1 /* 2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 */ 11 12 #include <linux/module.h> 13 #include <linux/types.h> 14 #include <linux/kernel.h> 15 #include <linux/jiffies.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/errno.h> 19 #include <linux/init.h> 20 #include <linux/ipv6.h> 21 #include <linux/skbuff.h> 22 #include <net/ip.h> 23 #include <net/netlink.h> 24 #include <net/pkt_sched.h> 25 26 27 /* Stochastic Fairness Queuing algorithm. 28 ======================================= 29 30 Source: 31 Paul E. McKenney "Stochastic Fairness Queuing", 32 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990. 33 34 Paul E. McKenney "Stochastic Fairness Queuing", 35 "Interworking: Research and Experience", v.2, 1991, p.113-131. 36 37 38 See also: 39 M. Shreedhar and George Varghese "Efficient Fair 40 Queuing using Deficit Round Robin", Proc. SIGCOMM 95. 41 42 43 This is not the thing that is usually called (W)FQ nowadays. 44 It does not use any timestamp mechanism, but instead 45 processes queues in round-robin order. 46 47 ADVANTAGE: 48 49 - It is very cheap. Both CPU and memory requirements are minimal. 50 51 DRAWBACKS: 52 53 - "Stochastic" -> It is not 100% fair. 54 When hash collisions occur, several flows are considered as one. 55 56 - "Round-robin" -> It introduces larger delays than virtual clock 57 based schemes, and should not be used for isolating interactive 58 traffic from non-interactive. It means, that this scheduler 59 should be used as leaf of CBQ or P3, which put interactive traffic 60 to higher priority band. 61 62 We still need true WFQ for top level CSZ, but using WFQ 63 for the best effort traffic is absolutely pointless: 64 SFQ is superior for this purpose. 65 66 IMPLEMENTATION: 67 This implementation limits maximal queue length to 128; 68 maximal mtu to 2^15-1; number of hash buckets to 1024. 69 The only goal of this restrictions was that all data 70 fit into one 4K page :-). Struct sfq_sched_data is 71 organized in anti-cache manner: all the data for a bucket 72 are scattered over different locations. This is not good, 73 but it allowed me to put it into 4K. 74 75 It is easy to increase these values, but not in flight. */ 76 77 #define SFQ_DEPTH 128 78 #define SFQ_HASH_DIVISOR 1024 79 80 /* This type should contain at least SFQ_DEPTH*2 values */ 81 typedef unsigned char sfq_index; 82 83 struct sfq_head 84 { 85 sfq_index next; 86 sfq_index prev; 87 }; 88 89 struct sfq_sched_data 90 { 91 /* Parameters */ 92 int perturb_period; 93 unsigned quantum; /* Allotment per round: MUST BE >= MTU */ 94 int limit; 95 96 /* Variables */ 97 struct timer_list perturb_timer; 98 int perturbation; 99 sfq_index tail; /* Index of current slot in round */ 100 sfq_index max_depth; /* Maximal depth */ 101 102 sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */ 103 sfq_index next[SFQ_DEPTH]; /* Active slots link */ 104 short allot[SFQ_DEPTH]; /* Current allotment per slot */ 105 unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */ 106 struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */ 107 struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */ 108 }; 109 110 static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1) 111 { 112 int pert = q->perturbation; 113 114 /* Have we any rotation primitives? If not, WHY? */ 115 h ^= (h1<<pert) ^ (h1>>(0x1F - pert)); 116 h ^= h>>10; 117 return h & 0x3FF; 118 } 119 120 static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb) 121 { 122 u32 h, h2; 123 124 switch (skb->protocol) { 125 case __constant_htons(ETH_P_IP): 126 { 127 const struct iphdr *iph = ip_hdr(skb); 128 h = iph->daddr; 129 h2 = iph->saddr^iph->protocol; 130 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) && 131 (iph->protocol == IPPROTO_TCP || 132 iph->protocol == IPPROTO_UDP || 133 iph->protocol == IPPROTO_UDPLITE || 134 iph->protocol == IPPROTO_SCTP || 135 iph->protocol == IPPROTO_DCCP || 136 iph->protocol == IPPROTO_ESP)) 137 h2 ^= *(((u32*)iph) + iph->ihl); 138 break; 139 } 140 case __constant_htons(ETH_P_IPV6): 141 { 142 struct ipv6hdr *iph = ipv6_hdr(skb); 143 h = iph->daddr.s6_addr32[3]; 144 h2 = iph->saddr.s6_addr32[3]^iph->nexthdr; 145 if (iph->nexthdr == IPPROTO_TCP || 146 iph->nexthdr == IPPROTO_UDP || 147 iph->nexthdr == IPPROTO_UDPLITE || 148 iph->nexthdr == IPPROTO_SCTP || 149 iph->nexthdr == IPPROTO_DCCP || 150 iph->nexthdr == IPPROTO_ESP) 151 h2 ^= *(u32*)&iph[1]; 152 break; 153 } 154 default: 155 h = (u32)(unsigned long)skb->dst^skb->protocol; 156 h2 = (u32)(unsigned long)skb->sk; 157 } 158 return sfq_fold_hash(q, h, h2); 159 } 160 161 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x) 162 { 163 sfq_index p, n; 164 int d = q->qs[x].qlen + SFQ_DEPTH; 165 166 p = d; 167 n = q->dep[d].next; 168 q->dep[x].next = n; 169 q->dep[x].prev = p; 170 q->dep[p].next = q->dep[n].prev = x; 171 } 172 173 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x) 174 { 175 sfq_index p, n; 176 177 n = q->dep[x].next; 178 p = q->dep[x].prev; 179 q->dep[p].next = n; 180 q->dep[n].prev = p; 181 182 if (n == p && q->max_depth == q->qs[x].qlen + 1) 183 q->max_depth--; 184 185 sfq_link(q, x); 186 } 187 188 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x) 189 { 190 sfq_index p, n; 191 int d; 192 193 n = q->dep[x].next; 194 p = q->dep[x].prev; 195 q->dep[p].next = n; 196 q->dep[n].prev = p; 197 d = q->qs[x].qlen; 198 if (q->max_depth < d) 199 q->max_depth = d; 200 201 sfq_link(q, x); 202 } 203 204 static unsigned int sfq_drop(struct Qdisc *sch) 205 { 206 struct sfq_sched_data *q = qdisc_priv(sch); 207 sfq_index d = q->max_depth; 208 struct sk_buff *skb; 209 unsigned int len; 210 211 /* Queue is full! Find the longest slot and 212 drop a packet from it */ 213 214 if (d > 1) { 215 sfq_index x = q->dep[d+SFQ_DEPTH].next; 216 skb = q->qs[x].prev; 217 len = skb->len; 218 __skb_unlink(skb, &q->qs[x]); 219 kfree_skb(skb); 220 sfq_dec(q, x); 221 sch->q.qlen--; 222 sch->qstats.drops++; 223 sch->qstats.backlog -= len; 224 return len; 225 } 226 227 if (d == 1) { 228 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */ 229 d = q->next[q->tail]; 230 q->next[q->tail] = q->next[d]; 231 q->allot[q->next[d]] += q->quantum; 232 skb = q->qs[d].prev; 233 len = skb->len; 234 __skb_unlink(skb, &q->qs[d]); 235 kfree_skb(skb); 236 sfq_dec(q, d); 237 sch->q.qlen--; 238 q->ht[q->hash[d]] = SFQ_DEPTH; 239 sch->qstats.drops++; 240 sch->qstats.backlog -= len; 241 return len; 242 } 243 244 return 0; 245 } 246 247 static int 248 sfq_enqueue(struct sk_buff *skb, struct Qdisc* sch) 249 { 250 struct sfq_sched_data *q = qdisc_priv(sch); 251 unsigned hash = sfq_hash(q, skb); 252 sfq_index x; 253 254 x = q->ht[hash]; 255 if (x == SFQ_DEPTH) { 256 q->ht[hash] = x = q->dep[SFQ_DEPTH].next; 257 q->hash[x] = hash; 258 } 259 sch->qstats.backlog += skb->len; 260 __skb_queue_tail(&q->qs[x], skb); 261 sfq_inc(q, x); 262 if (q->qs[x].qlen == 1) { /* The flow is new */ 263 if (q->tail == SFQ_DEPTH) { /* It is the first flow */ 264 q->tail = x; 265 q->next[x] = x; 266 q->allot[x] = q->quantum; 267 } else { 268 q->next[x] = q->next[q->tail]; 269 q->next[q->tail] = x; 270 q->tail = x; 271 } 272 } 273 if (++sch->q.qlen < q->limit-1) { 274 sch->bstats.bytes += skb->len; 275 sch->bstats.packets++; 276 return 0; 277 } 278 279 sfq_drop(sch); 280 return NET_XMIT_CN; 281 } 282 283 static int 284 sfq_requeue(struct sk_buff *skb, struct Qdisc* sch) 285 { 286 struct sfq_sched_data *q = qdisc_priv(sch); 287 unsigned hash = sfq_hash(q, skb); 288 sfq_index x; 289 290 x = q->ht[hash]; 291 if (x == SFQ_DEPTH) { 292 q->ht[hash] = x = q->dep[SFQ_DEPTH].next; 293 q->hash[x] = hash; 294 } 295 sch->qstats.backlog += skb->len; 296 __skb_queue_head(&q->qs[x], skb); 297 sfq_inc(q, x); 298 if (q->qs[x].qlen == 1) { /* The flow is new */ 299 if (q->tail == SFQ_DEPTH) { /* It is the first flow */ 300 q->tail = x; 301 q->next[x] = x; 302 q->allot[x] = q->quantum; 303 } else { 304 q->next[x] = q->next[q->tail]; 305 q->next[q->tail] = x; 306 q->tail = x; 307 } 308 } 309 if (++sch->q.qlen < q->limit - 1) { 310 sch->qstats.requeues++; 311 return 0; 312 } 313 314 sch->qstats.drops++; 315 sfq_drop(sch); 316 return NET_XMIT_CN; 317 } 318 319 320 321 322 static struct sk_buff * 323 sfq_dequeue(struct Qdisc* sch) 324 { 325 struct sfq_sched_data *q = qdisc_priv(sch); 326 struct sk_buff *skb; 327 sfq_index a, old_a; 328 329 /* No active slots */ 330 if (q->tail == SFQ_DEPTH) 331 return NULL; 332 333 a = old_a = q->next[q->tail]; 334 335 /* Grab packet */ 336 skb = __skb_dequeue(&q->qs[a]); 337 sfq_dec(q, a); 338 sch->q.qlen--; 339 sch->qstats.backlog -= skb->len; 340 341 /* Is the slot empty? */ 342 if (q->qs[a].qlen == 0) { 343 q->ht[q->hash[a]] = SFQ_DEPTH; 344 a = q->next[a]; 345 if (a == old_a) { 346 q->tail = SFQ_DEPTH; 347 return skb; 348 } 349 q->next[q->tail] = a; 350 q->allot[a] += q->quantum; 351 } else if ((q->allot[a] -= skb->len) <= 0) { 352 q->tail = a; 353 a = q->next[a]; 354 q->allot[a] += q->quantum; 355 } 356 return skb; 357 } 358 359 static void 360 sfq_reset(struct Qdisc* sch) 361 { 362 struct sk_buff *skb; 363 364 while ((skb = sfq_dequeue(sch)) != NULL) 365 kfree_skb(skb); 366 } 367 368 static void sfq_perturbation(unsigned long arg) 369 { 370 struct Qdisc *sch = (struct Qdisc*)arg; 371 struct sfq_sched_data *q = qdisc_priv(sch); 372 373 q->perturbation = net_random()&0x1F; 374 375 if (q->perturb_period) { 376 q->perturb_timer.expires = jiffies + q->perturb_period; 377 add_timer(&q->perturb_timer); 378 } 379 } 380 381 static int sfq_change(struct Qdisc *sch, struct rtattr *opt) 382 { 383 struct sfq_sched_data *q = qdisc_priv(sch); 384 struct tc_sfq_qopt *ctl = RTA_DATA(opt); 385 unsigned int qlen; 386 387 if (opt->rta_len < RTA_LENGTH(sizeof(*ctl))) 388 return -EINVAL; 389 390 sch_tree_lock(sch); 391 q->quantum = ctl->quantum ? : psched_mtu(sch->dev); 392 q->perturb_period = ctl->perturb_period*HZ; 393 if (ctl->limit) 394 q->limit = min_t(u32, ctl->limit, SFQ_DEPTH); 395 396 qlen = sch->q.qlen; 397 while (sch->q.qlen >= q->limit-1) 398 sfq_drop(sch); 399 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen); 400 401 del_timer(&q->perturb_timer); 402 if (q->perturb_period) { 403 q->perturb_timer.expires = jiffies + q->perturb_period; 404 add_timer(&q->perturb_timer); 405 } 406 sch_tree_unlock(sch); 407 return 0; 408 } 409 410 static int sfq_init(struct Qdisc *sch, struct rtattr *opt) 411 { 412 struct sfq_sched_data *q = qdisc_priv(sch); 413 int i; 414 415 init_timer(&q->perturb_timer); 416 q->perturb_timer.data = (unsigned long)sch; 417 q->perturb_timer.function = sfq_perturbation; 418 419 for (i=0; i<SFQ_HASH_DIVISOR; i++) 420 q->ht[i] = SFQ_DEPTH; 421 for (i=0; i<SFQ_DEPTH; i++) { 422 skb_queue_head_init(&q->qs[i]); 423 q->dep[i+SFQ_DEPTH].next = i+SFQ_DEPTH; 424 q->dep[i+SFQ_DEPTH].prev = i+SFQ_DEPTH; 425 } 426 q->limit = SFQ_DEPTH; 427 q->max_depth = 0; 428 q->tail = SFQ_DEPTH; 429 if (opt == NULL) { 430 q->quantum = psched_mtu(sch->dev); 431 q->perturb_period = 0; 432 } else { 433 int err = sfq_change(sch, opt); 434 if (err) 435 return err; 436 } 437 for (i=0; i<SFQ_DEPTH; i++) 438 sfq_link(q, i); 439 return 0; 440 } 441 442 static void sfq_destroy(struct Qdisc *sch) 443 { 444 struct sfq_sched_data *q = qdisc_priv(sch); 445 del_timer(&q->perturb_timer); 446 } 447 448 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb) 449 { 450 struct sfq_sched_data *q = qdisc_priv(sch); 451 unsigned char *b = skb_tail_pointer(skb); 452 struct tc_sfq_qopt opt; 453 454 opt.quantum = q->quantum; 455 opt.perturb_period = q->perturb_period/HZ; 456 457 opt.limit = q->limit; 458 opt.divisor = SFQ_HASH_DIVISOR; 459 opt.flows = q->limit; 460 461 RTA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt); 462 463 return skb->len; 464 465 rtattr_failure: 466 nlmsg_trim(skb, b); 467 return -1; 468 } 469 470 static struct Qdisc_ops sfq_qdisc_ops = { 471 .next = NULL, 472 .cl_ops = NULL, 473 .id = "sfq", 474 .priv_size = sizeof(struct sfq_sched_data), 475 .enqueue = sfq_enqueue, 476 .dequeue = sfq_dequeue, 477 .requeue = sfq_requeue, 478 .drop = sfq_drop, 479 .init = sfq_init, 480 .reset = sfq_reset, 481 .destroy = sfq_destroy, 482 .change = NULL, 483 .dump = sfq_dump, 484 .owner = THIS_MODULE, 485 }; 486 487 static int __init sfq_module_init(void) 488 { 489 return register_qdisc(&sfq_qdisc_ops); 490 } 491 static void __exit sfq_module_exit(void) 492 { 493 unregister_qdisc(&sfq_qdisc_ops); 494 } 495 module_init(sfq_module_init) 496 module_exit(sfq_module_exit) 497 MODULE_LICENSE("GPL"); 498