1 // SPDX-License-Identifier: GPL-2.0 2 3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler 4 * 5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> 6 * 7 */ 8 9 #include <linux/types.h> 10 #include <linux/slab.h> 11 #include <linux/kernel.h> 12 #include <linux/string.h> 13 #include <linux/list.h> 14 #include <linux/errno.h> 15 #include <linux/skbuff.h> 16 #include <linux/math64.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/rcupdate.h> 20 #include <net/netlink.h> 21 #include <net/pkt_sched.h> 22 #include <net/pkt_cls.h> 23 #include <net/sch_generic.h> 24 #include <net/sock.h> 25 #include <net/tcp.h> 26 27 static LIST_HEAD(taprio_list); 28 static DEFINE_SPINLOCK(taprio_list_lock); 29 30 #define TAPRIO_ALL_GATES_OPEN -1 31 32 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) 33 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) 34 #define TAPRIO_FLAGS_INVALID U32_MAX 35 36 struct sched_entry { 37 struct list_head list; 38 39 /* The instant that this entry "closes" and the next one 40 * should open, the qdisc will make some effort so that no 41 * packet leaves after this time. 42 */ 43 ktime_t close_time; 44 ktime_t next_txtime; 45 atomic_t budget; 46 int index; 47 u32 gate_mask; 48 u32 interval; 49 u8 command; 50 }; 51 52 struct sched_gate_list { 53 struct rcu_head rcu; 54 struct list_head entries; 55 size_t num_entries; 56 ktime_t cycle_close_time; 57 s64 cycle_time; 58 s64 cycle_time_extension; 59 s64 base_time; 60 }; 61 62 struct taprio_sched { 63 struct Qdisc **qdiscs; 64 struct Qdisc *root; 65 u32 flags; 66 enum tk_offsets tk_offset; 67 int clockid; 68 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ 69 * speeds it's sub-nanoseconds per byte 70 */ 71 72 /* Protects the update side of the RCU protected current_entry */ 73 spinlock_t current_entry_lock; 74 struct sched_entry __rcu *current_entry; 75 struct sched_gate_list __rcu *oper_sched; 76 struct sched_gate_list __rcu *admin_sched; 77 struct hrtimer advance_timer; 78 struct list_head taprio_list; 79 struct sk_buff *(*dequeue)(struct Qdisc *sch); 80 struct sk_buff *(*peek)(struct Qdisc *sch); 81 u32 txtime_delay; 82 }; 83 84 struct __tc_taprio_qopt_offload { 85 refcount_t users; 86 struct tc_taprio_qopt_offload offload; 87 }; 88 89 static ktime_t sched_base_time(const struct sched_gate_list *sched) 90 { 91 if (!sched) 92 return KTIME_MAX; 93 94 return ns_to_ktime(sched->base_time); 95 } 96 97 static ktime_t taprio_get_time(struct taprio_sched *q) 98 { 99 ktime_t mono = ktime_get(); 100 101 switch (q->tk_offset) { 102 case TK_OFFS_MAX: 103 return mono; 104 default: 105 return ktime_mono_to_any(mono, q->tk_offset); 106 } 107 108 return KTIME_MAX; 109 } 110 111 static void taprio_free_sched_cb(struct rcu_head *head) 112 { 113 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); 114 struct sched_entry *entry, *n; 115 116 if (!sched) 117 return; 118 119 list_for_each_entry_safe(entry, n, &sched->entries, list) { 120 list_del(&entry->list); 121 kfree(entry); 122 } 123 124 kfree(sched); 125 } 126 127 static void switch_schedules(struct taprio_sched *q, 128 struct sched_gate_list **admin, 129 struct sched_gate_list **oper) 130 { 131 rcu_assign_pointer(q->oper_sched, *admin); 132 rcu_assign_pointer(q->admin_sched, NULL); 133 134 if (*oper) 135 call_rcu(&(*oper)->rcu, taprio_free_sched_cb); 136 137 *oper = *admin; 138 *admin = NULL; 139 } 140 141 /* Get how much time has been already elapsed in the current cycle. */ 142 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) 143 { 144 ktime_t time_since_sched_start; 145 s32 time_elapsed; 146 147 time_since_sched_start = ktime_sub(time, sched->base_time); 148 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); 149 150 return time_elapsed; 151 } 152 153 static ktime_t get_interval_end_time(struct sched_gate_list *sched, 154 struct sched_gate_list *admin, 155 struct sched_entry *entry, 156 ktime_t intv_start) 157 { 158 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); 159 ktime_t intv_end, cycle_ext_end, cycle_end; 160 161 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); 162 intv_end = ktime_add_ns(intv_start, entry->interval); 163 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); 164 165 if (ktime_before(intv_end, cycle_end)) 166 return intv_end; 167 else if (admin && admin != sched && 168 ktime_after(admin->base_time, cycle_end) && 169 ktime_before(admin->base_time, cycle_ext_end)) 170 return admin->base_time; 171 else 172 return cycle_end; 173 } 174 175 static int length_to_duration(struct taprio_sched *q, int len) 176 { 177 return div_u64(len * atomic64_read(&q->picos_per_byte), 1000); 178 } 179 180 /* Returns the entry corresponding to next available interval. If 181 * validate_interval is set, it only validates whether the timestamp occurs 182 * when the gate corresponding to the skb's traffic class is open. 183 */ 184 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, 185 struct Qdisc *sch, 186 struct sched_gate_list *sched, 187 struct sched_gate_list *admin, 188 ktime_t time, 189 ktime_t *interval_start, 190 ktime_t *interval_end, 191 bool validate_interval) 192 { 193 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; 194 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; 195 struct sched_entry *entry = NULL, *entry_found = NULL; 196 struct taprio_sched *q = qdisc_priv(sch); 197 struct net_device *dev = qdisc_dev(sch); 198 bool entry_available = false; 199 s32 cycle_elapsed; 200 int tc, n; 201 202 tc = netdev_get_prio_tc_map(dev, skb->priority); 203 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); 204 205 *interval_start = 0; 206 *interval_end = 0; 207 208 if (!sched) 209 return NULL; 210 211 cycle = sched->cycle_time; 212 cycle_elapsed = get_cycle_time_elapsed(sched, time); 213 curr_intv_end = ktime_sub_ns(time, cycle_elapsed); 214 cycle_end = ktime_add_ns(curr_intv_end, cycle); 215 216 list_for_each_entry(entry, &sched->entries, list) { 217 curr_intv_start = curr_intv_end; 218 curr_intv_end = get_interval_end_time(sched, admin, entry, 219 curr_intv_start); 220 221 if (ktime_after(curr_intv_start, cycle_end)) 222 break; 223 224 if (!(entry->gate_mask & BIT(tc)) || 225 packet_transmit_time > entry->interval) 226 continue; 227 228 txtime = entry->next_txtime; 229 230 if (ktime_before(txtime, time) || validate_interval) { 231 transmit_end_time = ktime_add_ns(time, packet_transmit_time); 232 if ((ktime_before(curr_intv_start, time) && 233 ktime_before(transmit_end_time, curr_intv_end)) || 234 (ktime_after(curr_intv_start, time) && !validate_interval)) { 235 entry_found = entry; 236 *interval_start = curr_intv_start; 237 *interval_end = curr_intv_end; 238 break; 239 } else if (!entry_available && !validate_interval) { 240 /* Here, we are just trying to find out the 241 * first available interval in the next cycle. 242 */ 243 entry_available = 1; 244 entry_found = entry; 245 *interval_start = ktime_add_ns(curr_intv_start, cycle); 246 *interval_end = ktime_add_ns(curr_intv_end, cycle); 247 } 248 } else if (ktime_before(txtime, earliest_txtime) && 249 !entry_available) { 250 earliest_txtime = txtime; 251 entry_found = entry; 252 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); 253 *interval_start = ktime_add(curr_intv_start, n * cycle); 254 *interval_end = ktime_add(curr_intv_end, n * cycle); 255 } 256 } 257 258 return entry_found; 259 } 260 261 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) 262 { 263 struct taprio_sched *q = qdisc_priv(sch); 264 struct sched_gate_list *sched, *admin; 265 ktime_t interval_start, interval_end; 266 struct sched_entry *entry; 267 268 rcu_read_lock(); 269 sched = rcu_dereference(q->oper_sched); 270 admin = rcu_dereference(q->admin_sched); 271 272 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, 273 &interval_start, &interval_end, true); 274 rcu_read_unlock(); 275 276 return entry; 277 } 278 279 static bool taprio_flags_valid(u32 flags) 280 { 281 /* Make sure no other flag bits are set. */ 282 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | 283 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 284 return false; 285 /* txtime-assist and full offload are mutually exclusive */ 286 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && 287 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) 288 return false; 289 return true; 290 } 291 292 /* This returns the tstamp value set by TCP in terms of the set clock. */ 293 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) 294 { 295 unsigned int offset = skb_network_offset(skb); 296 const struct ipv6hdr *ipv6h; 297 const struct iphdr *iph; 298 struct ipv6hdr _ipv6h; 299 300 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 301 if (!ipv6h) 302 return 0; 303 304 if (ipv6h->version == 4) { 305 iph = (struct iphdr *)ipv6h; 306 offset += iph->ihl * 4; 307 308 /* special-case 6in4 tunnelling, as that is a common way to get 309 * v6 connectivity in the home 310 */ 311 if (iph->protocol == IPPROTO_IPV6) { 312 ipv6h = skb_header_pointer(skb, offset, 313 sizeof(_ipv6h), &_ipv6h); 314 315 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) 316 return 0; 317 } else if (iph->protocol != IPPROTO_TCP) { 318 return 0; 319 } 320 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { 321 return 0; 322 } 323 324 return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset); 325 } 326 327 /* There are a few scenarios where we will have to modify the txtime from 328 * what is read from next_txtime in sched_entry. They are: 329 * 1. If txtime is in the past, 330 * a. The gate for the traffic class is currently open and packet can be 331 * transmitted before it closes, schedule the packet right away. 332 * b. If the gate corresponding to the traffic class is going to open later 333 * in the cycle, set the txtime of packet to the interval start. 334 * 2. If txtime is in the future, there are packets corresponding to the 335 * current traffic class waiting to be transmitted. So, the following 336 * possibilities exist: 337 * a. We can transmit the packet before the window containing the txtime 338 * closes. 339 * b. The window might close before the transmission can be completed 340 * successfully. So, schedule the packet in the next open window. 341 */ 342 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) 343 { 344 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; 345 struct taprio_sched *q = qdisc_priv(sch); 346 struct sched_gate_list *sched, *admin; 347 ktime_t minimum_time, now, txtime; 348 int len, packet_transmit_time; 349 struct sched_entry *entry; 350 bool sched_changed; 351 352 now = taprio_get_time(q); 353 minimum_time = ktime_add_ns(now, q->txtime_delay); 354 355 tcp_tstamp = get_tcp_tstamp(q, skb); 356 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); 357 358 rcu_read_lock(); 359 admin = rcu_dereference(q->admin_sched); 360 sched = rcu_dereference(q->oper_sched); 361 if (admin && ktime_after(minimum_time, admin->base_time)) 362 switch_schedules(q, &admin, &sched); 363 364 /* Until the schedule starts, all the queues are open */ 365 if (!sched || ktime_before(minimum_time, sched->base_time)) { 366 txtime = minimum_time; 367 goto done; 368 } 369 370 len = qdisc_pkt_len(skb); 371 packet_transmit_time = length_to_duration(q, len); 372 373 do { 374 sched_changed = 0; 375 376 entry = find_entry_to_transmit(skb, sch, sched, admin, 377 minimum_time, 378 &interval_start, &interval_end, 379 false); 380 if (!entry) { 381 txtime = 0; 382 goto done; 383 } 384 385 txtime = entry->next_txtime; 386 txtime = max_t(ktime_t, txtime, minimum_time); 387 txtime = max_t(ktime_t, txtime, interval_start); 388 389 if (admin && admin != sched && 390 ktime_after(txtime, admin->base_time)) { 391 sched = admin; 392 sched_changed = 1; 393 continue; 394 } 395 396 transmit_end_time = ktime_add(txtime, packet_transmit_time); 397 minimum_time = transmit_end_time; 398 399 /* Update the txtime of current entry to the next time it's 400 * interval starts. 401 */ 402 if (ktime_after(transmit_end_time, interval_end)) 403 entry->next_txtime = ktime_add(interval_start, sched->cycle_time); 404 } while (sched_changed || ktime_after(transmit_end_time, interval_end)); 405 406 entry->next_txtime = transmit_end_time; 407 408 done: 409 rcu_read_unlock(); 410 return txtime; 411 } 412 413 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, 414 struct sk_buff **to_free) 415 { 416 struct taprio_sched *q = qdisc_priv(sch); 417 struct Qdisc *child; 418 int queue; 419 420 queue = skb_get_queue_mapping(skb); 421 422 child = q->qdiscs[queue]; 423 if (unlikely(!child)) 424 return qdisc_drop(skb, sch, to_free); 425 426 if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) { 427 if (!is_valid_interval(skb, sch)) 428 return qdisc_drop(skb, sch, to_free); 429 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 430 skb->tstamp = get_packet_txtime(skb, sch); 431 if (!skb->tstamp) 432 return qdisc_drop(skb, sch, to_free); 433 } 434 435 qdisc_qstats_backlog_inc(sch, skb); 436 sch->q.qlen++; 437 438 return qdisc_enqueue(skb, child, to_free); 439 } 440 441 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch) 442 { 443 struct taprio_sched *q = qdisc_priv(sch); 444 struct net_device *dev = qdisc_dev(sch); 445 struct sched_entry *entry; 446 struct sk_buff *skb; 447 u32 gate_mask; 448 int i; 449 450 rcu_read_lock(); 451 entry = rcu_dereference(q->current_entry); 452 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 453 rcu_read_unlock(); 454 455 if (!gate_mask) 456 return NULL; 457 458 for (i = 0; i < dev->num_tx_queues; i++) { 459 struct Qdisc *child = q->qdiscs[i]; 460 int prio; 461 u8 tc; 462 463 if (unlikely(!child)) 464 continue; 465 466 skb = child->ops->peek(child); 467 if (!skb) 468 continue; 469 470 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) 471 return skb; 472 473 prio = skb->priority; 474 tc = netdev_get_prio_tc_map(dev, prio); 475 476 if (!(gate_mask & BIT(tc))) 477 continue; 478 479 return skb; 480 } 481 482 return NULL; 483 } 484 485 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch) 486 { 487 struct taprio_sched *q = qdisc_priv(sch); 488 struct net_device *dev = qdisc_dev(sch); 489 struct sk_buff *skb; 490 int i; 491 492 for (i = 0; i < dev->num_tx_queues; i++) { 493 struct Qdisc *child = q->qdiscs[i]; 494 495 if (unlikely(!child)) 496 continue; 497 498 skb = child->ops->peek(child); 499 if (!skb) 500 continue; 501 502 return skb; 503 } 504 505 return NULL; 506 } 507 508 static struct sk_buff *taprio_peek(struct Qdisc *sch) 509 { 510 struct taprio_sched *q = qdisc_priv(sch); 511 512 return q->peek(sch); 513 } 514 515 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry) 516 { 517 atomic_set(&entry->budget, 518 div64_u64((u64)entry->interval * 1000, 519 atomic64_read(&q->picos_per_byte))); 520 } 521 522 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch) 523 { 524 struct taprio_sched *q = qdisc_priv(sch); 525 struct net_device *dev = qdisc_dev(sch); 526 struct sk_buff *skb = NULL; 527 struct sched_entry *entry; 528 u32 gate_mask; 529 int i; 530 531 rcu_read_lock(); 532 entry = rcu_dereference(q->current_entry); 533 /* if there's no entry, it means that the schedule didn't 534 * start yet, so force all gates to be open, this is in 535 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 536 * "AdminGateSates" 537 */ 538 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; 539 540 if (!gate_mask) 541 goto done; 542 543 for (i = 0; i < dev->num_tx_queues; i++) { 544 struct Qdisc *child = q->qdiscs[i]; 545 ktime_t guard; 546 int prio; 547 int len; 548 u8 tc; 549 550 if (unlikely(!child)) 551 continue; 552 553 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 554 skb = child->ops->dequeue(child); 555 if (!skb) 556 continue; 557 goto skb_found; 558 } 559 560 skb = child->ops->peek(child); 561 if (!skb) 562 continue; 563 564 prio = skb->priority; 565 tc = netdev_get_prio_tc_map(dev, prio); 566 567 if (!(gate_mask & BIT(tc))) { 568 skb = NULL; 569 continue; 570 } 571 572 len = qdisc_pkt_len(skb); 573 guard = ktime_add_ns(taprio_get_time(q), 574 length_to_duration(q, len)); 575 576 /* In the case that there's no gate entry, there's no 577 * guard band ... 578 */ 579 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 580 ktime_after(guard, entry->close_time)) { 581 skb = NULL; 582 continue; 583 } 584 585 /* ... and no budget. */ 586 if (gate_mask != TAPRIO_ALL_GATES_OPEN && 587 atomic_sub_return(len, &entry->budget) < 0) { 588 skb = NULL; 589 continue; 590 } 591 592 skb = child->ops->dequeue(child); 593 if (unlikely(!skb)) 594 goto done; 595 596 skb_found: 597 qdisc_bstats_update(sch, skb); 598 qdisc_qstats_backlog_dec(sch, skb); 599 sch->q.qlen--; 600 601 goto done; 602 } 603 604 done: 605 rcu_read_unlock(); 606 607 return skb; 608 } 609 610 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch) 611 { 612 struct taprio_sched *q = qdisc_priv(sch); 613 struct net_device *dev = qdisc_dev(sch); 614 struct sk_buff *skb; 615 int i; 616 617 for (i = 0; i < dev->num_tx_queues; i++) { 618 struct Qdisc *child = q->qdiscs[i]; 619 620 if (unlikely(!child)) 621 continue; 622 623 skb = child->ops->dequeue(child); 624 if (unlikely(!skb)) 625 continue; 626 627 qdisc_bstats_update(sch, skb); 628 qdisc_qstats_backlog_dec(sch, skb); 629 sch->q.qlen--; 630 631 return skb; 632 } 633 634 return NULL; 635 } 636 637 static struct sk_buff *taprio_dequeue(struct Qdisc *sch) 638 { 639 struct taprio_sched *q = qdisc_priv(sch); 640 641 return q->dequeue(sch); 642 } 643 644 static bool should_restart_cycle(const struct sched_gate_list *oper, 645 const struct sched_entry *entry) 646 { 647 if (list_is_last(&entry->list, &oper->entries)) 648 return true; 649 650 if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0) 651 return true; 652 653 return false; 654 } 655 656 static bool should_change_schedules(const struct sched_gate_list *admin, 657 const struct sched_gate_list *oper, 658 ktime_t close_time) 659 { 660 ktime_t next_base_time, extension_time; 661 662 if (!admin) 663 return false; 664 665 next_base_time = sched_base_time(admin); 666 667 /* This is the simple case, the close_time would fall after 668 * the next schedule base_time. 669 */ 670 if (ktime_compare(next_base_time, close_time) <= 0) 671 return true; 672 673 /* This is the cycle_time_extension case, if the close_time 674 * plus the amount that can be extended would fall after the 675 * next schedule base_time, we can extend the current schedule 676 * for that amount. 677 */ 678 extension_time = ktime_add_ns(close_time, oper->cycle_time_extension); 679 680 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about 681 * how precisely the extension should be made. So after 682 * conformance testing, this logic may change. 683 */ 684 if (ktime_compare(next_base_time, extension_time) <= 0) 685 return true; 686 687 return false; 688 } 689 690 static enum hrtimer_restart advance_sched(struct hrtimer *timer) 691 { 692 struct taprio_sched *q = container_of(timer, struct taprio_sched, 693 advance_timer); 694 struct sched_gate_list *oper, *admin; 695 struct sched_entry *entry, *next; 696 struct Qdisc *sch = q->root; 697 ktime_t close_time; 698 699 spin_lock(&q->current_entry_lock); 700 entry = rcu_dereference_protected(q->current_entry, 701 lockdep_is_held(&q->current_entry_lock)); 702 oper = rcu_dereference_protected(q->oper_sched, 703 lockdep_is_held(&q->current_entry_lock)); 704 admin = rcu_dereference_protected(q->admin_sched, 705 lockdep_is_held(&q->current_entry_lock)); 706 707 if (!oper) 708 switch_schedules(q, &admin, &oper); 709 710 /* This can happen in two cases: 1. this is the very first run 711 * of this function (i.e. we weren't running any schedule 712 * previously); 2. The previous schedule just ended. The first 713 * entry of all schedules are pre-calculated during the 714 * schedule initialization. 715 */ 716 if (unlikely(!entry || entry->close_time == oper->base_time)) { 717 next = list_first_entry(&oper->entries, struct sched_entry, 718 list); 719 close_time = next->close_time; 720 goto first_run; 721 } 722 723 if (should_restart_cycle(oper, entry)) { 724 next = list_first_entry(&oper->entries, struct sched_entry, 725 list); 726 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time, 727 oper->cycle_time); 728 } else { 729 next = list_next_entry(entry, list); 730 } 731 732 close_time = ktime_add_ns(entry->close_time, next->interval); 733 close_time = min_t(ktime_t, close_time, oper->cycle_close_time); 734 735 if (should_change_schedules(admin, oper, close_time)) { 736 /* Set things so the next time this runs, the new 737 * schedule runs. 738 */ 739 close_time = sched_base_time(admin); 740 switch_schedules(q, &admin, &oper); 741 } 742 743 next->close_time = close_time; 744 taprio_set_budget(q, next); 745 746 first_run: 747 rcu_assign_pointer(q->current_entry, next); 748 spin_unlock(&q->current_entry_lock); 749 750 hrtimer_set_expires(&q->advance_timer, close_time); 751 752 rcu_read_lock(); 753 __netif_schedule(sch); 754 rcu_read_unlock(); 755 756 return HRTIMER_RESTART; 757 } 758 759 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { 760 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, 761 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, 762 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, 763 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, 764 }; 765 766 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { 767 [TCA_TAPRIO_ATTR_PRIOMAP] = { 768 .len = sizeof(struct tc_mqprio_qopt) 769 }, 770 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, 771 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, 772 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, 773 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, 774 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, 775 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, 776 [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, 777 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, 778 }; 779 780 static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry, 781 struct netlink_ext_ack *extack) 782 { 783 u32 interval = 0; 784 785 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) 786 entry->command = nla_get_u8( 787 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); 788 789 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) 790 entry->gate_mask = nla_get_u32( 791 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); 792 793 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) 794 interval = nla_get_u32( 795 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); 796 797 if (interval == 0) { 798 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); 799 return -EINVAL; 800 } 801 802 entry->interval = interval; 803 804 return 0; 805 } 806 807 static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry, 808 int index, struct netlink_ext_ack *extack) 809 { 810 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; 811 int err; 812 813 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, 814 entry_policy, NULL); 815 if (err < 0) { 816 NL_SET_ERR_MSG(extack, "Could not parse nested entry"); 817 return -EINVAL; 818 } 819 820 entry->index = index; 821 822 return fill_sched_entry(tb, entry, extack); 823 } 824 825 static int parse_sched_list(struct nlattr *list, 826 struct sched_gate_list *sched, 827 struct netlink_ext_ack *extack) 828 { 829 struct nlattr *n; 830 int err, rem; 831 int i = 0; 832 833 if (!list) 834 return -EINVAL; 835 836 nla_for_each_nested(n, list, rem) { 837 struct sched_entry *entry; 838 839 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { 840 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); 841 continue; 842 } 843 844 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 845 if (!entry) { 846 NL_SET_ERR_MSG(extack, "Not enough memory for entry"); 847 return -ENOMEM; 848 } 849 850 err = parse_sched_entry(n, entry, i, extack); 851 if (err < 0) { 852 kfree(entry); 853 return err; 854 } 855 856 list_add_tail(&entry->list, &sched->entries); 857 i++; 858 } 859 860 sched->num_entries = i; 861 862 return i; 863 } 864 865 static int parse_taprio_schedule(struct nlattr **tb, 866 struct sched_gate_list *new, 867 struct netlink_ext_ack *extack) 868 { 869 int err = 0; 870 871 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { 872 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); 873 return -ENOTSUPP; 874 } 875 876 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) 877 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); 878 879 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) 880 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); 881 882 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) 883 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); 884 885 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) 886 err = parse_sched_list( 887 tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack); 888 if (err < 0) 889 return err; 890 891 if (!new->cycle_time) { 892 struct sched_entry *entry; 893 ktime_t cycle = 0; 894 895 list_for_each_entry(entry, &new->entries, list) 896 cycle = ktime_add_ns(cycle, entry->interval); 897 new->cycle_time = cycle; 898 } 899 900 return 0; 901 } 902 903 static int taprio_parse_mqprio_opt(struct net_device *dev, 904 struct tc_mqprio_qopt *qopt, 905 struct netlink_ext_ack *extack, 906 u32 taprio_flags) 907 { 908 int i, j; 909 910 if (!qopt && !dev->num_tc) { 911 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); 912 return -EINVAL; 913 } 914 915 /* If num_tc is already set, it means that the user already 916 * configured the mqprio part 917 */ 918 if (dev->num_tc) 919 return 0; 920 921 /* Verify num_tc is not out of max range */ 922 if (qopt->num_tc > TC_MAX_QUEUE) { 923 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range"); 924 return -EINVAL; 925 } 926 927 /* taprio imposes that traffic classes map 1:n to tx queues */ 928 if (qopt->num_tc > dev->num_tx_queues) { 929 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); 930 return -EINVAL; 931 } 932 933 /* Verify priority mapping uses valid tcs */ 934 for (i = 0; i <= TC_BITMASK; i++) { 935 if (qopt->prio_tc_map[i] >= qopt->num_tc) { 936 NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping"); 937 return -EINVAL; 938 } 939 } 940 941 for (i = 0; i < qopt->num_tc; i++) { 942 unsigned int last = qopt->offset[i] + qopt->count[i]; 943 944 /* Verify the queue count is in tx range being equal to the 945 * real_num_tx_queues indicates the last queue is in use. 946 */ 947 if (qopt->offset[i] >= dev->num_tx_queues || 948 !qopt->count[i] || 949 last > dev->real_num_tx_queues) { 950 NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping"); 951 return -EINVAL; 952 } 953 954 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) 955 continue; 956 957 /* Verify that the offset and counts do not overlap */ 958 for (j = i + 1; j < qopt->num_tc; j++) { 959 if (last > qopt->offset[j]) { 960 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping"); 961 return -EINVAL; 962 } 963 } 964 } 965 966 return 0; 967 } 968 969 static int taprio_get_start_time(struct Qdisc *sch, 970 struct sched_gate_list *sched, 971 ktime_t *start) 972 { 973 struct taprio_sched *q = qdisc_priv(sch); 974 ktime_t now, base, cycle; 975 s64 n; 976 977 base = sched_base_time(sched); 978 now = taprio_get_time(q); 979 980 if (ktime_after(base, now)) { 981 *start = base; 982 return 0; 983 } 984 985 cycle = sched->cycle_time; 986 987 /* The qdisc is expected to have at least one sched_entry. Moreover, 988 * any entry must have 'interval' > 0. Thus if the cycle time is zero, 989 * something went really wrong. In that case, we should warn about this 990 * inconsistent state and return error. 991 */ 992 if (WARN_ON(!cycle)) 993 return -EFAULT; 994 995 /* Schedule the start time for the beginning of the next 996 * cycle. 997 */ 998 n = div64_s64(ktime_sub_ns(now, base), cycle); 999 *start = ktime_add_ns(base, (n + 1) * cycle); 1000 return 0; 1001 } 1002 1003 static void setup_first_close_time(struct taprio_sched *q, 1004 struct sched_gate_list *sched, ktime_t base) 1005 { 1006 struct sched_entry *first; 1007 ktime_t cycle; 1008 1009 first = list_first_entry(&sched->entries, 1010 struct sched_entry, list); 1011 1012 cycle = sched->cycle_time; 1013 1014 /* FIXME: find a better place to do this */ 1015 sched->cycle_close_time = ktime_add_ns(base, cycle); 1016 1017 first->close_time = ktime_add_ns(base, first->interval); 1018 taprio_set_budget(q, first); 1019 rcu_assign_pointer(q->current_entry, NULL); 1020 } 1021 1022 static void taprio_start_sched(struct Qdisc *sch, 1023 ktime_t start, struct sched_gate_list *new) 1024 { 1025 struct taprio_sched *q = qdisc_priv(sch); 1026 ktime_t expires; 1027 1028 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1029 return; 1030 1031 expires = hrtimer_get_expires(&q->advance_timer); 1032 if (expires == 0) 1033 expires = KTIME_MAX; 1034 1035 /* If the new schedule starts before the next expiration, we 1036 * reprogram it to the earliest one, so we change the admin 1037 * schedule to the operational one at the right time. 1038 */ 1039 start = min_t(ktime_t, start, expires); 1040 1041 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); 1042 } 1043 1044 static void taprio_set_picos_per_byte(struct net_device *dev, 1045 struct taprio_sched *q) 1046 { 1047 struct ethtool_link_ksettings ecmd; 1048 int speed = SPEED_10; 1049 int picos_per_byte; 1050 int err; 1051 1052 err = __ethtool_get_link_ksettings(dev, &ecmd); 1053 if (err < 0) 1054 goto skip; 1055 1056 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) 1057 speed = ecmd.base.speed; 1058 1059 skip: 1060 picos_per_byte = (USEC_PER_SEC * 8) / speed; 1061 1062 atomic64_set(&q->picos_per_byte, picos_per_byte); 1063 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", 1064 dev->name, (long long)atomic64_read(&q->picos_per_byte), 1065 ecmd.base.speed); 1066 } 1067 1068 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, 1069 void *ptr) 1070 { 1071 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1072 struct net_device *qdev; 1073 struct taprio_sched *q; 1074 bool found = false; 1075 1076 ASSERT_RTNL(); 1077 1078 if (event != NETDEV_UP && event != NETDEV_CHANGE) 1079 return NOTIFY_DONE; 1080 1081 spin_lock(&taprio_list_lock); 1082 list_for_each_entry(q, &taprio_list, taprio_list) { 1083 qdev = qdisc_dev(q->root); 1084 if (qdev == dev) { 1085 found = true; 1086 break; 1087 } 1088 } 1089 spin_unlock(&taprio_list_lock); 1090 1091 if (found) 1092 taprio_set_picos_per_byte(dev, q); 1093 1094 return NOTIFY_DONE; 1095 } 1096 1097 static void setup_txtime(struct taprio_sched *q, 1098 struct sched_gate_list *sched, ktime_t base) 1099 { 1100 struct sched_entry *entry; 1101 u32 interval = 0; 1102 1103 list_for_each_entry(entry, &sched->entries, list) { 1104 entry->next_txtime = ktime_add_ns(base, interval); 1105 interval += entry->interval; 1106 } 1107 } 1108 1109 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) 1110 { 1111 size_t size = sizeof(struct tc_taprio_sched_entry) * num_entries + 1112 sizeof(struct __tc_taprio_qopt_offload); 1113 struct __tc_taprio_qopt_offload *__offload; 1114 1115 __offload = kzalloc(size, GFP_KERNEL); 1116 if (!__offload) 1117 return NULL; 1118 1119 refcount_set(&__offload->users, 1); 1120 1121 return &__offload->offload; 1122 } 1123 1124 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload 1125 *offload) 1126 { 1127 struct __tc_taprio_qopt_offload *__offload; 1128 1129 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1130 offload); 1131 1132 refcount_inc(&__offload->users); 1133 1134 return offload; 1135 } 1136 EXPORT_SYMBOL_GPL(taprio_offload_get); 1137 1138 void taprio_offload_free(struct tc_taprio_qopt_offload *offload) 1139 { 1140 struct __tc_taprio_qopt_offload *__offload; 1141 1142 __offload = container_of(offload, struct __tc_taprio_qopt_offload, 1143 offload); 1144 1145 if (!refcount_dec_and_test(&__offload->users)) 1146 return; 1147 1148 kfree(__offload); 1149 } 1150 EXPORT_SYMBOL_GPL(taprio_offload_free); 1151 1152 /* The function will only serve to keep the pointers to the "oper" and "admin" 1153 * schedules valid in relation to their base times, so when calling dump() the 1154 * users looks at the right schedules. 1155 * When using full offload, the admin configuration is promoted to oper at the 1156 * base_time in the PHC time domain. But because the system time is not 1157 * necessarily in sync with that, we can't just trigger a hrtimer to call 1158 * switch_schedules at the right hardware time. 1159 * At the moment we call this by hand right away from taprio, but in the future 1160 * it will be useful to create a mechanism for drivers to notify taprio of the 1161 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). 1162 * This is left as TODO. 1163 */ 1164 static void taprio_offload_config_changed(struct taprio_sched *q) 1165 { 1166 struct sched_gate_list *oper, *admin; 1167 1168 spin_lock(&q->current_entry_lock); 1169 1170 oper = rcu_dereference_protected(q->oper_sched, 1171 lockdep_is_held(&q->current_entry_lock)); 1172 admin = rcu_dereference_protected(q->admin_sched, 1173 lockdep_is_held(&q->current_entry_lock)); 1174 1175 switch_schedules(q, &admin, &oper); 1176 1177 spin_unlock(&q->current_entry_lock); 1178 } 1179 1180 static void taprio_sched_to_offload(struct taprio_sched *q, 1181 struct sched_gate_list *sched, 1182 const struct tc_mqprio_qopt *mqprio, 1183 struct tc_taprio_qopt_offload *offload) 1184 { 1185 struct sched_entry *entry; 1186 int i = 0; 1187 1188 offload->base_time = sched->base_time; 1189 offload->cycle_time = sched->cycle_time; 1190 offload->cycle_time_extension = sched->cycle_time_extension; 1191 1192 list_for_each_entry(entry, &sched->entries, list) { 1193 struct tc_taprio_sched_entry *e = &offload->entries[i]; 1194 1195 e->command = entry->command; 1196 e->interval = entry->interval; 1197 e->gate_mask = entry->gate_mask; 1198 i++; 1199 } 1200 1201 offload->num_entries = i; 1202 } 1203 1204 static int taprio_enable_offload(struct net_device *dev, 1205 struct tc_mqprio_qopt *mqprio, 1206 struct taprio_sched *q, 1207 struct sched_gate_list *sched, 1208 struct netlink_ext_ack *extack) 1209 { 1210 const struct net_device_ops *ops = dev->netdev_ops; 1211 struct tc_taprio_qopt_offload *offload; 1212 int err = 0; 1213 1214 if (!ops->ndo_setup_tc) { 1215 NL_SET_ERR_MSG(extack, 1216 "Device does not support taprio offload"); 1217 return -EOPNOTSUPP; 1218 } 1219 1220 offload = taprio_offload_alloc(sched->num_entries); 1221 if (!offload) { 1222 NL_SET_ERR_MSG(extack, 1223 "Not enough memory for enabling offload mode"); 1224 return -ENOMEM; 1225 } 1226 offload->enable = 1; 1227 taprio_sched_to_offload(q, sched, mqprio, offload); 1228 1229 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1230 if (err < 0) { 1231 NL_SET_ERR_MSG(extack, 1232 "Device failed to setup taprio offload"); 1233 goto done; 1234 } 1235 1236 done: 1237 taprio_offload_free(offload); 1238 1239 return err; 1240 } 1241 1242 static int taprio_disable_offload(struct net_device *dev, 1243 struct taprio_sched *q, 1244 struct netlink_ext_ack *extack) 1245 { 1246 const struct net_device_ops *ops = dev->netdev_ops; 1247 struct tc_taprio_qopt_offload *offload; 1248 int err; 1249 1250 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) 1251 return 0; 1252 1253 if (!ops->ndo_setup_tc) 1254 return -EOPNOTSUPP; 1255 1256 offload = taprio_offload_alloc(0); 1257 if (!offload) { 1258 NL_SET_ERR_MSG(extack, 1259 "Not enough memory to disable offload mode"); 1260 return -ENOMEM; 1261 } 1262 offload->enable = 0; 1263 1264 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); 1265 if (err < 0) { 1266 NL_SET_ERR_MSG(extack, 1267 "Device failed to disable offload"); 1268 goto out; 1269 } 1270 1271 out: 1272 taprio_offload_free(offload); 1273 1274 return err; 1275 } 1276 1277 /* If full offload is enabled, the only possible clockid is the net device's 1278 * PHC. For that reason, specifying a clockid through netlink is incorrect. 1279 * For txtime-assist, it is implicitly assumed that the device's PHC is kept 1280 * in sync with the specified clockid via a user space daemon such as phc2sys. 1281 * For both software taprio and txtime-assist, the clockid is used for the 1282 * hrtimer that advances the schedule and hence mandatory. 1283 */ 1284 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, 1285 struct netlink_ext_ack *extack) 1286 { 1287 struct taprio_sched *q = qdisc_priv(sch); 1288 struct net_device *dev = qdisc_dev(sch); 1289 int err = -EINVAL; 1290 1291 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1292 const struct ethtool_ops *ops = dev->ethtool_ops; 1293 struct ethtool_ts_info info = { 1294 .cmd = ETHTOOL_GET_TS_INFO, 1295 .phc_index = -1, 1296 }; 1297 1298 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1299 NL_SET_ERR_MSG(extack, 1300 "The 'clockid' cannot be specified for full offload"); 1301 goto out; 1302 } 1303 1304 if (ops && ops->get_ts_info) 1305 err = ops->get_ts_info(dev, &info); 1306 1307 if (err || info.phc_index < 0) { 1308 NL_SET_ERR_MSG(extack, 1309 "Device does not have a PTP clock"); 1310 err = -ENOTSUPP; 1311 goto out; 1312 } 1313 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { 1314 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); 1315 1316 /* We only support static clockids and we don't allow 1317 * for it to be modified after the first init. 1318 */ 1319 if (clockid < 0 || 1320 (q->clockid != -1 && q->clockid != clockid)) { 1321 NL_SET_ERR_MSG(extack, 1322 "Changing the 'clockid' of a running schedule is not supported"); 1323 err = -ENOTSUPP; 1324 goto out; 1325 } 1326 1327 switch (clockid) { 1328 case CLOCK_REALTIME: 1329 q->tk_offset = TK_OFFS_REAL; 1330 break; 1331 case CLOCK_MONOTONIC: 1332 q->tk_offset = TK_OFFS_MAX; 1333 break; 1334 case CLOCK_BOOTTIME: 1335 q->tk_offset = TK_OFFS_BOOT; 1336 break; 1337 case CLOCK_TAI: 1338 q->tk_offset = TK_OFFS_TAI; 1339 break; 1340 default: 1341 NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); 1342 err = -EINVAL; 1343 goto out; 1344 } 1345 1346 q->clockid = clockid; 1347 } else { 1348 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); 1349 goto out; 1350 } 1351 1352 /* Everything went ok, return success. */ 1353 err = 0; 1354 1355 out: 1356 return err; 1357 } 1358 1359 static int taprio_mqprio_cmp(const struct net_device *dev, 1360 const struct tc_mqprio_qopt *mqprio) 1361 { 1362 int i; 1363 1364 if (!mqprio || mqprio->num_tc != dev->num_tc) 1365 return -1; 1366 1367 for (i = 0; i < mqprio->num_tc; i++) 1368 if (dev->tc_to_txq[i].count != mqprio->count[i] || 1369 dev->tc_to_txq[i].offset != mqprio->offset[i]) 1370 return -1; 1371 1372 for (i = 0; i <= TC_BITMASK; i++) 1373 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) 1374 return -1; 1375 1376 return 0; 1377 } 1378 1379 /* The semantics of the 'flags' argument in relation to 'change()' 1380 * requests, are interpreted following two rules (which are applied in 1381 * this order): (1) an omitted 'flags' argument is interpreted as 1382 * zero; (2) the 'flags' of a "running" taprio instance cannot be 1383 * changed. 1384 */ 1385 static int taprio_new_flags(const struct nlattr *attr, u32 old, 1386 struct netlink_ext_ack *extack) 1387 { 1388 u32 new = 0; 1389 1390 if (attr) 1391 new = nla_get_u32(attr); 1392 1393 if (old != TAPRIO_FLAGS_INVALID && old != new) { 1394 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); 1395 return -EOPNOTSUPP; 1396 } 1397 1398 if (!taprio_flags_valid(new)) { 1399 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); 1400 return -EINVAL; 1401 } 1402 1403 return new; 1404 } 1405 1406 static int taprio_change(struct Qdisc *sch, struct nlattr *opt, 1407 struct netlink_ext_ack *extack) 1408 { 1409 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; 1410 struct sched_gate_list *oper, *admin, *new_admin; 1411 struct taprio_sched *q = qdisc_priv(sch); 1412 struct net_device *dev = qdisc_dev(sch); 1413 struct tc_mqprio_qopt *mqprio = NULL; 1414 unsigned long flags; 1415 ktime_t start; 1416 int i, err; 1417 1418 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, 1419 taprio_policy, extack); 1420 if (err < 0) 1421 return err; 1422 1423 if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) 1424 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); 1425 1426 err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], 1427 q->flags, extack); 1428 if (err < 0) 1429 return err; 1430 1431 q->flags = err; 1432 1433 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); 1434 if (err < 0) 1435 return err; 1436 1437 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); 1438 if (!new_admin) { 1439 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); 1440 return -ENOMEM; 1441 } 1442 INIT_LIST_HEAD(&new_admin->entries); 1443 1444 rcu_read_lock(); 1445 oper = rcu_dereference(q->oper_sched); 1446 admin = rcu_dereference(q->admin_sched); 1447 rcu_read_unlock(); 1448 1449 /* no changes - no new mqprio settings */ 1450 if (!taprio_mqprio_cmp(dev, mqprio)) 1451 mqprio = NULL; 1452 1453 if (mqprio && (oper || admin)) { 1454 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); 1455 err = -ENOTSUPP; 1456 goto free_sched; 1457 } 1458 1459 err = parse_taprio_schedule(tb, new_admin, extack); 1460 if (err < 0) 1461 goto free_sched; 1462 1463 if (new_admin->num_entries == 0) { 1464 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); 1465 err = -EINVAL; 1466 goto free_sched; 1467 } 1468 1469 err = taprio_parse_clockid(sch, tb, extack); 1470 if (err < 0) 1471 goto free_sched; 1472 1473 taprio_set_picos_per_byte(dev, q); 1474 1475 if (mqprio) { 1476 netdev_set_num_tc(dev, mqprio->num_tc); 1477 for (i = 0; i < mqprio->num_tc; i++) 1478 netdev_set_tc_queue(dev, i, 1479 mqprio->count[i], 1480 mqprio->offset[i]); 1481 1482 /* Always use supplied priority mappings */ 1483 for (i = 0; i <= TC_BITMASK; i++) 1484 netdev_set_prio_tc_map(dev, i, 1485 mqprio->prio_tc_map[i]); 1486 } 1487 1488 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1489 err = taprio_enable_offload(dev, mqprio, q, new_admin, extack); 1490 else 1491 err = taprio_disable_offload(dev, q, extack); 1492 if (err) 1493 goto free_sched; 1494 1495 /* Protects against enqueue()/dequeue() */ 1496 spin_lock_bh(qdisc_lock(sch)); 1497 1498 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { 1499 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1500 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); 1501 err = -EINVAL; 1502 goto unlock; 1503 } 1504 1505 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); 1506 } 1507 1508 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && 1509 !FULL_OFFLOAD_IS_ENABLED(q->flags) && 1510 !hrtimer_active(&q->advance_timer)) { 1511 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); 1512 q->advance_timer.function = advance_sched; 1513 } 1514 1515 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { 1516 q->dequeue = taprio_dequeue_offload; 1517 q->peek = taprio_peek_offload; 1518 } else { 1519 /* Be sure to always keep the function pointers 1520 * in a consistent state. 1521 */ 1522 q->dequeue = taprio_dequeue_soft; 1523 q->peek = taprio_peek_soft; 1524 } 1525 1526 err = taprio_get_start_time(sch, new_admin, &start); 1527 if (err < 0) { 1528 NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); 1529 goto unlock; 1530 } 1531 1532 setup_txtime(q, new_admin, start); 1533 1534 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { 1535 if (!oper) { 1536 rcu_assign_pointer(q->oper_sched, new_admin); 1537 err = 0; 1538 new_admin = NULL; 1539 goto unlock; 1540 } 1541 1542 rcu_assign_pointer(q->admin_sched, new_admin); 1543 if (admin) 1544 call_rcu(&admin->rcu, taprio_free_sched_cb); 1545 } else { 1546 setup_first_close_time(q, new_admin, start); 1547 1548 /* Protects against advance_sched() */ 1549 spin_lock_irqsave(&q->current_entry_lock, flags); 1550 1551 taprio_start_sched(sch, start, new_admin); 1552 1553 rcu_assign_pointer(q->admin_sched, new_admin); 1554 if (admin) 1555 call_rcu(&admin->rcu, taprio_free_sched_cb); 1556 1557 spin_unlock_irqrestore(&q->current_entry_lock, flags); 1558 1559 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) 1560 taprio_offload_config_changed(q); 1561 } 1562 1563 new_admin = NULL; 1564 err = 0; 1565 1566 unlock: 1567 spin_unlock_bh(qdisc_lock(sch)); 1568 1569 free_sched: 1570 if (new_admin) 1571 call_rcu(&new_admin->rcu, taprio_free_sched_cb); 1572 1573 return err; 1574 } 1575 1576 static void taprio_destroy(struct Qdisc *sch) 1577 { 1578 struct taprio_sched *q = qdisc_priv(sch); 1579 struct net_device *dev = qdisc_dev(sch); 1580 unsigned int i; 1581 1582 spin_lock(&taprio_list_lock); 1583 list_del(&q->taprio_list); 1584 spin_unlock(&taprio_list_lock); 1585 1586 hrtimer_cancel(&q->advance_timer); 1587 1588 taprio_disable_offload(dev, q, NULL); 1589 1590 if (q->qdiscs) { 1591 for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++) 1592 qdisc_put(q->qdiscs[i]); 1593 1594 kfree(q->qdiscs); 1595 } 1596 q->qdiscs = NULL; 1597 1598 netdev_reset_tc(dev); 1599 1600 if (q->oper_sched) 1601 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb); 1602 1603 if (q->admin_sched) 1604 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb); 1605 } 1606 1607 static int taprio_init(struct Qdisc *sch, struct nlattr *opt, 1608 struct netlink_ext_ack *extack) 1609 { 1610 struct taprio_sched *q = qdisc_priv(sch); 1611 struct net_device *dev = qdisc_dev(sch); 1612 int i; 1613 1614 spin_lock_init(&q->current_entry_lock); 1615 1616 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); 1617 q->advance_timer.function = advance_sched; 1618 1619 q->dequeue = taprio_dequeue_soft; 1620 q->peek = taprio_peek_soft; 1621 1622 q->root = sch; 1623 1624 /* We only support static clockids. Use an invalid value as default 1625 * and get the valid one on taprio_change(). 1626 */ 1627 q->clockid = -1; 1628 q->flags = TAPRIO_FLAGS_INVALID; 1629 1630 spin_lock(&taprio_list_lock); 1631 list_add(&q->taprio_list, &taprio_list); 1632 spin_unlock(&taprio_list_lock); 1633 1634 if (sch->parent != TC_H_ROOT) 1635 return -EOPNOTSUPP; 1636 1637 if (!netif_is_multiqueue(dev)) 1638 return -EOPNOTSUPP; 1639 1640 /* pre-allocate qdisc, attachment can't fail */ 1641 q->qdiscs = kcalloc(dev->num_tx_queues, 1642 sizeof(q->qdiscs[0]), 1643 GFP_KERNEL); 1644 1645 if (!q->qdiscs) 1646 return -ENOMEM; 1647 1648 if (!opt) 1649 return -EINVAL; 1650 1651 for (i = 0; i < dev->num_tx_queues; i++) { 1652 struct netdev_queue *dev_queue; 1653 struct Qdisc *qdisc; 1654 1655 dev_queue = netdev_get_tx_queue(dev, i); 1656 qdisc = qdisc_create_dflt(dev_queue, 1657 &pfifo_qdisc_ops, 1658 TC_H_MAKE(TC_H_MAJ(sch->handle), 1659 TC_H_MIN(i + 1)), 1660 extack); 1661 if (!qdisc) 1662 return -ENOMEM; 1663 1664 if (i < dev->real_num_tx_queues) 1665 qdisc_hash_add(qdisc, false); 1666 1667 q->qdiscs[i] = qdisc; 1668 } 1669 1670 return taprio_change(sch, opt, extack); 1671 } 1672 1673 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, 1674 unsigned long cl) 1675 { 1676 struct net_device *dev = qdisc_dev(sch); 1677 unsigned long ntx = cl - 1; 1678 1679 if (ntx >= dev->num_tx_queues) 1680 return NULL; 1681 1682 return netdev_get_tx_queue(dev, ntx); 1683 } 1684 1685 static int taprio_graft(struct Qdisc *sch, unsigned long cl, 1686 struct Qdisc *new, struct Qdisc **old, 1687 struct netlink_ext_ack *extack) 1688 { 1689 struct taprio_sched *q = qdisc_priv(sch); 1690 struct net_device *dev = qdisc_dev(sch); 1691 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1692 1693 if (!dev_queue) 1694 return -EINVAL; 1695 1696 if (dev->flags & IFF_UP) 1697 dev_deactivate(dev); 1698 1699 *old = q->qdiscs[cl - 1]; 1700 q->qdiscs[cl - 1] = new; 1701 1702 if (new) 1703 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1704 1705 if (dev->flags & IFF_UP) 1706 dev_activate(dev); 1707 1708 return 0; 1709 } 1710 1711 static int dump_entry(struct sk_buff *msg, 1712 const struct sched_entry *entry) 1713 { 1714 struct nlattr *item; 1715 1716 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); 1717 if (!item) 1718 return -ENOSPC; 1719 1720 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) 1721 goto nla_put_failure; 1722 1723 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) 1724 goto nla_put_failure; 1725 1726 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, 1727 entry->gate_mask)) 1728 goto nla_put_failure; 1729 1730 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, 1731 entry->interval)) 1732 goto nla_put_failure; 1733 1734 return nla_nest_end(msg, item); 1735 1736 nla_put_failure: 1737 nla_nest_cancel(msg, item); 1738 return -1; 1739 } 1740 1741 static int dump_schedule(struct sk_buff *msg, 1742 const struct sched_gate_list *root) 1743 { 1744 struct nlattr *entry_list; 1745 struct sched_entry *entry; 1746 1747 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, 1748 root->base_time, TCA_TAPRIO_PAD)) 1749 return -1; 1750 1751 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, 1752 root->cycle_time, TCA_TAPRIO_PAD)) 1753 return -1; 1754 1755 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, 1756 root->cycle_time_extension, TCA_TAPRIO_PAD)) 1757 return -1; 1758 1759 entry_list = nla_nest_start_noflag(msg, 1760 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); 1761 if (!entry_list) 1762 goto error_nest; 1763 1764 list_for_each_entry(entry, &root->entries, list) { 1765 if (dump_entry(msg, entry) < 0) 1766 goto error_nest; 1767 } 1768 1769 nla_nest_end(msg, entry_list); 1770 return 0; 1771 1772 error_nest: 1773 nla_nest_cancel(msg, entry_list); 1774 return -1; 1775 } 1776 1777 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) 1778 { 1779 struct taprio_sched *q = qdisc_priv(sch); 1780 struct net_device *dev = qdisc_dev(sch); 1781 struct sched_gate_list *oper, *admin; 1782 struct tc_mqprio_qopt opt = { 0 }; 1783 struct nlattr *nest, *sched_nest; 1784 unsigned int i; 1785 1786 rcu_read_lock(); 1787 oper = rcu_dereference(q->oper_sched); 1788 admin = rcu_dereference(q->admin_sched); 1789 1790 opt.num_tc = netdev_get_num_tc(dev); 1791 memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map)); 1792 1793 for (i = 0; i < netdev_get_num_tc(dev); i++) { 1794 opt.count[i] = dev->tc_to_txq[i].count; 1795 opt.offset[i] = dev->tc_to_txq[i].offset; 1796 } 1797 1798 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 1799 if (!nest) 1800 goto start_error; 1801 1802 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) 1803 goto options_error; 1804 1805 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && 1806 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) 1807 goto options_error; 1808 1809 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) 1810 goto options_error; 1811 1812 if (q->txtime_delay && 1813 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) 1814 goto options_error; 1815 1816 if (oper && dump_schedule(skb, oper)) 1817 goto options_error; 1818 1819 if (!admin) 1820 goto done; 1821 1822 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); 1823 if (!sched_nest) 1824 goto options_error; 1825 1826 if (dump_schedule(skb, admin)) 1827 goto admin_error; 1828 1829 nla_nest_end(skb, sched_nest); 1830 1831 done: 1832 rcu_read_unlock(); 1833 1834 return nla_nest_end(skb, nest); 1835 1836 admin_error: 1837 nla_nest_cancel(skb, sched_nest); 1838 1839 options_error: 1840 nla_nest_cancel(skb, nest); 1841 1842 start_error: 1843 rcu_read_unlock(); 1844 return -ENOSPC; 1845 } 1846 1847 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) 1848 { 1849 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1850 1851 if (!dev_queue) 1852 return NULL; 1853 1854 return dev_queue->qdisc_sleeping; 1855 } 1856 1857 static unsigned long taprio_find(struct Qdisc *sch, u32 classid) 1858 { 1859 unsigned int ntx = TC_H_MIN(classid); 1860 1861 if (!taprio_queue_get(sch, ntx)) 1862 return 0; 1863 return ntx; 1864 } 1865 1866 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, 1867 struct sk_buff *skb, struct tcmsg *tcm) 1868 { 1869 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1870 1871 tcm->tcm_parent = TC_H_ROOT; 1872 tcm->tcm_handle |= TC_H_MIN(cl); 1873 tcm->tcm_info = dev_queue->qdisc_sleeping->handle; 1874 1875 return 0; 1876 } 1877 1878 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, 1879 struct gnet_dump *d) 1880 __releases(d->lock) 1881 __acquires(d->lock) 1882 { 1883 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); 1884 1885 sch = dev_queue->qdisc_sleeping; 1886 if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 || 1887 qdisc_qstats_copy(d, sch) < 0) 1888 return -1; 1889 return 0; 1890 } 1891 1892 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1893 { 1894 struct net_device *dev = qdisc_dev(sch); 1895 unsigned long ntx; 1896 1897 if (arg->stop) 1898 return; 1899 1900 arg->count = arg->skip; 1901 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { 1902 if (arg->fn(sch, ntx + 1, arg) < 0) { 1903 arg->stop = 1; 1904 break; 1905 } 1906 arg->count++; 1907 } 1908 } 1909 1910 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, 1911 struct tcmsg *tcm) 1912 { 1913 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); 1914 } 1915 1916 static const struct Qdisc_class_ops taprio_class_ops = { 1917 .graft = taprio_graft, 1918 .leaf = taprio_leaf, 1919 .find = taprio_find, 1920 .walk = taprio_walk, 1921 .dump = taprio_dump_class, 1922 .dump_stats = taprio_dump_class_stats, 1923 .select_queue = taprio_select_queue, 1924 }; 1925 1926 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { 1927 .cl_ops = &taprio_class_ops, 1928 .id = "taprio", 1929 .priv_size = sizeof(struct taprio_sched), 1930 .init = taprio_init, 1931 .change = taprio_change, 1932 .destroy = taprio_destroy, 1933 .peek = taprio_peek, 1934 .dequeue = taprio_dequeue, 1935 .enqueue = taprio_enqueue, 1936 .dump = taprio_dump, 1937 .owner = THIS_MODULE, 1938 }; 1939 1940 static struct notifier_block taprio_device_notifier = { 1941 .notifier_call = taprio_dev_notifier, 1942 }; 1943 1944 static int __init taprio_module_init(void) 1945 { 1946 int err = register_netdevice_notifier(&taprio_device_notifier); 1947 1948 if (err) 1949 return err; 1950 1951 return register_qdisc(&taprio_qdisc_ops); 1952 } 1953 1954 static void __exit taprio_module_exit(void) 1955 { 1956 unregister_qdisc(&taprio_qdisc_ops); 1957 unregister_netdevice_notifier(&taprio_device_notifier); 1958 } 1959 1960 module_init(taprio_module_init); 1961 module_exit(taprio_module_exit); 1962 MODULE_LICENSE("GPL"); 1963