1 /* 2 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 */ 11 12 #include <linux/module.h> 13 #include <linux/types.h> 14 #include <linux/kernel.h> 15 #include <linux/jiffies.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/errno.h> 19 #include <linux/init.h> 20 #include <linux/skbuff.h> 21 #include <linux/jhash.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <net/netlink.h> 25 #include <net/pkt_sched.h> 26 #include <net/flow_keys.h> 27 #include <net/red.h> 28 29 30 /* Stochastic Fairness Queuing algorithm. 31 ======================================= 32 33 Source: 34 Paul E. McKenney "Stochastic Fairness Queuing", 35 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990. 36 37 Paul E. McKenney "Stochastic Fairness Queuing", 38 "Interworking: Research and Experience", v.2, 1991, p.113-131. 39 40 41 See also: 42 M. Shreedhar and George Varghese "Efficient Fair 43 Queuing using Deficit Round Robin", Proc. SIGCOMM 95. 44 45 46 This is not the thing that is usually called (W)FQ nowadays. 47 It does not use any timestamp mechanism, but instead 48 processes queues in round-robin order. 49 50 ADVANTAGE: 51 52 - It is very cheap. Both CPU and memory requirements are minimal. 53 54 DRAWBACKS: 55 56 - "Stochastic" -> It is not 100% fair. 57 When hash collisions occur, several flows are considered as one. 58 59 - "Round-robin" -> It introduces larger delays than virtual clock 60 based schemes, and should not be used for isolating interactive 61 traffic from non-interactive. It means, that this scheduler 62 should be used as leaf of CBQ or P3, which put interactive traffic 63 to higher priority band. 64 65 We still need true WFQ for top level CSZ, but using WFQ 66 for the best effort traffic is absolutely pointless: 67 SFQ is superior for this purpose. 68 69 IMPLEMENTATION: 70 This implementation limits : 71 - maximal queue length per flow to 127 packets. 72 - max mtu to 2^18-1; 73 - max 65408 flows, 74 - number of hash buckets to 65536. 75 76 It is easy to increase these values, but not in flight. */ 77 78 #define SFQ_MAX_DEPTH 127 /* max number of packets per flow */ 79 #define SFQ_DEFAULT_FLOWS 128 80 #define SFQ_MAX_FLOWS (0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */ 81 #define SFQ_EMPTY_SLOT 0xffff 82 #define SFQ_DEFAULT_HASH_DIVISOR 1024 83 84 /* We use 16 bits to store allot, and want to handle packets up to 64K 85 * Scale allot by 8 (1<<3) so that no overflow occurs. 86 */ 87 #define SFQ_ALLOT_SHIFT 3 88 #define SFQ_ALLOT_SIZE(X) DIV_ROUND_UP(X, 1 << SFQ_ALLOT_SHIFT) 89 90 /* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */ 91 typedef u16 sfq_index; 92 93 /* 94 * We dont use pointers to save space. 95 * Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array 96 * while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH] 97 * are 'pointers' to dep[] array 98 */ 99 struct sfq_head { 100 sfq_index next; 101 sfq_index prev; 102 }; 103 104 struct sfq_slot { 105 struct sk_buff *skblist_next; 106 struct sk_buff *skblist_prev; 107 sfq_index qlen; /* number of skbs in skblist */ 108 sfq_index next; /* next slot in sfq RR chain */ 109 struct sfq_head dep; /* anchor in dep[] chains */ 110 unsigned short hash; /* hash value (index in ht[]) */ 111 short allot; /* credit for this slot */ 112 113 unsigned int backlog; 114 struct red_vars vars; 115 }; 116 117 struct sfq_sched_data { 118 /* frequently used fields */ 119 int limit; /* limit of total number of packets in this qdisc */ 120 unsigned int divisor; /* number of slots in hash table */ 121 u8 headdrop; 122 u8 maxdepth; /* limit of packets per flow */ 123 124 u32 perturbation; 125 u8 cur_depth; /* depth of longest slot */ 126 u8 flags; 127 unsigned short scaled_quantum; /* SFQ_ALLOT_SIZE(quantum) */ 128 struct tcf_proto *filter_list; 129 sfq_index *ht; /* Hash table ('divisor' slots) */ 130 struct sfq_slot *slots; /* Flows table ('maxflows' entries) */ 131 132 struct red_parms *red_parms; 133 struct tc_sfqred_stats stats; 134 struct sfq_slot *tail; /* current slot in round */ 135 136 struct sfq_head dep[SFQ_MAX_DEPTH + 1]; 137 /* Linked lists of slots, indexed by depth 138 * dep[0] : list of unused flows 139 * dep[1] : list of flows with 1 packet 140 * dep[X] : list of flows with X packets 141 */ 142 143 unsigned int maxflows; /* number of flows in flows array */ 144 int perturb_period; 145 unsigned int quantum; /* Allotment per round: MUST BE >= MTU */ 146 struct timer_list perturb_timer; 147 }; 148 149 /* 150 * sfq_head are either in a sfq_slot or in dep[] array 151 */ 152 static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val) 153 { 154 if (val < SFQ_MAX_FLOWS) 155 return &q->slots[val].dep; 156 return &q->dep[val - SFQ_MAX_FLOWS]; 157 } 158 159 /* 160 * In order to be able to quickly rehash our queue when timer changes 161 * q->perturbation, we store flow_keys in skb->cb[] 162 */ 163 struct sfq_skb_cb { 164 struct flow_keys keys; 165 }; 166 167 static inline struct sfq_skb_cb *sfq_skb_cb(const struct sk_buff *skb) 168 { 169 qdisc_cb_private_validate(skb, sizeof(struct sfq_skb_cb)); 170 return (struct sfq_skb_cb *)qdisc_skb_cb(skb)->data; 171 } 172 173 static unsigned int sfq_hash(const struct sfq_sched_data *q, 174 const struct sk_buff *skb) 175 { 176 const struct flow_keys *keys = &sfq_skb_cb(skb)->keys; 177 unsigned int hash; 178 179 hash = jhash_3words((__force u32)keys->dst, 180 (__force u32)keys->src ^ keys->ip_proto, 181 (__force u32)keys->ports, q->perturbation); 182 return hash & (q->divisor - 1); 183 } 184 185 static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch, 186 int *qerr) 187 { 188 struct sfq_sched_data *q = qdisc_priv(sch); 189 struct tcf_result res; 190 int result; 191 192 if (TC_H_MAJ(skb->priority) == sch->handle && 193 TC_H_MIN(skb->priority) > 0 && 194 TC_H_MIN(skb->priority) <= q->divisor) 195 return TC_H_MIN(skb->priority); 196 197 if (!q->filter_list) { 198 skb_flow_dissect(skb, &sfq_skb_cb(skb)->keys); 199 return sfq_hash(q, skb) + 1; 200 } 201 202 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 203 result = tc_classify(skb, q->filter_list, &res); 204 if (result >= 0) { 205 #ifdef CONFIG_NET_CLS_ACT 206 switch (result) { 207 case TC_ACT_STOLEN: 208 case TC_ACT_QUEUED: 209 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 210 case TC_ACT_SHOT: 211 return 0; 212 } 213 #endif 214 if (TC_H_MIN(res.classid) <= q->divisor) 215 return TC_H_MIN(res.classid); 216 } 217 return 0; 218 } 219 220 /* 221 * x : slot number [0 .. SFQ_MAX_FLOWS - 1] 222 */ 223 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x) 224 { 225 sfq_index p, n; 226 struct sfq_slot *slot = &q->slots[x]; 227 int qlen = slot->qlen; 228 229 p = qlen + SFQ_MAX_FLOWS; 230 n = q->dep[qlen].next; 231 232 slot->dep.next = n; 233 slot->dep.prev = p; 234 235 q->dep[qlen].next = x; /* sfq_dep_head(q, p)->next = x */ 236 sfq_dep_head(q, n)->prev = x; 237 } 238 239 #define sfq_unlink(q, x, n, p) \ 240 do { \ 241 n = q->slots[x].dep.next; \ 242 p = q->slots[x].dep.prev; \ 243 sfq_dep_head(q, p)->next = n; \ 244 sfq_dep_head(q, n)->prev = p; \ 245 } while (0) 246 247 248 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x) 249 { 250 sfq_index p, n; 251 int d; 252 253 sfq_unlink(q, x, n, p); 254 255 d = q->slots[x].qlen--; 256 if (n == p && q->cur_depth == d) 257 q->cur_depth--; 258 sfq_link(q, x); 259 } 260 261 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x) 262 { 263 sfq_index p, n; 264 int d; 265 266 sfq_unlink(q, x, n, p); 267 268 d = ++q->slots[x].qlen; 269 if (q->cur_depth < d) 270 q->cur_depth = d; 271 sfq_link(q, x); 272 } 273 274 /* helper functions : might be changed when/if skb use a standard list_head */ 275 276 /* remove one skb from tail of slot queue */ 277 static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot) 278 { 279 struct sk_buff *skb = slot->skblist_prev; 280 281 slot->skblist_prev = skb->prev; 282 skb->prev->next = (struct sk_buff *)slot; 283 skb->next = skb->prev = NULL; 284 return skb; 285 } 286 287 /* remove one skb from head of slot queue */ 288 static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot) 289 { 290 struct sk_buff *skb = slot->skblist_next; 291 292 slot->skblist_next = skb->next; 293 skb->next->prev = (struct sk_buff *)slot; 294 skb->next = skb->prev = NULL; 295 return skb; 296 } 297 298 static inline void slot_queue_init(struct sfq_slot *slot) 299 { 300 memset(slot, 0, sizeof(*slot)); 301 slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot; 302 } 303 304 /* add skb to slot queue (tail add) */ 305 static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb) 306 { 307 skb->prev = slot->skblist_prev; 308 skb->next = (struct sk_buff *)slot; 309 slot->skblist_prev->next = skb; 310 slot->skblist_prev = skb; 311 } 312 313 #define slot_queue_walk(slot, skb) \ 314 for (skb = slot->skblist_next; \ 315 skb != (struct sk_buff *)slot; \ 316 skb = skb->next) 317 318 static unsigned int sfq_drop(struct Qdisc *sch) 319 { 320 struct sfq_sched_data *q = qdisc_priv(sch); 321 sfq_index x, d = q->cur_depth; 322 struct sk_buff *skb; 323 unsigned int len; 324 struct sfq_slot *slot; 325 326 /* Queue is full! Find the longest slot and drop tail packet from it */ 327 if (d > 1) { 328 x = q->dep[d].next; 329 slot = &q->slots[x]; 330 drop: 331 skb = q->headdrop ? slot_dequeue_head(slot) : slot_dequeue_tail(slot); 332 len = qdisc_pkt_len(skb); 333 slot->backlog -= len; 334 sfq_dec(q, x); 335 kfree_skb(skb); 336 sch->q.qlen--; 337 sch->qstats.drops++; 338 sch->qstats.backlog -= len; 339 return len; 340 } 341 342 if (d == 1) { 343 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */ 344 x = q->tail->next; 345 slot = &q->slots[x]; 346 q->tail->next = slot->next; 347 q->ht[slot->hash] = SFQ_EMPTY_SLOT; 348 goto drop; 349 } 350 351 return 0; 352 } 353 354 /* Is ECN parameter configured */ 355 static int sfq_prob_mark(const struct sfq_sched_data *q) 356 { 357 return q->flags & TC_RED_ECN; 358 } 359 360 /* Should packets over max threshold just be marked */ 361 static int sfq_hard_mark(const struct sfq_sched_data *q) 362 { 363 return (q->flags & (TC_RED_ECN | TC_RED_HARDDROP)) == TC_RED_ECN; 364 } 365 366 static int sfq_headdrop(const struct sfq_sched_data *q) 367 { 368 return q->headdrop; 369 } 370 371 static int 372 sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch) 373 { 374 struct sfq_sched_data *q = qdisc_priv(sch); 375 unsigned int hash; 376 sfq_index x, qlen; 377 struct sfq_slot *slot; 378 int uninitialized_var(ret); 379 struct sk_buff *head; 380 int delta; 381 382 hash = sfq_classify(skb, sch, &ret); 383 if (hash == 0) { 384 if (ret & __NET_XMIT_BYPASS) 385 sch->qstats.drops++; 386 kfree_skb(skb); 387 return ret; 388 } 389 hash--; 390 391 x = q->ht[hash]; 392 slot = &q->slots[x]; 393 if (x == SFQ_EMPTY_SLOT) { 394 x = q->dep[0].next; /* get a free slot */ 395 if (x >= SFQ_MAX_FLOWS) 396 return qdisc_drop(skb, sch); 397 q->ht[hash] = x; 398 slot = &q->slots[x]; 399 slot->hash = hash; 400 slot->backlog = 0; /* should already be 0 anyway... */ 401 red_set_vars(&slot->vars); 402 goto enqueue; 403 } 404 if (q->red_parms) { 405 slot->vars.qavg = red_calc_qavg_no_idle_time(q->red_parms, 406 &slot->vars, 407 slot->backlog); 408 switch (red_action(q->red_parms, 409 &slot->vars, 410 slot->vars.qavg)) { 411 case RED_DONT_MARK: 412 break; 413 414 case RED_PROB_MARK: 415 sch->qstats.overlimits++; 416 if (sfq_prob_mark(q)) { 417 /* We know we have at least one packet in queue */ 418 if (sfq_headdrop(q) && 419 INET_ECN_set_ce(slot->skblist_next)) { 420 q->stats.prob_mark_head++; 421 break; 422 } 423 if (INET_ECN_set_ce(skb)) { 424 q->stats.prob_mark++; 425 break; 426 } 427 } 428 q->stats.prob_drop++; 429 goto congestion_drop; 430 431 case RED_HARD_MARK: 432 sch->qstats.overlimits++; 433 if (sfq_hard_mark(q)) { 434 /* We know we have at least one packet in queue */ 435 if (sfq_headdrop(q) && 436 INET_ECN_set_ce(slot->skblist_next)) { 437 q->stats.forced_mark_head++; 438 break; 439 } 440 if (INET_ECN_set_ce(skb)) { 441 q->stats.forced_mark++; 442 break; 443 } 444 } 445 q->stats.forced_drop++; 446 goto congestion_drop; 447 } 448 } 449 450 if (slot->qlen >= q->maxdepth) { 451 congestion_drop: 452 if (!sfq_headdrop(q)) 453 return qdisc_drop(skb, sch); 454 455 /* We know we have at least one packet in queue */ 456 head = slot_dequeue_head(slot); 457 delta = qdisc_pkt_len(head) - qdisc_pkt_len(skb); 458 sch->qstats.backlog -= delta; 459 slot->backlog -= delta; 460 qdisc_drop(head, sch); 461 462 slot_queue_add(slot, skb); 463 return NET_XMIT_CN; 464 } 465 466 enqueue: 467 sch->qstats.backlog += qdisc_pkt_len(skb); 468 slot->backlog += qdisc_pkt_len(skb); 469 slot_queue_add(slot, skb); 470 sfq_inc(q, x); 471 if (slot->qlen == 1) { /* The flow is new */ 472 if (q->tail == NULL) { /* It is the first flow */ 473 slot->next = x; 474 } else { 475 slot->next = q->tail->next; 476 q->tail->next = x; 477 } 478 /* We put this flow at the end of our flow list. 479 * This might sound unfair for a new flow to wait after old ones, 480 * but we could endup servicing new flows only, and freeze old ones. 481 */ 482 q->tail = slot; 483 /* We could use a bigger initial quantum for new flows */ 484 slot->allot = q->scaled_quantum; 485 } 486 if (++sch->q.qlen <= q->limit) 487 return NET_XMIT_SUCCESS; 488 489 qlen = slot->qlen; 490 sfq_drop(sch); 491 /* Return Congestion Notification only if we dropped a packet 492 * from this flow. 493 */ 494 if (qlen != slot->qlen) 495 return NET_XMIT_CN; 496 497 /* As we dropped a packet, better let upper stack know this */ 498 qdisc_tree_decrease_qlen(sch, 1); 499 return NET_XMIT_SUCCESS; 500 } 501 502 static struct sk_buff * 503 sfq_dequeue(struct Qdisc *sch) 504 { 505 struct sfq_sched_data *q = qdisc_priv(sch); 506 struct sk_buff *skb; 507 sfq_index a, next_a; 508 struct sfq_slot *slot; 509 510 /* No active slots */ 511 if (q->tail == NULL) 512 return NULL; 513 514 next_slot: 515 a = q->tail->next; 516 slot = &q->slots[a]; 517 if (slot->allot <= 0) { 518 q->tail = slot; 519 slot->allot += q->scaled_quantum; 520 goto next_slot; 521 } 522 skb = slot_dequeue_head(slot); 523 sfq_dec(q, a); 524 qdisc_bstats_update(sch, skb); 525 sch->q.qlen--; 526 sch->qstats.backlog -= qdisc_pkt_len(skb); 527 slot->backlog -= qdisc_pkt_len(skb); 528 /* Is the slot empty? */ 529 if (slot->qlen == 0) { 530 q->ht[slot->hash] = SFQ_EMPTY_SLOT; 531 next_a = slot->next; 532 if (a == next_a) { 533 q->tail = NULL; /* no more active slots */ 534 return skb; 535 } 536 q->tail->next = next_a; 537 } else { 538 slot->allot -= SFQ_ALLOT_SIZE(qdisc_pkt_len(skb)); 539 } 540 return skb; 541 } 542 543 static void 544 sfq_reset(struct Qdisc *sch) 545 { 546 struct sk_buff *skb; 547 548 while ((skb = sfq_dequeue(sch)) != NULL) 549 kfree_skb(skb); 550 } 551 552 /* 553 * When q->perturbation is changed, we rehash all queued skbs 554 * to avoid OOO (Out Of Order) effects. 555 * We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change 556 * counters. 557 */ 558 static void sfq_rehash(struct Qdisc *sch) 559 { 560 struct sfq_sched_data *q = qdisc_priv(sch); 561 struct sk_buff *skb; 562 int i; 563 struct sfq_slot *slot; 564 struct sk_buff_head list; 565 int dropped = 0; 566 567 __skb_queue_head_init(&list); 568 569 for (i = 0; i < q->maxflows; i++) { 570 slot = &q->slots[i]; 571 if (!slot->qlen) 572 continue; 573 while (slot->qlen) { 574 skb = slot_dequeue_head(slot); 575 sfq_dec(q, i); 576 __skb_queue_tail(&list, skb); 577 } 578 slot->backlog = 0; 579 red_set_vars(&slot->vars); 580 q->ht[slot->hash] = SFQ_EMPTY_SLOT; 581 } 582 q->tail = NULL; 583 584 while ((skb = __skb_dequeue(&list)) != NULL) { 585 unsigned int hash = sfq_hash(q, skb); 586 sfq_index x = q->ht[hash]; 587 588 slot = &q->slots[x]; 589 if (x == SFQ_EMPTY_SLOT) { 590 x = q->dep[0].next; /* get a free slot */ 591 if (x >= SFQ_MAX_FLOWS) { 592 drop: sch->qstats.backlog -= qdisc_pkt_len(skb); 593 kfree_skb(skb); 594 dropped++; 595 continue; 596 } 597 q->ht[hash] = x; 598 slot = &q->slots[x]; 599 slot->hash = hash; 600 } 601 if (slot->qlen >= q->maxdepth) 602 goto drop; 603 slot_queue_add(slot, skb); 604 if (q->red_parms) 605 slot->vars.qavg = red_calc_qavg(q->red_parms, 606 &slot->vars, 607 slot->backlog); 608 slot->backlog += qdisc_pkt_len(skb); 609 sfq_inc(q, x); 610 if (slot->qlen == 1) { /* The flow is new */ 611 if (q->tail == NULL) { /* It is the first flow */ 612 slot->next = x; 613 } else { 614 slot->next = q->tail->next; 615 q->tail->next = x; 616 } 617 q->tail = slot; 618 slot->allot = q->scaled_quantum; 619 } 620 } 621 sch->q.qlen -= dropped; 622 qdisc_tree_decrease_qlen(sch, dropped); 623 } 624 625 static void sfq_perturbation(unsigned long arg) 626 { 627 struct Qdisc *sch = (struct Qdisc *)arg; 628 struct sfq_sched_data *q = qdisc_priv(sch); 629 spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch)); 630 631 spin_lock(root_lock); 632 q->perturbation = prandom_u32(); 633 if (!q->filter_list && q->tail) 634 sfq_rehash(sch); 635 spin_unlock(root_lock); 636 637 if (q->perturb_period) 638 mod_timer(&q->perturb_timer, jiffies + q->perturb_period); 639 } 640 641 static int sfq_change(struct Qdisc *sch, struct nlattr *opt) 642 { 643 struct sfq_sched_data *q = qdisc_priv(sch); 644 struct tc_sfq_qopt *ctl = nla_data(opt); 645 struct tc_sfq_qopt_v1 *ctl_v1 = NULL; 646 unsigned int qlen; 647 struct red_parms *p = NULL; 648 649 if (opt->nla_len < nla_attr_size(sizeof(*ctl))) 650 return -EINVAL; 651 if (opt->nla_len >= nla_attr_size(sizeof(*ctl_v1))) 652 ctl_v1 = nla_data(opt); 653 if (ctl->divisor && 654 (!is_power_of_2(ctl->divisor) || ctl->divisor > 65536)) 655 return -EINVAL; 656 if (ctl_v1 && ctl_v1->qth_min) { 657 p = kmalloc(sizeof(*p), GFP_KERNEL); 658 if (!p) 659 return -ENOMEM; 660 } 661 sch_tree_lock(sch); 662 if (ctl->quantum) { 663 q->quantum = ctl->quantum; 664 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum); 665 } 666 q->perturb_period = ctl->perturb_period * HZ; 667 if (ctl->flows) 668 q->maxflows = min_t(u32, ctl->flows, SFQ_MAX_FLOWS); 669 if (ctl->divisor) { 670 q->divisor = ctl->divisor; 671 q->maxflows = min_t(u32, q->maxflows, q->divisor); 672 } 673 if (ctl_v1) { 674 if (ctl_v1->depth) 675 q->maxdepth = min_t(u32, ctl_v1->depth, SFQ_MAX_DEPTH); 676 if (p) { 677 swap(q->red_parms, p); 678 red_set_parms(q->red_parms, 679 ctl_v1->qth_min, ctl_v1->qth_max, 680 ctl_v1->Wlog, 681 ctl_v1->Plog, ctl_v1->Scell_log, 682 NULL, 683 ctl_v1->max_P); 684 } 685 q->flags = ctl_v1->flags; 686 q->headdrop = ctl_v1->headdrop; 687 } 688 if (ctl->limit) { 689 q->limit = min_t(u32, ctl->limit, q->maxdepth * q->maxflows); 690 q->maxflows = min_t(u32, q->maxflows, q->limit); 691 } 692 693 qlen = sch->q.qlen; 694 while (sch->q.qlen > q->limit) 695 sfq_drop(sch); 696 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen); 697 698 del_timer(&q->perturb_timer); 699 if (q->perturb_period) { 700 mod_timer(&q->perturb_timer, jiffies + q->perturb_period); 701 q->perturbation = prandom_u32(); 702 } 703 sch_tree_unlock(sch); 704 kfree(p); 705 return 0; 706 } 707 708 static void *sfq_alloc(size_t sz) 709 { 710 void *ptr = kmalloc(sz, GFP_KERNEL | __GFP_NOWARN); 711 712 if (!ptr) 713 ptr = vmalloc(sz); 714 return ptr; 715 } 716 717 static void sfq_free(void *addr) 718 { 719 if (addr) { 720 if (is_vmalloc_addr(addr)) 721 vfree(addr); 722 else 723 kfree(addr); 724 } 725 } 726 727 static void sfq_destroy(struct Qdisc *sch) 728 { 729 struct sfq_sched_data *q = qdisc_priv(sch); 730 731 tcf_destroy_chain(&q->filter_list); 732 q->perturb_period = 0; 733 del_timer_sync(&q->perturb_timer); 734 sfq_free(q->ht); 735 sfq_free(q->slots); 736 kfree(q->red_parms); 737 } 738 739 static int sfq_init(struct Qdisc *sch, struct nlattr *opt) 740 { 741 struct sfq_sched_data *q = qdisc_priv(sch); 742 int i; 743 744 q->perturb_timer.function = sfq_perturbation; 745 q->perturb_timer.data = (unsigned long)sch; 746 init_timer_deferrable(&q->perturb_timer); 747 748 for (i = 0; i < SFQ_MAX_DEPTH + 1; i++) { 749 q->dep[i].next = i + SFQ_MAX_FLOWS; 750 q->dep[i].prev = i + SFQ_MAX_FLOWS; 751 } 752 753 q->limit = SFQ_MAX_DEPTH; 754 q->maxdepth = SFQ_MAX_DEPTH; 755 q->cur_depth = 0; 756 q->tail = NULL; 757 q->divisor = SFQ_DEFAULT_HASH_DIVISOR; 758 q->maxflows = SFQ_DEFAULT_FLOWS; 759 q->quantum = psched_mtu(qdisc_dev(sch)); 760 q->scaled_quantum = SFQ_ALLOT_SIZE(q->quantum); 761 q->perturb_period = 0; 762 q->perturbation = prandom_u32(); 763 764 if (opt) { 765 int err = sfq_change(sch, opt); 766 if (err) 767 return err; 768 } 769 770 q->ht = sfq_alloc(sizeof(q->ht[0]) * q->divisor); 771 q->slots = sfq_alloc(sizeof(q->slots[0]) * q->maxflows); 772 if (!q->ht || !q->slots) { 773 sfq_destroy(sch); 774 return -ENOMEM; 775 } 776 for (i = 0; i < q->divisor; i++) 777 q->ht[i] = SFQ_EMPTY_SLOT; 778 779 for (i = 0; i < q->maxflows; i++) { 780 slot_queue_init(&q->slots[i]); 781 sfq_link(q, i); 782 } 783 if (q->limit >= 1) 784 sch->flags |= TCQ_F_CAN_BYPASS; 785 else 786 sch->flags &= ~TCQ_F_CAN_BYPASS; 787 return 0; 788 } 789 790 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb) 791 { 792 struct sfq_sched_data *q = qdisc_priv(sch); 793 unsigned char *b = skb_tail_pointer(skb); 794 struct tc_sfq_qopt_v1 opt; 795 struct red_parms *p = q->red_parms; 796 797 memset(&opt, 0, sizeof(opt)); 798 opt.v0.quantum = q->quantum; 799 opt.v0.perturb_period = q->perturb_period / HZ; 800 opt.v0.limit = q->limit; 801 opt.v0.divisor = q->divisor; 802 opt.v0.flows = q->maxflows; 803 opt.depth = q->maxdepth; 804 opt.headdrop = q->headdrop; 805 806 if (p) { 807 opt.qth_min = p->qth_min >> p->Wlog; 808 opt.qth_max = p->qth_max >> p->Wlog; 809 opt.Wlog = p->Wlog; 810 opt.Plog = p->Plog; 811 opt.Scell_log = p->Scell_log; 812 opt.max_P = p->max_P; 813 } 814 memcpy(&opt.stats, &q->stats, sizeof(opt.stats)); 815 opt.flags = q->flags; 816 817 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 818 goto nla_put_failure; 819 820 return skb->len; 821 822 nla_put_failure: 823 nlmsg_trim(skb, b); 824 return -1; 825 } 826 827 static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg) 828 { 829 return NULL; 830 } 831 832 static unsigned long sfq_get(struct Qdisc *sch, u32 classid) 833 { 834 return 0; 835 } 836 837 static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent, 838 u32 classid) 839 { 840 /* we cannot bypass queue discipline anymore */ 841 sch->flags &= ~TCQ_F_CAN_BYPASS; 842 return 0; 843 } 844 845 static void sfq_put(struct Qdisc *q, unsigned long cl) 846 { 847 } 848 849 static struct tcf_proto **sfq_find_tcf(struct Qdisc *sch, unsigned long cl) 850 { 851 struct sfq_sched_data *q = qdisc_priv(sch); 852 853 if (cl) 854 return NULL; 855 return &q->filter_list; 856 } 857 858 static int sfq_dump_class(struct Qdisc *sch, unsigned long cl, 859 struct sk_buff *skb, struct tcmsg *tcm) 860 { 861 tcm->tcm_handle |= TC_H_MIN(cl); 862 return 0; 863 } 864 865 static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl, 866 struct gnet_dump *d) 867 { 868 struct sfq_sched_data *q = qdisc_priv(sch); 869 sfq_index idx = q->ht[cl - 1]; 870 struct gnet_stats_queue qs = { 0 }; 871 struct tc_sfq_xstats xstats = { 0 }; 872 873 if (idx != SFQ_EMPTY_SLOT) { 874 const struct sfq_slot *slot = &q->slots[idx]; 875 876 xstats.allot = slot->allot << SFQ_ALLOT_SHIFT; 877 qs.qlen = slot->qlen; 878 qs.backlog = slot->backlog; 879 } 880 if (gnet_stats_copy_queue(d, &qs) < 0) 881 return -1; 882 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 883 } 884 885 static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 886 { 887 struct sfq_sched_data *q = qdisc_priv(sch); 888 unsigned int i; 889 890 if (arg->stop) 891 return; 892 893 for (i = 0; i < q->divisor; i++) { 894 if (q->ht[i] == SFQ_EMPTY_SLOT || 895 arg->count < arg->skip) { 896 arg->count++; 897 continue; 898 } 899 if (arg->fn(sch, i + 1, arg) < 0) { 900 arg->stop = 1; 901 break; 902 } 903 arg->count++; 904 } 905 } 906 907 static const struct Qdisc_class_ops sfq_class_ops = { 908 .leaf = sfq_leaf, 909 .get = sfq_get, 910 .put = sfq_put, 911 .tcf_chain = sfq_find_tcf, 912 .bind_tcf = sfq_bind, 913 .unbind_tcf = sfq_put, 914 .dump = sfq_dump_class, 915 .dump_stats = sfq_dump_class_stats, 916 .walk = sfq_walk, 917 }; 918 919 static struct Qdisc_ops sfq_qdisc_ops __read_mostly = { 920 .cl_ops = &sfq_class_ops, 921 .id = "sfq", 922 .priv_size = sizeof(struct sfq_sched_data), 923 .enqueue = sfq_enqueue, 924 .dequeue = sfq_dequeue, 925 .peek = qdisc_peek_dequeued, 926 .drop = sfq_drop, 927 .init = sfq_init, 928 .reset = sfq_reset, 929 .destroy = sfq_destroy, 930 .change = NULL, 931 .dump = sfq_dump, 932 .owner = THIS_MODULE, 933 }; 934 935 static int __init sfq_module_init(void) 936 { 937 return register_qdisc(&sfq_qdisc_ops); 938 } 939 static void __exit sfq_module_exit(void) 940 { 941 unregister_qdisc(&sfq_qdisc_ops); 942 } 943 module_init(sfq_module_init) 944 module_exit(sfq_module_exit) 945 MODULE_LICENSE("GPL"); 946