; 103 104 struct __tc_taprio_qopt_offload { 105 refcount_t users; 106 struct tc_taprio_qopt_offload offload; 107 }; 108 109 static void taprio_calculate_gate_durations(struct taprio_sched *q, 110 struct sched_gate_list *sched) 111 { 112 struct net_device *dev = qdisc_dev(q->root); 113 int num_tc = netdev_get_num_tc(dev); 114 struct sched_entry *entry, *cur; 115 int tc; 116 117 list_for_each_entry(entry, &sched->entries, list) { 118 u32 gates_still_open = entry->gate_mask; 119 120 /* For each traffic class, calculate each open gate duration, 121 * starting at this schedule entry and ending at the schedule 122 * entry containing a gate close event for that TC. 123 */ 124 cur = entry; 125 126 do { 127 if (!gates_still_open) 128 break; 129 130 for (tc = 0; tc < num_tc; tc++) { 131 if (!(gates_still_open & BIT(tc))) 132 continue; 133 134 if (cur->gate_mask & BIT(tc)) 135 entry->gate_duration[tc] += cur->interval; 136 else 137 gates_still_open &= ~BIT(tc); 138 } 139 140 cur = list_next_entry_circular(cur, &sched->entries, list); 141 } while (cur != entry); 142 143 /* Keep track of the maximum gate duration for each traffic 144 * class, taking care to not confuse a traffic class which is 145 * temporarily closed with one that is always closed. 146 */ 147 for (tc = 0; tc < num_tc; tc++) 148 if (entry->gate_duration[tc] && 149 sched->max_open_gate_duration[tc] < entry->gate_duration[tc]) 150 sched->max_open_gate_duration[tc] = entry->gate_duration[tc]; 151 } 152 } 153 154 static bool taprio_entry_allows_tx(ktime_t skb_end_time, 155 struct sched_entry *entry, int tc) 156 { 157 return ktime_before(skb_end_time, entry->gate_close_time[tc]); 158 } 159 160 static ktime_t sched_base_time(const struct sched_gate_list *sched) 161 { 162 if (!sched) 163 return KTIME_MAX; 164 165 return ns_to_ktime(sched->base_time); 166 } 167 168 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono) 169 { 170 /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */ 171 enum tk_offsets tk_offset = READ_ONCE(q->tk_offset); 172 173 switch (tk_offset) { 174 case TK_OFFS_MAX: 175 return mono; 176 default: 177 return ktime_mono_to_any(mono, tk_offset); 178 } 179 } 180 181 static ktime_t taprio_get_time(const struct taprio_sched *q) 182 { 183 return taprio_mono_to_any(q, ktime_get()); 184 } 185 186 static void taprio_free_sched_cb(struct rcu_head *head) 187 { 188 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 189 struct sched_entry *entry, *n; 190 191 list_for_each_entry_safe(entry, n, &sched->entries, list) { 192 list_del(&entry->list); 193 kfree(entry); 194 } 195 196 kfree(sched); 197 } 198 199 static void switch_schedules(struct taprio_sched *q, 200 struct sched_gate_list **admin, 201 struct sched_gate_list **oper) 202 { 203 rcu_assign_pointer(q->oper_sched, *admin); 204 rcu_assign_pointer(q->admin_sched, NULL); 205 206 if (*oper) 207 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 208 209 *oper = *admin; 210 *admin = NULL; 211 } 212 213 /* Get how much time has been already elapsed in the current cycle. */ 214 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 215 { 216 ktime_t time_since_sched_start; 217 s32 time_elapsed; 218 219 time_since_sched_start = ktime_sub(time, sched->base_time); 220 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 221 222 return time_elapsed; 223 } 224 225 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 226 struct sched_gate_list *admin, 227 struct sched_entry *entry, 228 ktime_t intv_start) 229 { 230 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 231 ktime_t intv_end, cycle_ext_end, cycle_end; 232 233 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 234 intv_end = ktime_add_ns(intv_start, entry->interval); 235 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 236 237 if (ktime_before(intv_end, cycle_end)) 238 return intv_end; 239 else if (admin && admin != sched && 240 ktime_after(admin->base_time, cycle_end) && 241 ktime_before(admin->base_time, cycle_ext_end)) 242 return admin->base_time; 243 else 244 return cycle_end; 245 } 246 247 static int length_to_duration(struct taprio_sched *q, int len) 248 { 249 return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC); 250 } 251 252 static int duration_to_length(struct taprio_sched *q, u64 duration) 253 { 254 return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte)); 255 } 256 257 /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the 258 * q->max_sdu[] requested by the user and the max_sdu dynamically determined by 259 * the maximum open gate durations at the given link speed. 260 */ 261 static void taprio_update_queue_max_sdu(struct taprio_sched *q, 262 struct sched_gate_list *sched, 263 struct qdisc_size_table *stab) 264 { 265 struct net_device *dev = qdisc_dev(q->root); 266 int num_tc = netdev_get_num_tc(dev); 267 u32 max_sdu_from_user; 268 u32 max_sdu_dynamic; 269 u32 max_sdu; 270 int tc; 271 272 for (tc = 0; tc < num_tc; tc++) { 273 max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX; 274 275 /* TC gate never closes => keep the queueMaxSDU 276 * selected by the user 277 */ 278 if (sched->max_open_gate_duration[tc] == sched->cycle_time) { 279 max_sdu_dynamic = U32_MAX; 280 } else { 281 u32 max_frm_len; 282 283 max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]); 284 /* Compensate for L1 overhead from size table, 285 * but don't let the frame size go negative 286 */ 287 if (stab) { 288 max_frm_len -= stab->szopts.overhead; 289 max_frm_len = max_t(int, max_frm_len, 290 dev->hard_header_len + 1); 291 } 292 max_sdu_dynamic = max_frm_len - dev->hard_header_len; 293 if (max_sdu_dynamic > dev->max_mtu) 294 max_sdu_dynamic = U32_MAX; 295 } 296 297 max_sdu = min(max_sdu_dynamic, max_sdu_from_user); 298 299 if (max_sdu != U32_MAX) { 300 sched->max_frm_len[tc] = max_sdu + dev->hard_header_len; 301 sched->max_sdu[tc] = max_sdu; 302 } else { 303 sched->max_frm_len[tc] = U32_MAX; /* never oversized */ 304 sched->max_sdu[tc] = 0; 305 } 306 } 307 } 308 309 /* Returns the entry corresponding to next available interval. If 310 * validate_interval is set, it only validates whether the timestamp occurs 311 * when the gate corresponding to the skb's traffic class is open. 312 */ 313 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 314 struct Qdisc *sch, 315 struct sched_gate_list *sched, 316 struct sched_gate_list *admin, 317 ktime_t time, 318 ktime_t *interval_start, 319 ktime_t *interval_end, 320 bool validate_interval) 321 { 322 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 323 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 324 struct sched_entry *entry = NULL, *entry_found = NULL; 325 struct taprio_sched *q = qdisc_priv(sch); 326 struct net_device *dev = qdisc_dev(sch); 327 bool entry_available = false; 328 s32 cycle_elapsed; 329 int tc, n; 330 331 tc = netdev_get_prio_tc_map(dev, skb->priority); 332 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 333 334 *interval_start = 0; 335 *interval_end = 0; 336 337 if (!sched) 338 return NULL; 339 340 cycle = sched->cycle_time; 341 cycle_elapsed = get_cycle_time_elapsed(sched, time); 342 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 343 cycle_end = ktime_add_ns(curr_intv_end, cycle); 344 345 list_for_each_entry(entry, &sched->entries, list) { 346 curr_intv_start = curr_intv_end; 347 curr_intv_end = get_interval_end_time(sched, admin, entry, 348 curr_intv_start); 349 350 if (ktime_after(curr_intv_start, cycle_end)) 351 break; 352 353 if (!(entry->gate_mask & BIT(tc)) || 354 packet_transmit_time > entry->interval) 355 continue; 356 357 txtime = entry->next_txtime; 358 359 if (ktime_before(txtime, time) || validate_interval) { 360 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 361 if ((ktime_before(curr_intv_start, time) && 362 ktime_before(transmit_end_time, curr_intv_end)) || 363 (ktime_after(curr_intv_start, time) && !validate_interval)) { 364 entry_found = entry; 365 *interval_start = curr_intv_start; 366 *interval_end = curr_intv_end; 367 break; 368 } else if (!entry_available && !validate_interval) { 369 /* Here, we are just trying to find out the 370 * first available interval in the next cycle. 371 */ 372 entry_available = true; 373 entry_found = entry; 374 *interval_start = ktime_add_ns(curr_intv_start, cycle); 375 *interval_end = ktime_add_ns(curr_intv_end, cycle); 376 } 377 } else if (ktime_before(txtime, earliest_txtime) && 378 !entry_available) { 379 earliest_txtime = txtime; 380 entry_found = entry; 381 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 382 *interval_start = ktime_add(curr_intv_start, n * cycle); 383 *interval_end = ktime_add(curr_intv_end, n * cycle); 384 } 385 } 386 387 return entry_found; 388 } 389 390 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 391 { 392 struct taprio_sched *q = qdisc_priv(sch); 393 struct sched_gate_list *sched, *admin; 394 ktime_t interval_start, interval_end; 395 struct sched_entry *entry; 396 397 rcu_read_lock(); 398 sched = rcu_dereference(q->oper_sched); 399 admin = rcu_dereference(q->admin_sched); 400 401 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 402 &interval_start, &interval_end, true); 403 rcu_read_unlock(); 404 405 return entry; 406 } 407 408 static bool taprio_flags_valid(u32 flags) 409 { 410 /* Make sure no other flag bits are set. */ 411 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | 412 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 413 return false; 414 /* txtime-assist and full offload are mutually exclusive */ 415 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 416 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 417 return false; 418 return true; 419 } 420 421 /* This returns the tstamp value set by TCP in terms of the set clock. */ 422 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 423 { 424 unsigned int offset = skb_network_offset(skb); 425 const struct ipv6hdr *ipv6h; 426 const struct iphdr *iph; 427 struct ipv6hdr _ipv6h; 428 429 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 430 if (!ipv6h) 431 return 0; 432 433 if (ipv6h->version == 4) { 434 iph = (struct iphdr *)ipv6h; 435 offset += iph->ihl * 4; 436 437 /* special-case 6in4 tunnelling, as that is a common way to get 438 * v6 connectivity in the home 439 */ 440 if (iph->protocol == IPPROTO_IPV6) { 441 ipv6h = skb_header_pointer(skb, offset, 442 sizeof(_ipv6h), &_ipv6h); 443 444 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 445 return 0; 446 } else if (iph->protocol != IPPROTO_TCP) { 447 return 0; 448 } 449 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 450 return 0; 451 } 452 453 return taprio_mono_to_any(q, skb->skb_mstamp_ns); 454 } 455 456 /* There are a few scenarios where we will have to modify the txtime from 457 * what is read from next_txtime in sched_entry. They are: 458 * 1. If txtime is in the past, 459 * a. The gate for the traffic class is currently open and packet can be 460 * transmitted before it closes, schedule the packet right away. 461 * b. If the gate corresponding to the traffic class is going to open later 462 * in the cycle, set the txtime of packet to the interval start. 463 * 2. If txtime is in the future, there are packets corresponding to the 464 * current traffic class waiting to be transmitted. So, the following 465 * possibilities exist: 466 * a. We can transmit the packet before the window containing the txtime 467 * closes. 468 * b. The window might close before the transmission can be completed 469 * successfully. So, schedule the packet in the next open window. 470 */ 471 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 472 { 473 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 474 struct taprio_sched *q = qdisc_priv(sch); 475 struct sched_gate_list *sched, *admin; 476 ktime_t minimum_time, now, txtime; 477 int len, packet_transmit_time; 478 struct sched_entry *entry; 479 bool sched_changed; 480 481 now = taprio_get_time(q); 482 minimum_time = ktime_add_ns(now, q->txtime_delay); 483 484 tcp_tstamp = get_tcp_tstamp(q, skb); 485 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 486 487 rcu_read_lock(); 488 admin = rcu_dereference(q->admin_sched); 489 sched = rcu_dereference(q->oper_sched); 490 if (admin && ktime_after(minimum_time, admin->base_time)) 491 switch_schedules(q, &admin, &sched); 492 493 /* Until the schedule starts, all the queues are open */ 494 if (!sched || ktime_before(minimum_time, sched->base_time)) { 495 txtime = minimum_time; 496 goto done; 497 } 498 499 len = qdisc_pkt_len(skb); 500 packet_transmit_time = length_to_duration(q, len); 501 502 do { 503 sched_changed = false; 504 505 entry = find_entry_to_transmit(skb, sch, sched, admin, 506 minimum_time, 507 &interval_start, &interval_end, 508 false); 509 if (!entry) { 510 txtime = 0; 511 goto done; 512 } 513 514 txtime = entry->next_txtime; 515 txtime = max_t(ktime_t, txtime, minimum_time); 516 txtime = max_t(ktime_t, txtime, interval_start); 517 518 if (admin && admin != sched && 519 ktime_after(txtime, admin->base_time)) { 520 sched = admin; 521 sched_changed = true; 522 continue; 523 } 524 525 transmit_end_time = ktime_add(txtime, packet_transmit_time); 526 minimum_time = transmit_end_time; 527 528 /* Update the txtime of current entry to the next time it's 529 * interval starts. 530 */ 531 if (ktime_after(transmit_end_time, interval_end)) 532 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 533 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 534 535 entry->next_txtime = transmit_end_time; 536 537 done: 538 rcu_read_unlock(); 539 return txtime; 540 } 541 542 /* Devices with full offload are expected to honor this in hardware */ 543 static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch, 544 struct sk_buff *skb) 545 { 546 struct taprio_sched *q = qdisc_priv(sch); 547 struct net_device *dev = qdisc_dev(sch); 548 struct sched_gate_list *sched; 549 int prio = skb->priority; 550 bool exceeds = false; 551 u8 tc; 552 553 tc = netdev_get_prio_tc_map(dev, prio); 554 555 rcu_read_lock(); 556 sched = rcu_dereference(q->oper_sched); 557 if (sched && skb->len > sched->max_frm_len[tc]) 558 exceeds = true; 559 rcu_read_unlock(); 560 561 return exceeds; 562 } 563 564 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, 565 struct Qdisc *child, struct sk_buff **to_free) 566 { 567 struct taprio_sched *q = qdisc_priv(sch); 568 569 /* sk_flags are only safe to use on full sockets. */ 570 if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) { 571 if (!is_valid_interval(skb, sch)) 572 return qdisc_drop(skb, sch, to_free); 573 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 574 skb->tstamp = get_packet_txtime(skb, sch); 575 if (!skb->tstamp) 576 return qdisc_drop(skb, sch, to_free); 577 } 578 579 qdisc_qstats_backlog_inc(sch, skb); 580 sch->q.qlen++; 581 582 return qdisc_enqueue(skb, child, to_free); 583 } 584 585 static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch, 586 struct Qdisc *child, 587 struct sk_buff **to_free) 588 { 589 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); 590 netdev_features_t features = netif_skb_features(skb); 591 struct sk_buff *segs, *nskb; 592 int ret; 593 594 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 595 if (IS_ERR_OR_NULL(segs)) 596 return qdisc_drop(skb, sch, to_free); 597 598 skb_list_walk_safe(segs, segs, nskb) { 599 skb_mark_not_on_list(segs); 600 qdisc_skb_cb(segs)->pkt_len = segs->len; 601 slen += segs->len; 602 603 /* FIXME: we should be segmenting to a smaller size 604 * rather than dropping these 605 */ 606 if (taprio_skb_exceeds_queue_max_sdu(sch, segs)) 607 ret = qdisc_drop(segs, sch, to_free); 608 else 609 ret = taprio_enqueue_one(segs, sch, child, to_free); 610 611 if (ret != NET_XMIT_SUCCESS) { 612 if (net_xmit_drop_count(ret)) 613 qdisc_qstats_drop(sch); 614 } else { 615 numsegs++; 616 } 617 } 618 619 if (numsegs > 1) 620 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); 621 consume_skb(skb); 622 623 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; 624 } 625 626 /* Will not be called in the full offload case, since the TX queues are 627 * attached to the Qdisc created using qdisc_create_dflt() 628 */ 629 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 630 struct sk_buff **to_free) 631 { 632 struct taprio_sched *q = qdisc_priv(sch); 633 struct Qdisc *child; 634 int queue; 635 636 queue = skb_get_queue_mapping(skb); 637 638 child = q->qdiscs[queue]; 639 if (unlikely(!child)) 640 return qdisc_drop(skb, sch, to_free); 641 642 if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) { 643 /* Large packets might not be transmitted when the transmission 644 * duration exceeds any configured interval. Therefore, segment 645 * the skb into smaller chunks. Drivers with full offload are 646 * expected to handle this in hardware. 647 */ 648 if (skb_is_gso(skb)) 649 return taprio_enqueue_segmented(skb, sch, child, 650 to_free); 651 652 return qdisc_drop(skb, sch, to_free); 653 } 654 655 return taprio_enqueue_one(skb, sch, child, to_free); 656 } 657 658 static struct sk_buff *taprio_peek(struct Qdisc *sch) 659 { 660 WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented"); 661 return NULL; 662 } 663 664 static void taprio_set_budgets(struct taprio_sched *q, 665 struct sched_gate_list *sched, 666 struct sched_entry *entry) 667 { 668 struct net_device *dev = qdisc_dev(q->root); 669 int num_tc = netdev_get_num_tc(dev); 670 int tc, budget; 671 672 for (tc = 0; tc < num_tc; tc++) { 673 /* Traffic classes which never close have infinite budget */ 674 if (entry->gate_duration[tc] == sched->cycle_time) 675 budget = INT_MAX; 676 else 677 budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC, 678 atomic64_read(&q->picos_per_byte)); 679 680 atomic_set(&entry->budget[tc], budget); 681 } 682 } 683 684 /* When an skb is sent, it consumes from the budget of all traffic classes */ 685 static int taprio_update_budgets(struct sched_entry *entry, size_t len, 686 int tc_consumed, int num_tc) 687 { 688 int tc, budget, new_budget = 0; 689 690 for (tc = 0; tc < num_tc; tc++) { 691 budget = atomic_read(&entry->budget[tc]); 692 /* Don't consume from infinite budget */ 693 if (budget == INT_MAX) { 694 if (tc == tc_consumed) 695 new_budget = budget; 696 continue; 697 } 698 699 if (tc == tc_consumed) 700 new_budget = atomic_sub_return(len, &entry->budget[tc]); 701 else 702 atomic_sub(len, &entry->budget[tc]); 703 } 704 705 return new_budget; 706 } 707 708 static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq, 709 struct sched_entry *entry, 710 u32 gate_mask) 711 { 712 struct taprio_sched *q = qdisc_priv(sch); 713 struct net_device *dev = qdisc_dev(sch); 714 struct Qdisc *child = q->qdiscs[txq]; 715 int num_tc = netdev_get_num_tc(dev); 716 struct sk_buff *skb; 717 ktime_t guard; 718 int prio; 719 int len; 720 u8 tc; 721 722 if (unlikely(!child)) 723 return NULL; 724 725 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 726 goto skip_peek_checks; 727 728 skb = child->ops->peek(child); 729 if (!skb) 730 return NULL; 731 732 prio = skb->priority; 733 tc = netdev_get_prio_tc_map(dev, prio); 734 735 if (!(gate_mask & BIT(tc))) 736 return NULL; 737 738 len = qdisc_pkt_len(skb); 739 guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len)); 740 741 /* In the case that there's no gate entry, there's no 742 * guard band ... 743 */ 744 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 745 !taprio_entry_allows_tx(guard, entry, tc)) 746 return NULL; 747 748 /* ... and no budget. */ 749 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 750 taprio_update_budgets(entry, len, tc, num_tc) < 0) 751 return NULL; 752 753 skip_peek_checks: 754 skb = child->ops->dequeue(child); 755 if (unlikely(!skb)) 756 return NULL; 757 758 qdisc_bstats_update(sch, skb); 759 qdisc_qstats_backlog_dec(sch, skb); 760 sch->q.qlen--; 761 762 return skb; 763 } 764 765 static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq) 766 { 767 int offset = dev->tc_to_txq[tc].offset; 768 int count = dev->tc_to_txq[tc].count; 769 770 (*txq)++; 771 if (*txq == offset + count) 772 *txq = offset; 773 } 774 775 /* Prioritize higher traffic classes, and select among TXQs belonging to the 776 * same TC using round robin 777 */ 778 static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch, 779 struct sched_entry *entry, 780 u32 gate_mask) 781 { 782 struct taprio_sched *q = qdisc_priv(sch); 783 struct net_device *dev = qdisc_dev(sch); 784 int num_tc = netdev_get_num_tc(dev); 785 struct sk_buff *skb; 786 int tc; 787 788 for (tc = num_tc - 1; tc >= 0; tc--) { 789 int first_txq = q->cur_txq[tc]; 790 791 if (!(gate_mask & BIT(tc))) 792 continue; 793 794 do { 795 skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc], 796 entry, gate_mask); 797 798 taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]); 799 800 if (skb) 801 return skb; 802 } while (q->cur_txq[tc] != first_txq); 803 } 804 805 return NULL; 806 } 807 808 /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic 809 * class other than to determine whether the gate is open or not 810 */ 811 static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch, 812 struct sched_entry *entry, 813 u32 gate_mask) 814 { 815 struct net_device *dev = qdisc_dev(sch); 816 struct sk_buff *skb; 817 int i; 818 819 for (i = 0; i < dev->num_tx_queues; i++) { 820 skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask); 821 if (skb) 822 return skb; 823 } 824 825 return NULL; 826 } 827 828 /* Will not be called in the full offload case, since the TX queues are 829 * attached to the Qdisc created using qdisc_create_dflt() 830 */ 831 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 832 { 833 struct taprio_sched *q = qdisc_priv(sch); 834 struct sk_buff *skb = NULL; 835 struct sched_entry *entry; 836 u32 gate_mask; 837 838 rcu_read_lock(); 839 entry = rcu_dereference(q->current_entry); 840 /* if there's no entry, it means that the schedule didn't 841 * start yet, so force all gates to be open, this is in 842 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 843 * "AdminGateStates" 844 */ 845 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 846 if (!gate_mask) 847 goto done; 848 849 if (static_branch_unlikely(&taprio_have_broken_mqprio) && 850 !static_branch_likely(&taprio_have_working_mqprio)) { 851 /* Single NIC kind which is broken */ 852 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); 853 } else if (static_branch_likely(&taprio_have_working_mqprio) && 854 !static_branch_unlikely(&taprio_have_broken_mqprio)) { 855 /* Single NIC kind which prioritizes properly */ 856 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); 857 } else { 858 /* Mixed NIC kinds present in system, need dynamic testing */ 859 if (q->broken_mqprio) 860 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); 861 else 862 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); 863 } 864 865 done: 866 rcu_read_unlock(); 867 868 return skb; 869 } 870 871 static bool should_restart_cycle(const struct sched_gate_list *oper, 872 const struct sched_entry *entry) 873 { 874 if (list_is_last(&entry->list, &oper->entries)) 875 return true; 876 877 if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0) 878 return true; 879 880 return false; 881 } 882 883 static bool should_change_schedules(const struct sched_gate_list *admin, 884 const struct sched_gate_list *oper, 885 ktime_t end_time) 886 { 887 ktime_t next_base_time, extension_time; 888 889 if (!admin) 890 return false; 891 892 next_base_time = sched_base_time(admin); 893 894 /* This is the simple case, the end_time would fall after 895 * the next schedule base_time. 896 */ 897 if (ktime_compare(next_base_time, end_time) <= 0) 898 return true; 899 900 /* This is the cycle_time_extension case, if the end_time 901 * plus the amount that can be extended would fall after the 902 * next schedule base_time, we can extend the current schedule 903 * for that amount. 904 */ 905 extension_time = ktime_add_ns(end_time, oper->cycle_time_extension); 906 907 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 908 * how precisely the extension should be made. So after 909 * conformance testing, this logic may change. 910 */ 911 if (ktime_compare(next_base_time, extension_time) <= 0) 912 return true; 913 914 return false; 915 } 916 917 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 918 { 919 struct taprio_sched *q = container_of(timer, struct taprio_sched, 920 advance_timer); 921 struct net_device *dev = qdisc_dev(q->root); 922 struct sched_gate_list *oper, *admin; 923 int num_tc = netdev_get_num_tc(dev); 924 struct sched_entry *entry, *next; 925 struct Qdisc *sch = q->root; 926 ktime_t end_time; 927 int tc; 928 929 spin_lock(&q->current_entry_lock); 930 entry = rcu_dereference_protected(q->current_entry, 931 lockdep_is_held(&q->current_entry_lock)); 932 oper = rcu_dereference_protected(q->oper_sched, 933 lockdep_is_held(&q->current_entry_lock)); 934 admin = rcu_dereference_protected(q->admin_sched, 935 lockdep_is_held(&q->current_entry_lock)); 936 937 if (!oper) 938 switch_schedules(q, &admin, &oper); 939 940 /* This can happen in two cases: 1. this is the very first run 941 * of this function (i.e. we weren't running any schedule 942 * previously); 2. The previous schedule just ended. The first 943 * entry of all schedules are pre-calculated during the 944 * schedule initialization. 945 */ 946 if (unlikely(!entry || entry->end_time == oper->base_time)) { 947 next = list_first_entry(&oper->entries, struct sched_entry, 948 list); 949 end_time = next->end_time; 950 goto first_run; 951 } 952 953 if (should_restart_cycle(oper, entry)) { 954 next = list_first_entry(&oper->entries, struct sched_entry, 955 list); 956 oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time, 957 oper->cycle_time); 958 } else { 959 next = list_next_entry(entry, list); 960 } 961 962 end_time = ktime_add_ns(entry->end_time, next->interval); 963 end_time = min_t(ktime_t, end_time, oper->cycle_end_time); 964 965 for (tc = 0; tc < num_tc; tc++) { 966 if (next->gate_duration[tc] == oper->cycle_time) 967 next->gate_close_time[tc] = KTIME_MAX; 968 else 969 next->gate_close_time[tc] = ktime_add_ns(entry->end_time, 970 next->gate_duration[tc]); 971 } 972 973 if (should_change_schedules(admin, oper, end_time)) { 974 /* Set things so the next time this runs, the new 975 * schedule runs. 976 */ 977 end_time = sched_base_time(admin); 978 switch_schedules(q, &admin, &oper); 979 } 980 981 next->end_time = end_time; 982 taprio_set_budgets(q, oper, next); 983 984 first_run: 985 rcu_assign_pointer(q->current_entry, next); 986 spin_unlock(&q->current_entry_lock); 987 988 hrtimer_set_expires(&q->advance_timer, end_time); 989 990 rcu_read_lock(); 991 __netif_schedule(sch); 992 rcu_read_unlock(); 993 994 return HRTIMER_RESTART; 995 } 996 997 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 998 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 999 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 1000 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 1001 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 1002 }; 1003 1004 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { 1005 [TCA_TAPRIO_TC_ENTRY_INDEX] = { .type = NLA_U32 }, 1006 [TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 }, 1007 [TCA_TAPRIO_TC_ENTRY_FP] = NLA_POLICY_RANGE(NLA_U32, 1008 TC_FP_EXPRESS, 1009 TC_FP_PREEMPTIBLE), 1010 }; 1011 1012 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 1013 [TCA_TAPRIO_ATTR_PRIOMAP] = { 1014 .len = sizeof(struct tc_mqprio_qopt) 1015 }, 1016 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 1017 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 1018 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 1019 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 1020 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, 1021 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 1022 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, 1023 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, 1024 [TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED }, 1025 }; 1026 1027 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, 1028 struct sched_entry *entry, 1029 struct netlink_ext_ack *extack) 1030 { 1031 int min_duration = length_to_duration(q, ETH_ZLEN); 1032 u32 interval = 0; 1033 1034 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 1035 entry->command = nla_get_u8( 1036 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 1037 1038 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 1039 entry->gate_mask = nla_get_u32( 1040 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 1041 1042 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 1043 interval = nla_get_u32( 1044 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 1045 1046 /* The interval should allow at least the minimum ethernet 1047 * frame to go out. 1048 */ 1049 if (interval < min_duration) { 1050 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 1051 return -EINVAL; 1052 } 1053 1054 entry->interval = interval; 1055 1056 return 0; 1057 } 1058 1059 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, 1060 struct sched_entry *entry, int index, 1061 struct netlink_ext_ack *extack) 1062 { 1063 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 1064 int err; 1065 1066 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 1067 entry_policy, NULL); 1068 if (err < 0) { 1069 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 1070 return -EINVAL; 1071 } 1072 1073 entry->index = index; 1074 1075 return fill_sched_entry(q, tb, entry, extack); 1076 } 1077 1078 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, 1079 struct sched_gate_list *sched, 1080 struct netlink_ext_ack *extack) 1081 { 1082 struct nlattr *n; 1083 int err, rem; 1084 int i = 0; 1085 1086 if (!list) 1087 return -EINVAL; 1088 1089 nla_for_each_nested(n, list, rem) { 1090 struct sched_entry *entry; 1091 1092 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 1093 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 1094 continue; 1095 } 1096 1097 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 1098 if (!entry) { 1099 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 1100 return -ENOMEM; 1101 } 1102 1103 err = parse_sched_entry(q, n, entry, i, extack); 1104 if (err < 0) { 1105 kfree(entry); 1106 return err; 1107 } 1108 1109 list_add_tail(&entry->list, &sched->entries); 1110 i++; 1111 } 1112 1113 sched->num_entries = i; 1114 1115 return i; 1116 } 1117 1118 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, 1119 struct sched_gate_list *new, 1120 struct netlink_ext_ack *extack) 1121 { 1122 int err = 0; 1123 1124 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 1125 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 1126 return -ENOTSUPP; 1127 } 1128 1129 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 1130 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 1131 1132 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 1133 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 1134 1135 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 1136 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 1137 1138 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 1139 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], 1140 new, extack); 1141 if (err < 0) 1142 return err; 1143 1144 if (!new->cycle_time) { 1145 struct sched_entry *entry; 1146 ktime_t cycle = 0; 1147 1148 list_for_each_entry(entry, &new->entries, list) 1149 cycle = ktime_add_ns(cycle, entry->interval); 1150 1151 if (!cycle) { 1152 NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0"); 1153 return -EINVAL; 1154 } 1155 1156 new->cycle_time = cycle; 1157 } 1158 1159 taprio_calculate_gate_durations(q, new); 1160 1161 return 0; 1162 } 1163 1164 static int taprio_parse_mqprio_opt(struct net_device *dev, 1165 struct tc_mqprio_qopt *qopt, 1166 struct netlink_ext_ack *extack, 1167 u32 taprio_flags) 1168 { 1169 bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags); 1170 1171 if (!qopt && !dev->num_tc) { 1172 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 1173 return -EINVAL; 1174 } 1175 1176 /* If num_tc is already set, it means that the user already 1177 * configured the mqprio part 1178 */ 1179 if (dev->num_tc) 1180 return 0; 1181 1182 /* taprio imposes that traffic classes map 1:n to tx queues */ 1183 if (qopt->num_tc > dev->num_tx_queues) { 1184 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 1185 return -EINVAL; 1186 } 1187 1188 /* For some reason, in txtime-assist mode, we allow TXQ ranges for 1189 * different TCs to overlap, and just validate the TXQ ranges. 1190 */ 1191 return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs, 1192 extack); 1193 } 1194 1195 static int taprio_get_start_time(struct Qdisc *sch, 1196 struct sched_gate_list *sched, 1197 ktime_t *start) 1198 { 1199 struct taprio_sched *q = qdisc_priv(sch); 1200 ktime_t now, base, cycle; 1201 s64 n; 1202 1203 base = sched_base_time(sched); 1204 now = taprio_get_time(q); 1205 1206 if (ktime_after(base, now)) { 1207 *start = base; 1208 return 0; 1209 } 1210 1211 cycle = sched->cycle_time; 1212 1213 /* The qdisc is expected to have at least one sched_entry. Moreover, 1214 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 1215 * something went really wrong. In that case, we should warn about this 1216 * inconsistent state and return error. 1217 */ 1218 if (WARN_ON(!cycle)) 1219 return -EFAULT; 1220 1221 /* Schedule the start time for the beginning of the next 1222 * cycle. 1223 */ 1224 n = div64_s64(ktime_sub_ns(now, base), cycle); 1225 *start = ktime_add_ns(base, (n + 1) * cycle); 1226 return 0; 1227 } 1228 1229 static void setup_first_end_time(struct taprio_sched *q, 1230 struct sched_gate_list *sched, ktime_t base) 1231 { 1232 struct net_device *dev = qdisc_dev(q->root); 1233 int num_tc = netdev_get_num_tc(dev); 1234 struct sched_entry *first; 1235 ktime_t cycle; 1236 int tc; 1237 1238 first = list_first_entry(&sched->entries, 1239 struct sched_entry, list); 1240 1241 cycle = sched->cycle_time; 1242 1243 /* FIXME: find a better place to do this */ 1244 sched->cycle_end_time = ktime_add_ns(base, cycle); 1245 1246 first->end_time = ktime_add_ns(base, first->interval); 1247 taprio_set_budgets(q, sched, first); 1248 1249 for (tc = 0; tc < num_tc; tc++) { 1250 if (first->gate_duration[tc] == sched->cycle_time) 1251 first->gate_close_time[tc] = KTIME_MAX; 1252 else 1253 first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]); 1254 } 1255 1256 rcu_assign_pointer(q->current_entry, NULL); 1257 } 1258 1259 static void taprio_start_sched(struct Qdisc *sch, 1260 ktime_t start, struct sched_gate_list *new) 1261 { 1262 struct taprio_sched *q = qdisc_priv(sch); 1263 ktime_t expires; 1264 1265 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1266 return; 1267 1268 expires = hrtimer_get_expires(&q->advance_timer); 1269 if (expires == 0) 1270 expires = KTIME_MAX; 1271 1272 /* If the new schedule starts before the next expiration, we 1273 * reprogram it to the earliest one, so we change the admin 1274 * schedule to the operational one at the right time. 1275 */ 1276 start = min_t(ktime_t, start, expires); 1277 1278 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1279 } 1280 1281 static void taprio_set_picos_per_byte(struct net_device *dev, 1282 struct taprio_sched *q) 1283 { 1284 struct ethtool_link_ksettings ecmd; 1285 int speed = SPEED_10; 1286 int picos_per_byte; 1287 int err; 1288 1289 err = __ethtool_get_link_ksettings(dev, &ecmd); 1290 if (err < 0) 1291 goto skip; 1292 1293 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1294 speed = ecmd.base.speed; 1295 1296 skip: 1297 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1298 1299 atomic64_set(&q->picos_per_byte, picos_per_byte); 1300 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1301 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1302 ecmd.base.speed); 1303 } 1304 1305 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1306 void *ptr) 1307 { 1308 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1309 struct sched_gate_list *oper, *admin; 1310 struct qdisc_size_table *stab; 1311 struct taprio_sched *q; 1312 1313 ASSERT_RTNL(); 1314 1315 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1316 return NOTIFY_DONE; 1317 1318 list_for_each_entry(q, &taprio_list, taprio_list) { 1319 if (dev != qdisc_dev(q->root)) 1320 continue; 1321 1322 taprio_set_picos_per_byte(dev, q); 1323 1324 stab = rtnl_dereference(q->root->stab); 1325 1326 oper = rtnl_dereference(q->oper_sched); 1327 if (oper) 1328 taprio_update_queue_max_sdu(q, oper, stab); 1329 1330 admin = rtnl_dereference(q->admin_sched); 1331 if (admin) 1332 taprio_update_queue_max_sdu(q, admin, stab); 1333 1334 break; 1335 } 1336 1337 return NOTIFY_DONE; 1338 } 1339 1340 static void setup_txtime(struct taprio_sched *q, 1341 struct sched_gate_list *sched, ktime_t base) 1342 { 1343 struct sched_entry *entry; 1344 u32 interval = 0; 1345 1346 list_for_each_entry(entry, &sched->entries, list) { 1347 entry->next_txtime = ktime_add_ns(base, interval); 1348 interval += entry->interval; 1349 } 1350 } 1351 1352 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1353 { 1354 struct __tc_taprio_qopt_offload *__offload; 1355 1356 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), 1357 GFP_KERNEL); 1358 if (!__offload) 1359 return NULL; 1360 1361 refcount_set(&__offload->users, 1); 1362 1363 return &__offload->offload; 1364 } 1365 1366 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1367 *offload) 1368 { 1369 struct __tc_taprio_qopt_offload *__offload; 1370 1371 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1372 offload); 1373 1374 refcount_inc(&__offload->users); 1375 1376 return offload; 1377 } 1378 EXPORT_SYMBOL_GPL(taprio_offload_get); 1379 1380 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1381 { 1382 struct __tc_taprio_qopt_offload *__offload; 1383 1384 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1385 offload); 1386 1387 if (!refcount_dec_and_test(&__offload->users)) 1388 return; 1389 1390 kfree(__offload); 1391 } 1392 EXPORT_SYMBOL_GPL(taprio_offload_free); 1393 1394 /* The function will only serve to keep the pointers to the "oper" and "admin" 1395 * schedules valid in relation to their base times, so when calling dump() the 1396 * users looks at the right schedules. 1397 * When using full offload, the admin configuration is promoted to oper at the 1398 * base_time in the PHC time domain. But because the system time is not 1399 * necessarily in sync with that, we can't just trigger a hrtimer to call 1400 * switch_schedules at the right hardware time. 1401 * At the moment we call this by hand right away from taprio, but in the future 1402 * it will be useful to create a mechanism for drivers to notify taprio of the 1403 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1404 * This is left as TODO. 1405 */ 1406 static void taprio_offload_config_changed(struct taprio_sched *q) 1407 { 1408 struct sched_gate_list *oper, *admin; 1409 1410 oper = rtnl_dereference(q->oper_sched); 1411 admin = rtnl_dereference(q->admin_sched); 1412 1413 switch_schedules(q, &admin, &oper); 1414 } 1415 1416 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) 1417 { 1418 u32 i, queue_mask = 0; 1419 1420 for (i = 0; i < dev->num_tc; i++) { 1421 u32 offset, count; 1422 1423 if (!(tc_mask & BIT(i))) 1424 continue; 1425 1426 offset = dev->tc_to_txq[i].offset; 1427 count = dev->tc_to_txq[i].count; 1428 1429 queue_mask |= GENMASK(offset + count - 1, offset); 1430 } 1431 1432 return queue_mask; 1433 } 1434 1435 static void taprio_sched_to_offload(struct net_device *dev, 1436 struct sched_gate_list *sched, 1437 struct tc_taprio_qopt_offload *offload, 1438 const struct tc_taprio_caps *caps) 1439 { 1440 struct sched_entry *entry; 1441 int i = 0; 1442 1443 offload->base_time = sched->base_time; 1444 offload->cycle_time = sched->cycle_time; 1445 offload->cycle_time_extension = sched->cycle_time_extension; 1446 1447 list_for_each_entry(entry, &sched->entries, list) { 1448 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1449 1450 e->command = entry->command; 1451 e->interval = entry->interval; 1452 if (caps->gate_mask_per_txq) 1453 e->gate_mask = tc_map_to_queue_mask(dev, 1454 entry->gate_mask); 1455 else 1456 e->gate_mask = entry->gate_mask; 1457 1458 i++; 1459 } 1460 1461 offload->num_entries = i; 1462 } 1463 1464 static void taprio_detect_broken_mqprio(struct taprio_sched *q) 1465 { 1466 struct net_device *dev = qdisc_dev(q->root); 1467 struct tc_taprio_caps caps; 1468 1469 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, 1470 &caps, sizeof(caps)); 1471 1472 q->broken_mqprio = caps.broken_mqprio; 1473 if (q->broken_mqprio) 1474 static_branch_inc(&taprio_have_broken_mqprio); 1475 else 1476 static_branch_inc(&taprio_have_working_mqprio); 1477 1478 q->detected_mqprio = true; 1479 } 1480 1481 static void taprio_cleanup_broken_mqprio(struct taprio_sched *q) 1482 { 1483 if (!q->detected_mqprio) 1484 return; 1485 1486 if (q->broken_mqprio) 1487 static_branch_dec(&taprio_have_broken_mqprio); 1488 else 1489 static_branch_dec(&taprio_have_working_mqprio); 1490 } 1491 1492 static int taprio_enable_offload(struct net_device *dev, 1493 struct taprio_sched *q, 1494 struct sched_gate_list *sched, 1495 struct netlink_ext_ack *extack) 1496 { 1497 const struct net_device_ops *ops = dev->netdev_ops; 1498 struct tc_taprio_qopt_offload *offload; 1499 struct tc_taprio_caps caps; 1500 int tc, err = 0; 1501 1502 if (!ops->ndo_setup_tc) { 1503 NL_SET_ERR_MSG(extack, 1504 "Device does not support taprio offload"); 1505 return -EOPNOTSUPP; 1506 } 1507 1508 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, 1509 &caps, sizeof(caps)); 1510 1511 if (!caps.supports_queue_max_sdu) { 1512 for (tc = 0; tc < TC_MAX_QUEUE; tc++) { 1513 if (q->max_sdu[tc]) { 1514 NL_SET_ERR_MSG_MOD(extack, 1515 "Device does not handle queueMaxSDU"); 1516 return -EOPNOTSUPP; 1517 } 1518 } 1519 } 1520 1521 offload = taprio_offload_alloc(sched->num_entries); 1522 if (!offload) { 1523 NL_SET_ERR_MSG(extack, 1524 "Not enough memory for enabling offload mode"); 1525 return -ENOMEM; 1526 } 1527 offload->enable = 1; 1528 offload->extack = extack; 1529 mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt); 1530 offload->mqprio.extack = extack; 1531 taprio_sched_to_offload(dev, sched, offload, &caps); 1532 mqprio_fp_to_offload(q->fp, &offload->mqprio); 1533 1534 for (tc = 0; tc < TC_MAX_QUEUE; tc++) 1535 offload->max_sdu[tc] = q->max_sdu[tc]; 1536 1537 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1538 if (err < 0) { 1539 NL_SET_ERR_MSG_WEAK(extack, 1540 "Device failed to setup taprio offload"); 1541 goto done; 1542 } 1543 1544 q->offloaded = true; 1545 1546 done: 1547 /* The offload structure may linger around via a reference taken by the 1548 * device driver, so clear up the netlink extack pointer so that the 1549 * driver isn't tempted to dereference data which stopped being valid 1550 */ 1551 offload->extack = NULL; 1552 offload->mqprio.extack = NULL; 1553 taprio_offload_free(offload); 1554 1555 return err; 1556 } 1557 1558 static int taprio_disable_offload(struct net_device *dev, 1559 struct taprio_sched *q, 1560 struct netlink_ext_ack *extack) 1561 { 1562 const struct net_device_ops *ops = dev->netdev_ops; 1563 struct tc_taprio_qopt_offload *offload; 1564 int err; 1565 1566 if (!q->offloaded) 1567 return 0; 1568 1569 offload = taprio_offload_alloc(0); 1570 if (!offload) { 1571 NL_SET_ERR_MSG(extack, 1572 "Not enough memory to disable offload mode"); 1573 return -ENOMEM; 1574 } 1575 offload->enable = 0; 1576 1577 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1578 if (err < 0) { 1579 NL_SET_ERR_MSG(extack, 1580 "Device failed to disable offload"); 1581 goto out; 1582 } 1583 1584 q->offloaded = false; 1585 1586 out: 1587 taprio_offload_free(offload); 1588 1589 return err; 1590 } 1591 1592 /* If full offload is enabled, the only possible clockid is the net device's 1593 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1594 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1595 * in sync with the specified clockid via a user space daemon such as phc2sys. 1596 * For both software taprio and txtime-assist, the clockid is used for the 1597 * hrtimer that advances the schedule and hence mandatory. 1598 */ 1599 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1600 struct netlink_ext_ack *extack) 1601 { 1602 struct taprio_sched *q = qdisc_priv(sch); 1603 struct net_device *dev = qdisc_dev(sch); 1604 int err = -EINVAL; 1605 1606 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1607 const struct ethtool_ops *ops = dev->ethtool_ops; 1608 struct ethtool_ts_info info = { 1609 .cmd = ETHTOOL_GET_TS_INFO, 1610 .phc_index = -1, 1611 }; 1612 1613 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1614 NL_SET_ERR_MSG(extack, 1615 "The 'clockid' cannot be specified for full offload"); 1616 goto out; 1617 } 1618 1619 if (ops && ops->get_ts_info) 1620 err = ops->get_ts_info(dev, &info); 1621 1622 if (err || info.phc_index < 0) { 1623 NL_SET_ERR_MSG(extack, 1624 "Device does not have a PTP clock"); 1625 err = -ENOTSUPP; 1626 goto out; 1627 } 1628 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1629 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1630 enum tk_offsets tk_offset; 1631 1632 /* We only support static clockids and we don't allow 1633 * for it to be modified after the first init. 1634 */ 1635 if (clockid < 0 || 1636 (q->clockid != -1 && q->clockid != clockid)) { 1637 NL_SET_ERR_MSG(extack, 1638 "Changing the 'clockid' of a running schedule is not supported"); 1639 err = -ENOTSUPP; 1640 goto out; 1641 } 1642 1643 switch (clockid) { 1644 case CLOCK_REALTIME: 1645 tk_offset = TK_OFFS_REAL; 1646 break; 1647 case CLOCK_MONOTONIC: 1648 tk_offset = TK_OFFS_MAX; 1649 break; 1650 case CLOCK_BOOTTIME: 1651 tk_offset = TK_OFFS_BOOT; 1652 break; 1653 case CLOCK_TAI: 1654 tk_offset = TK_OFFS_TAI; 1655 break; 1656 default: 1657 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1658 err = -EINVAL; 1659 goto out; 1660 } 1661 /* This pairs with READ_ONCE() in taprio_mono_to_any */ 1662 WRITE_ONCE(q->tk_offset, tk_offset); 1663 1664 q->clockid = clockid; 1665 } else { 1666 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1667 goto out; 1668 } 1669 1670 /* Everything went ok, return success. */ 1671 err = 0; 1672 1673 out: 1674 return err; 1675 } 1676 1677 static int taprio_parse_tc_entry(struct Qdisc *sch, 1678 struct nlattr *opt, 1679 u32 max_sdu[TC_QOPT_MAX_QUEUE], 1680 u32 fp[TC_QOPT_MAX_QUEUE], 1681 unsigned long *seen_tcs, 1682 struct netlink_ext_ack *extack) 1683 { 1684 struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { }; 1685 struct net_device *dev = qdisc_dev(sch); 1686 int err, tc; 1687 u32 val; 1688 1689 err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt, 1690 taprio_tc_policy, extack); 1691 if (err < 0) 1692 return err; 1693 1694 if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) { 1695 NL_SET_ERR_MSG_MOD(extack, "TC entry index missing"); 1696 return -EINVAL; 1697 } 1698 1699 tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]); 1700 if (tc >= TC_QOPT_MAX_QUEUE) { 1701 NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range"); 1702 return -ERANGE; 1703 } 1704 1705 if (*seen_tcs & BIT(tc)) { 1706 NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry"); 1707 return -EINVAL; 1708 } 1709 1710 *seen_tcs |= BIT(tc); 1711 1712 if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) { 1713 val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]); 1714 if (val > dev->max_mtu) { 1715 NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU"); 1716 return -ERANGE; 1717 } 1718 1719 max_sdu[tc] = val; 1720 } 1721 1722 if (tb[TCA_TAPRIO_TC_ENTRY_FP]) 1723 fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]); 1724 1725 return 0; 1726 } 1727 1728 static int taprio_parse_tc_entries(struct Qdisc *sch, 1729 struct nlattr *opt, 1730 struct netlink_ext_ack *extack) 1731 { 1732 struct taprio_sched *q = qdisc_priv(sch); 1733 struct net_device *dev = qdisc_dev(sch); 1734 u32 max_sdu[TC_QOPT_MAX_QUEUE]; 1735 bool have_preemption = false; 1736 unsigned long seen_tcs = 0; 1737 u32 fp[TC_QOPT_MAX_QUEUE]; 1738 struct nlattr *n; 1739 int tc, rem; 1740 int err = 0; 1741 1742 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { 1743 max_sdu[tc] = q->max_sdu[tc]; 1744 fp[tc] = q->fp[tc]; 1745 } 1746 1747 nla_for_each_nested(n, opt, rem) { 1748 if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY) 1749 continue; 1750 1751 err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs, 1752 extack); 1753 if (err) 1754 return err; 1755 } 1756 1757 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { 1758 q->max_sdu[tc] = max_sdu[tc]; 1759 q->fp[tc] = fp[tc]; 1760 if (fp[tc] != TC_FP_EXPRESS) 1761 have_preemption = true; 1762 } 1763 1764 if (have_preemption) { 1765 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1766 NL_SET_ERR_MSG(extack, 1767 "Preemption only supported with full offload"); 1768 return -EOPNOTSUPP; 1769 } 1770 1771 if (!ethtool_dev_mm_supported(dev)) { 1772 NL_SET_ERR_MSG(extack, 1773 "Device does not support preemption"); 1774 return -EOPNOTSUPP; 1775 } 1776 } 1777 1778 return err; 1779 } 1780 1781 static int taprio_mqprio_cmp(const struct net_device *dev, 1782 const struct tc_mqprio_qopt *mqprio) 1783 { 1784 int i; 1785 1786 if (!mqprio || mqprio->num_tc != dev->num_tc) 1787 return -1; 1788 1789 for (i = 0; i < mqprio->num_tc; i++) 1790 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1791 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1792 return -1; 1793 1794 for (i = 0; i <= TC_BITMASK; i++) 1795 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1796 return -1; 1797 1798 return 0; 1799 } 1800 1801 /* The semantics of the 'flags' argument in relation to 'change()' 1802 * requests, are interpreted following two rules (which are applied in 1803 * this order): (1) an omitted 'flags' argument is interpreted as 1804 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1805 * changed. 1806 */ 1807 static int taprio_new_flags(const struct nlattr *attr, u32 old, 1808 struct netlink_ext_ack *extack) 1809 { 1810 u32 new = 0; 1811 1812 if (attr) 1813 new = nla_get_u32(attr); 1814 1815 if (old != TAPRIO_FLAGS_INVALID && old != new) { 1816 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1817 return -EOPNOTSUPP; 1818 } 1819 1820 if (!taprio_flags_valid(new)) { 1821 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1822 return -EINVAL; 1823 } 1824 1825 return new; 1826 } 1827 1828 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1829 struct netlink_ext_ack *extack) 1830 { 1831 struct qdisc_size_table *stab = rtnl_dereference(sch->stab); 1832 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1833 struct sched_gate_list *oper, *admin, *new_admin; 1834 struct taprio_sched *q = qdisc_priv(sch); 1835 struct net_device *dev = qdisc_dev(sch); 1836 struct tc_mqprio_qopt *mqprio = NULL; 1837 unsigned long flags; 1838 ktime_t start; 1839 int i, err; 1840 1841 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1842 taprio_policy, extack); 1843 if (err < 0) 1844 return err; 1845 1846 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1847 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1848 1849 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], 1850 q->flags, extack); 1851 if (err < 0) 1852 return err; 1853 1854 q->flags = err; 1855 1856 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1857 if (err < 0) 1858 return err; 1859 1860 err = taprio_parse_tc_entries(sch, opt, extack); 1861 if (err) 1862 return err; 1863 1864 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1865 if (!new_admin) { 1866 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1867 return -ENOMEM; 1868 } 1869 INIT_LIST_HEAD(&new_admin->entries); 1870 1871 oper = rtnl_dereference(q->oper_sched); 1872 admin = rtnl_dereference(q->admin_sched); 1873 1874 /* no changes - no new mqprio settings */ 1875 if (!taprio_mqprio_cmp(dev, mqprio)) 1876 mqprio = NULL; 1877 1878 if (mqprio && (oper || admin)) { 1879 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1880 err = -ENOTSUPP; 1881 goto free_sched; 1882 } 1883 1884 if (mqprio) { 1885 err = netdev_set_num_tc(dev, mqprio->num_tc); 1886 if (err) 1887 goto free_sched; 1888 for (i = 0; i < mqprio->num_tc; i++) { 1889 netdev_set_tc_queue(dev, i, 1890 mqprio->count[i], 1891 mqprio->offset[i]); 1892 q->cur_txq[i] = mqprio->offset[i]; 1893 } 1894 1895 /* Always use supplied priority mappings */ 1896 for (i = 0; i <= TC_BITMASK; i++) 1897 netdev_set_prio_tc_map(dev, i, 1898 mqprio->prio_tc_map[i]); 1899 } 1900 1901 err = parse_taprio_schedule(q, tb, new_admin, extack); 1902 if (err < 0) 1903 goto free_sched; 1904 1905 if (new_admin->num_entries == 0) { 1906 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1907 err = -EINVAL; 1908 goto free_sched; 1909 } 1910 1911 err = taprio_parse_clockid(sch, tb, extack); 1912 if (err < 0) 1913 goto free_sched; 1914 1915 taprio_set_picos_per_byte(dev, q); 1916 taprio_update_queue_max_sdu(q, new_admin, stab); 1917 1918 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1919 err = taprio_enable_offload(dev, q, new_admin, extack); 1920 else 1921 err = taprio_disable_offload(dev, q, extack); 1922 if (err) 1923 goto free_sched; 1924 1925 /* Protects against enqueue()/dequeue() */ 1926 spin_lock_bh(qdisc_lock(sch)); 1927 1928 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1929 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1930 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1931 err = -EINVAL; 1932 goto unlock; 1933 } 1934 1935 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1936 } 1937 1938 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1939 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1940 !hrtimer_active(&q->advance_timer)) { 1941 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1942 q->advance_timer.function = advance_sched; 1943 } 1944 1945 err = taprio_get_start_time(sch, new_admin, &start); 1946 if (err < 0) { 1947 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1948 goto unlock; 1949 } 1950 1951 setup_txtime(q, new_admin, start); 1952 1953 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1954 if (!oper) { 1955 rcu_assign_pointer(q->oper_sched, new_admin); 1956 err = 0; 1957 new_admin = NULL; 1958 goto unlock; 1959 } 1960 1961 rcu_assign_pointer(q->admin_sched, new_admin); 1962 if (admin) 1963 call_rcu(&admin->rcu, taprio_free_sched_cb); 1964 } else { 1965 setup_first_end_time(q, new_admin, start); 1966 1967 /* Protects against advance_sched() */ 1968 spin_lock_irqsave(&q->current_entry_lock, flags); 1969 1970 taprio_start_sched(sch, start, new_admin); 1971 1972 rcu_assign_pointer(q->admin_sched, new_admin); 1973 if (admin) 1974 call_rcu(&admin->rcu, taprio_free_sched_cb); 1975 1976 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1977 1978 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1979 taprio_offload_config_changed(q); 1980 } 1981 1982 new_admin = NULL; 1983 err = 0; 1984 1985 if (!stab) 1986 NL_SET_ERR_MSG_MOD(extack, 1987 "Size table not specified, frame length estimations may be inaccurate"); 1988 1989 unlock: 1990 spin_unlock_bh(qdisc_lock(sch)); 1991 1992 free_sched: 1993 if (new_admin) 1994 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 1995 1996 return err; 1997 } 1998 1999 static void taprio_reset(struct Qdisc *sch) 2000 { 2001 struct taprio_sched *q = qdisc_priv(sch); 2002 struct net_device *dev = qdisc_dev(sch); 2003 int i; 2004 2005 hrtimer_cancel(&q->advance_timer); 2006 2007 if (q->qdiscs) { 2008 for (i = 0; i < dev->num_tx_queues; i++) 2009 if (q->qdiscs[i]) 2010 qdisc_reset(q->qdiscs[i]); 2011 } 2012 } 2013 2014 static void taprio_destroy(struct Qdisc *sch) 2015 { 2016 struct taprio_sched *q = qdisc_priv(sch); 2017 struct net_device *dev = qdisc_dev(sch); 2018 struct sched_gate_list *oper, *admin; 2019 unsigned int i; 2020 2021 list_del(&q->taprio_list); 2022 2023 /* Note that taprio_reset() might not be called if an error 2024 * happens in qdisc_create(), after taprio_init() has been called. 2025 */ 2026 hrtimer_cancel(&q->advance_timer); 2027 qdisc_synchronize(sch); 2028 2029 taprio_disable_offload(dev, q, NULL); 2030 2031 if (q->qdiscs) { 2032 for (i = 0; i < dev->num_tx_queues; i++) 2033 qdisc_put(q->qdiscs[i]); 2034 2035 kfree(q->qdiscs); 2036 } 2037 q->qdiscs = NULL; 2038 2039 netdev_reset_tc(dev); 2040 2041 oper = rtnl_dereference(q->oper_sched); 2042 admin = rtnl_dereference(q->admin_sched); 2043 2044 if (oper) 2045 call_rcu(&oper->rcu, taprio_free_sched_cb); 2046 2047 if (admin) 2048 call_rcu(&admin->rcu, taprio_free_sched_cb); 2049 2050 taprio_cleanup_broken_mqprio(q); 2051 } 2052 2053 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 2054 struct netlink_ext_ack *extack) 2055 { 2056 struct taprio_sched *q = qdisc_priv(sch); 2057 struct net_device *dev = qdisc_dev(sch); 2058 int i, tc; 2059 2060 spin_lock_init(&q->current_entry_lock); 2061 2062 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 2063 q->advance_timer.function = advance_sched; 2064 2065 q->root = sch; 2066 2067 /* We only support static clockids. Use an invalid value as default 2068 * and get the valid one on taprio_change(). 2069 */ 2070 q->clockid = -1; 2071 q->flags = TAPRIO_FLAGS_INVALID; 2072 2073 list_add(&q->taprio_list, &taprio_list); 2074 2075 if (sch->parent != TC_H_ROOT) { 2076 NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc"); 2077 return -EOPNOTSUPP; 2078 } 2079 2080 if (!netif_is_multiqueue(dev)) { 2081 NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required"); 2082 return -EOPNOTSUPP; 2083 } 2084 2085 /* pre-allocate qdisc, attachment can't fail */ 2086 q->qdiscs = kcalloc(dev->num_tx_queues, 2087 sizeof(q->qdiscs[0]), 2088 GFP_KERNEL); 2089 2090 if (!q->qdiscs) 2091 return -ENOMEM; 2092 2093 if (!opt) 2094 return -EINVAL; 2095 2096 for (i = 0; i < dev->num_tx_queues; i++) { 2097 struct netdev_queue *dev_queue; 2098 struct Qdisc *qdisc; 2099 2100 dev_queue = netdev_get_tx_queue(dev, i); 2101 qdisc = qdisc_create_dflt(dev_queue, 2102 &pfifo_qdisc_ops, 2103 TC_H_MAKE(TC_H_MAJ(sch->handle), 2104 TC_H_MIN(i + 1)), 2105 extack); 2106 if (!qdisc) 2107 return -ENOMEM; 2108 2109 if (i < dev->real_num_tx_queues) 2110 qdisc_hash_add(qdisc, false); 2111 2112 q->qdiscs[i] = qdisc; 2113 } 2114 2115 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) 2116 q->fp[tc] = TC_FP_EXPRESS; 2117 2118 taprio_detect_broken_mqprio(q); 2119 2120 return taprio_change(sch, opt, extack); 2121 } 2122 2123 static void taprio_attach(struct Qdisc *sch) 2124 { 2125 struct taprio_sched *q = qdisc_priv(sch); 2126 struct net_device *dev = qdisc_dev(sch); 2127 unsigned int ntx; 2128 2129 /* Attach underlying qdisc */ 2130 for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { 2131 struct Qdisc *qdisc = q->qdiscs[ntx]; 2132 struct Qdisc *old; 2133 2134 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2135 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 2136 old = dev_graft_qdisc(qdisc->dev_queue, qdisc); 2137 } else { 2138 old = dev_graft_qdisc(qdisc->dev_queue, sch); 2139 qdisc_refcount_inc(sch); 2140 } 2141 if (old) 2142 qdisc_put(old); 2143 } 2144 2145 /* access to the child qdiscs is not needed in offload mode */ 2146 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2147 kfree(q->qdiscs); 2148 q->qdiscs = NULL; 2149 } 2150 } 2151 2152 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 2153 unsigned long cl) 2154 { 2155 struct net_device *dev = qdisc_dev(sch); 2156 unsigned long ntx = cl - 1; 2157 2158 if (ntx >= dev->num_tx_queues) 2159 return NULL; 2160 2161 return netdev_get_tx_queue(dev, ntx); 2162 } 2163 2164 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 2165 struct Qdisc *new, struct Qdisc **old, 2166 struct netlink_ext_ack *extack) 2167 { 2168 struct taprio_sched *q = qdisc_priv(sch); 2169 struct net_device *dev = qdisc_dev(sch); 2170 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2171 2172 if (!dev_queue) 2173 return -EINVAL; 2174 2175 if (dev->flags & IFF_UP) 2176 dev_deactivate(dev); 2177 2178 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 2179 *old = dev_graft_qdisc(dev_queue, new); 2180 } else { 2181 *old = q->qdiscs[cl - 1]; 2182 q->qdiscs[cl - 1] = new; 2183 } 2184 2185 if (new) 2186 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 2187 2188 if (dev->flags & IFF_UP) 2189 dev_activate(dev); 2190 2191 return 0; 2192 } 2193 2194 static int dump_entry(struct sk_buff *msg, 2195 const struct sched_entry *entry) 2196 { 2197 struct nlattr *item; 2198 2199 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 2200 if (!item) 2201 return -ENOSPC; 2202 2203 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 2204 goto nla_put_failure; 2205 2206 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 2207 goto nla_put_failure; 2208 2209 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 2210 entry->gate_mask)) 2211 goto nla_put_failure; 2212 2213 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 2214 entry->interval)) 2215 goto nla_put_failure; 2216 2217 return nla_nest_end(msg, item); 2218 2219 nla_put_failure: 2220 nla_nest_cancel(msg, item); 2221 return -1; 2222 } 2223 2224 static int dump_schedule(struct sk_buff *msg, 2225 const struct sched_gate_list *root) 2226 { 2227 struct nlattr *entry_list; 2228 struct sched_entry *entry; 2229 2230 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 2231 root->base_time, TCA_TAPRIO_PAD)) 2232 return -1; 2233 2234 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 2235 root->cycle_time, TCA_TAPRIO_PAD)) 2236 return -1; 2237 2238 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 2239 root->cycle_time_extension, TCA_TAPRIO_PAD)) 2240 return -1; 2241 2242 entry_list = nla_nest_start_noflag(msg, 2243 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 2244 if (!entry_list) 2245 goto error_nest; 2246 2247 list_for_each_entry(entry, &root->entries, list) { 2248 if (dump_entry(msg, entry) < 0) 2249 goto error_nest; 2250 } 2251 2252 nla_nest_end(msg, entry_list); 2253 return 0; 2254 2255 error_nest: 2256 nla_nest_cancel(msg, entry_list); 2257 return -1; 2258 } 2259 2260 static int taprio_dump_tc_entries(struct sk_buff *skb, 2261 struct taprio_sched *q, 2262 struct sched_gate_list *sched) 2263 { 2264 struct nlattr *n; 2265 int tc; 2266 2267 for (tc = 0; tc < TC_MAX_QUEUE; tc++) { 2268 n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY); 2269 if (!n) 2270 return -EMSGSIZE; 2271 2272 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc)) 2273 goto nla_put_failure; 2274 2275 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU, 2276 sched->max_sdu[tc])) 2277 goto nla_put_failure; 2278 2279 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc])) 2280 goto nla_put_failure; 2281 2282 nla_nest_end(skb, n); 2283 } 2284 2285 return 0; 2286 2287 nla_put_failure: 2288 nla_nest_cancel(skb, n); 2289 return -EMSGSIZE; 2290 } 2291 2292 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 2293 { 2294 struct taprio_sched *q = qdisc_priv(sch); 2295 struct net_device *dev = qdisc_dev(sch); 2296 struct sched_gate_list *oper, *admin; 2297 struct tc_mqprio_qopt opt = { 0 }; 2298 struct nlattr *nest, *sched_nest; 2299 2300 oper = rtnl_dereference(q->oper_sched); 2301 admin = rtnl_dereference(q->admin_sched); 2302 2303 mqprio_qopt_reconstruct(dev, &opt); 2304 2305 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 2306 if (!nest) 2307 goto start_error; 2308 2309 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 2310 goto options_error; 2311 2312 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 2313 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 2314 goto options_error; 2315 2316 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 2317 goto options_error; 2318 2319 if (q->txtime_delay && 2320 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 2321 goto options_error; 2322 2323 if (oper && taprio_dump_tc_entries(skb, q, oper)) 2324 goto options_error; 2325 2326 if (oper && dump_schedule(skb, oper)) 2327 goto options_error; 2328 2329 if (!admin) 2330 goto done; 2331 2332 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 2333 if (!sched_nest) 2334 goto options_error; 2335 2336 if (dump_schedule(skb, admin)) 2337 goto admin_error; 2338 2339 nla_nest_end(skb, sched_nest); 2340 2341 done: 2342 return nla_nest_end(skb, nest); 2343 2344 admin_error: 2345 nla_nest_cancel(skb, sched_nest); 2346 2347 options_error: 2348 nla_nest_cancel(skb, nest); 2349 2350 start_error: 2351 return -ENOSPC; 2352 } 2353 2354 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 2355 { 2356 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2357 2358 if (!dev_queue) 2359 return NULL; 2360 2361 return dev_queue->qdisc_sleeping; 2362 } 2363 2364 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 2365 { 2366 unsigned int ntx = TC_H_MIN(classid); 2367 2368 if (!taprio_queue_get(sch, ntx)) 2369 return 0; 2370 return ntx; 2371 } 2372 2373 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 2374 struct sk_buff *skb, struct tcmsg *tcm) 2375 { 2376 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2377 2378 tcm->tcm_parent = TC_H_ROOT; 2379 tcm->tcm_handle |= TC_H_MIN(cl); 2380 tcm->tcm_info = dev_queue->qdisc_sleeping->handle; 2381 2382 return 0; 2383 } 2384 2385 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 2386 struct gnet_dump *d) 2387 __releases(d->lock) 2388 __acquires(d->lock) 2389 { 2390 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 2391 2392 sch = dev_queue->qdisc_sleeping; 2393 if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 || 2394 qdisc_qstats_copy(d, sch) < 0) 2395 return -1; 2396 return 0; 2397 } 2398 2399 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 2400 { 2401 struct net_device *dev = qdisc_dev(sch); 2402 unsigned long ntx; 2403 2404 if (arg->stop) 2405 return; 2406 2407 arg->count = arg->skip; 2408 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 2409 if (!tc_qdisc_stats_dump(sch, ntx + 1, arg)) 2410 break; 2411 } 2412 } 2413 2414 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 2415 struct tcmsg *tcm) 2416 { 2417 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 2418 } 2419 2420 static const struct Qdisc_class_ops taprio_class_ops = { 2421 .graft = taprio_graft, 2422 .leaf = taprio_leaf, 2423 .find = taprio_find, 2424 .walk = taprio_walk, 2425 .dump = taprio_dump_class, 2426 .dump_stats = taprio_dump_class_stats, 2427 .select_queue = taprio_select_queue, 2428 }; 2429 2430 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 2431 .cl_ops = &taprio_class_ops, 2432 .id = "taprio", 2433 .priv_size = sizeof(struct taprio_sched), 2434 .init = taprio_init, 2435 .change = taprio_change, 2436 .destroy = taprio_destroy, 2437 .reset = taprio_reset, 2438 .attach = taprio_attach, 2439 .peek = taprio_peek, 2440 .dequeue = taprio_dequeue, 2441 .enqueue = taprio_enqueue, 2442 .dump = taprio_dump, 2443 .owner = THIS_MODULE, 2444 }; 2445 2446 static struct notifier_block taprio_device_notifier = { 2447 .notifier_call = taprio_dev_notifier, 2448 }; 2449 2450 static int __init taprio_module_init(void) 2451 { 2452 int err = register_netdevice_notifier(&taprio_device_notifier); 2453 2454 if (err) 2455 return err; 2456 2457 return register_qdisc(&taprio_qdisc_ops); 2458 } 2459 2460 static void __exit taprio_module_exit(void) 2461 { 2462 unregister_qdisc(&taprio_qdisc_ops); 2463 unregister_netdevice_notifier(&taprio_device_notifier); 2464 } 2465 2466 module_init(taprio_module_init); 2467 module_exit(taprio_module_exit); 2468 MODULE_LICENSE("GPL"); 2469