xref: /openbmc/linux/net/sched/sch_sfq.c (revision 1da177e4)
1 /*
2  * net/sched/sch_sfq.c	Stochastic Fairness Queueing discipline.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10  */
11 
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <asm/uaccess.h>
15 #include <asm/system.h>
16 #include <linux/bitops.h>
17 #include <linux/types.h>
18 #include <linux/kernel.h>
19 #include <linux/jiffies.h>
20 #include <linux/string.h>
21 #include <linux/mm.h>
22 #include <linux/socket.h>
23 #include <linux/sockios.h>
24 #include <linux/in.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/if_ether.h>
28 #include <linux/inet.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/notifier.h>
32 #include <linux/init.h>
33 #include <net/ip.h>
34 #include <linux/ipv6.h>
35 #include <net/route.h>
36 #include <linux/skbuff.h>
37 #include <net/sock.h>
38 #include <net/pkt_sched.h>
39 
40 
41 /*	Stochastic Fairness Queuing algorithm.
42 	=======================================
43 
44 	Source:
45 	Paul E. McKenney "Stochastic Fairness Queuing",
46 	IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
47 
48 	Paul E. McKenney "Stochastic Fairness Queuing",
49 	"Interworking: Research and Experience", v.2, 1991, p.113-131.
50 
51 
52 	See also:
53 	M. Shreedhar and George Varghese "Efficient Fair
54 	Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
55 
56 
57 	This is not the thing that is usually called (W)FQ nowadays.
58 	It does not use any timestamp mechanism, but instead
59 	processes queues in round-robin order.
60 
61 	ADVANTAGE:
62 
63 	- It is very cheap. Both CPU and memory requirements are minimal.
64 
65 	DRAWBACKS:
66 
67 	- "Stochastic" -> It is not 100% fair.
68 	When hash collisions occur, several flows are considered as one.
69 
70 	- "Round-robin" -> It introduces larger delays than virtual clock
71 	based schemes, and should not be used for isolating interactive
72 	traffic	from non-interactive. It means, that this scheduler
73 	should be used as leaf of CBQ or P3, which put interactive traffic
74 	to higher priority band.
75 
76 	We still need true WFQ for top level CSZ, but using WFQ
77 	for the best effort traffic is absolutely pointless:
78 	SFQ is superior for this purpose.
79 
80 	IMPLEMENTATION:
81 	This implementation limits maximal queue length to 128;
82 	maximal mtu to 2^15-1; number of hash buckets to 1024.
83 	The only goal of this restrictions was that all data
84 	fit into one 4K page :-). Struct sfq_sched_data is
85 	organized in anti-cache manner: all the data for a bucket
86 	are scattered over different locations. This is not good,
87 	but it allowed me to put it into 4K.
88 
89 	It is easy to increase these values, but not in flight.  */
90 
91 #define SFQ_DEPTH		128
92 #define SFQ_HASH_DIVISOR	1024
93 
94 /* This type should contain at least SFQ_DEPTH*2 values */
95 typedef unsigned char sfq_index;
96 
97 struct sfq_head
98 {
99 	sfq_index	next;
100 	sfq_index	prev;
101 };
102 
103 struct sfq_sched_data
104 {
105 /* Parameters */
106 	int		perturb_period;
107 	unsigned	quantum;	/* Allotment per round: MUST BE >= MTU */
108 	int		limit;
109 
110 /* Variables */
111 	struct timer_list perturb_timer;
112 	int		perturbation;
113 	sfq_index	tail;		/* Index of current slot in round */
114 	sfq_index	max_depth;	/* Maximal depth */
115 
116 	sfq_index	ht[SFQ_HASH_DIVISOR];	/* Hash table */
117 	sfq_index	next[SFQ_DEPTH];	/* Active slots link */
118 	short		allot[SFQ_DEPTH];	/* Current allotment per slot */
119 	unsigned short	hash[SFQ_DEPTH];	/* Hash value indexed by slots */
120 	struct sk_buff_head	qs[SFQ_DEPTH];		/* Slot queue */
121 	struct sfq_head	dep[SFQ_DEPTH*2];	/* Linked list of slots, indexed by depth */
122 };
123 
124 static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
125 {
126 	int pert = q->perturbation;
127 
128 	/* Have we any rotation primitives? If not, WHY? */
129 	h ^= (h1<<pert) ^ (h1>>(0x1F - pert));
130 	h ^= h>>10;
131 	return h & 0x3FF;
132 }
133 
134 static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
135 {
136 	u32 h, h2;
137 
138 	switch (skb->protocol) {
139 	case __constant_htons(ETH_P_IP):
140 	{
141 		struct iphdr *iph = skb->nh.iph;
142 		h = iph->daddr;
143 		h2 = iph->saddr^iph->protocol;
144 		if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
145 		    (iph->protocol == IPPROTO_TCP ||
146 		     iph->protocol == IPPROTO_UDP ||
147 		     iph->protocol == IPPROTO_ESP))
148 			h2 ^= *(((u32*)iph) + iph->ihl);
149 		break;
150 	}
151 	case __constant_htons(ETH_P_IPV6):
152 	{
153 		struct ipv6hdr *iph = skb->nh.ipv6h;
154 		h = iph->daddr.s6_addr32[3];
155 		h2 = iph->saddr.s6_addr32[3]^iph->nexthdr;
156 		if (iph->nexthdr == IPPROTO_TCP ||
157 		    iph->nexthdr == IPPROTO_UDP ||
158 		    iph->nexthdr == IPPROTO_ESP)
159 			h2 ^= *(u32*)&iph[1];
160 		break;
161 	}
162 	default:
163 		h = (u32)(unsigned long)skb->dst^skb->protocol;
164 		h2 = (u32)(unsigned long)skb->sk;
165 	}
166 	return sfq_fold_hash(q, h, h2);
167 }
168 
169 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
170 {
171 	sfq_index p, n;
172 	int d = q->qs[x].qlen + SFQ_DEPTH;
173 
174 	p = d;
175 	n = q->dep[d].next;
176 	q->dep[x].next = n;
177 	q->dep[x].prev = p;
178 	q->dep[p].next = q->dep[n].prev = x;
179 }
180 
181 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
182 {
183 	sfq_index p, n;
184 
185 	n = q->dep[x].next;
186 	p = q->dep[x].prev;
187 	q->dep[p].next = n;
188 	q->dep[n].prev = p;
189 
190 	if (n == p && q->max_depth == q->qs[x].qlen + 1)
191 		q->max_depth--;
192 
193 	sfq_link(q, x);
194 }
195 
196 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
197 {
198 	sfq_index p, n;
199 	int d;
200 
201 	n = q->dep[x].next;
202 	p = q->dep[x].prev;
203 	q->dep[p].next = n;
204 	q->dep[n].prev = p;
205 	d = q->qs[x].qlen;
206 	if (q->max_depth < d)
207 		q->max_depth = d;
208 
209 	sfq_link(q, x);
210 }
211 
212 static unsigned int sfq_drop(struct Qdisc *sch)
213 {
214 	struct sfq_sched_data *q = qdisc_priv(sch);
215 	sfq_index d = q->max_depth;
216 	struct sk_buff *skb;
217 	unsigned int len;
218 
219 	/* Queue is full! Find the longest slot and
220 	   drop a packet from it */
221 
222 	if (d > 1) {
223 		sfq_index x = q->dep[d+SFQ_DEPTH].next;
224 		skb = q->qs[x].prev;
225 		len = skb->len;
226 		__skb_unlink(skb, &q->qs[x]);
227 		kfree_skb(skb);
228 		sfq_dec(q, x);
229 		sch->q.qlen--;
230 		sch->qstats.drops++;
231 		return len;
232 	}
233 
234 	if (d == 1) {
235 		/* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
236 		d = q->next[q->tail];
237 		q->next[q->tail] = q->next[d];
238 		q->allot[q->next[d]] += q->quantum;
239 		skb = q->qs[d].prev;
240 		len = skb->len;
241 		__skb_unlink(skb, &q->qs[d]);
242 		kfree_skb(skb);
243 		sfq_dec(q, d);
244 		sch->q.qlen--;
245 		q->ht[q->hash[d]] = SFQ_DEPTH;
246 		sch->qstats.drops++;
247 		return len;
248 	}
249 
250 	return 0;
251 }
252 
253 static int
254 sfq_enqueue(struct sk_buff *skb, struct Qdisc* sch)
255 {
256 	struct sfq_sched_data *q = qdisc_priv(sch);
257 	unsigned hash = sfq_hash(q, skb);
258 	sfq_index x;
259 
260 	x = q->ht[hash];
261 	if (x == SFQ_DEPTH) {
262 		q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
263 		q->hash[x] = hash;
264 	}
265 	__skb_queue_tail(&q->qs[x], skb);
266 	sfq_inc(q, x);
267 	if (q->qs[x].qlen == 1) {		/* The flow is new */
268 		if (q->tail == SFQ_DEPTH) {	/* It is the first flow */
269 			q->tail = x;
270 			q->next[x] = x;
271 			q->allot[x] = q->quantum;
272 		} else {
273 			q->next[x] = q->next[q->tail];
274 			q->next[q->tail] = x;
275 			q->tail = x;
276 		}
277 	}
278 	if (++sch->q.qlen < q->limit-1) {
279 		sch->bstats.bytes += skb->len;
280 		sch->bstats.packets++;
281 		return 0;
282 	}
283 
284 	sfq_drop(sch);
285 	return NET_XMIT_CN;
286 }
287 
288 static int
289 sfq_requeue(struct sk_buff *skb, struct Qdisc* sch)
290 {
291 	struct sfq_sched_data *q = qdisc_priv(sch);
292 	unsigned hash = sfq_hash(q, skb);
293 	sfq_index x;
294 
295 	x = q->ht[hash];
296 	if (x == SFQ_DEPTH) {
297 		q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
298 		q->hash[x] = hash;
299 	}
300 	__skb_queue_head(&q->qs[x], skb);
301 	sfq_inc(q, x);
302 	if (q->qs[x].qlen == 1) {		/* The flow is new */
303 		if (q->tail == SFQ_DEPTH) {	/* It is the first flow */
304 			q->tail = x;
305 			q->next[x] = x;
306 			q->allot[x] = q->quantum;
307 		} else {
308 			q->next[x] = q->next[q->tail];
309 			q->next[q->tail] = x;
310 			q->tail = x;
311 		}
312 	}
313 	if (++sch->q.qlen < q->limit - 1) {
314 		sch->qstats.requeues++;
315 		return 0;
316 	}
317 
318 	sch->qstats.drops++;
319 	sfq_drop(sch);
320 	return NET_XMIT_CN;
321 }
322 
323 
324 
325 
326 static struct sk_buff *
327 sfq_dequeue(struct Qdisc* sch)
328 {
329 	struct sfq_sched_data *q = qdisc_priv(sch);
330 	struct sk_buff *skb;
331 	sfq_index a, old_a;
332 
333 	/* No active slots */
334 	if (q->tail == SFQ_DEPTH)
335 		return NULL;
336 
337 	a = old_a = q->next[q->tail];
338 
339 	/* Grab packet */
340 	skb = __skb_dequeue(&q->qs[a]);
341 	sfq_dec(q, a);
342 	sch->q.qlen--;
343 
344 	/* Is the slot empty? */
345 	if (q->qs[a].qlen == 0) {
346 		q->ht[q->hash[a]] = SFQ_DEPTH;
347 		a = q->next[a];
348 		if (a == old_a) {
349 			q->tail = SFQ_DEPTH;
350 			return skb;
351 		}
352 		q->next[q->tail] = a;
353 		q->allot[a] += q->quantum;
354 	} else if ((q->allot[a] -= skb->len) <= 0) {
355 		q->tail = a;
356 		a = q->next[a];
357 		q->allot[a] += q->quantum;
358 	}
359 	return skb;
360 }
361 
362 static void
363 sfq_reset(struct Qdisc* sch)
364 {
365 	struct sk_buff *skb;
366 
367 	while ((skb = sfq_dequeue(sch)) != NULL)
368 		kfree_skb(skb);
369 }
370 
371 static void sfq_perturbation(unsigned long arg)
372 {
373 	struct Qdisc *sch = (struct Qdisc*)arg;
374 	struct sfq_sched_data *q = qdisc_priv(sch);
375 
376 	q->perturbation = net_random()&0x1F;
377 
378 	if (q->perturb_period) {
379 		q->perturb_timer.expires = jiffies + q->perturb_period;
380 		add_timer(&q->perturb_timer);
381 	}
382 }
383 
384 static int sfq_change(struct Qdisc *sch, struct rtattr *opt)
385 {
386 	struct sfq_sched_data *q = qdisc_priv(sch);
387 	struct tc_sfq_qopt *ctl = RTA_DATA(opt);
388 
389 	if (opt->rta_len < RTA_LENGTH(sizeof(*ctl)))
390 		return -EINVAL;
391 
392 	sch_tree_lock(sch);
393 	q->quantum = ctl->quantum ? : psched_mtu(sch->dev);
394 	q->perturb_period = ctl->perturb_period*HZ;
395 	if (ctl->limit)
396 		q->limit = min_t(u32, ctl->limit, SFQ_DEPTH);
397 
398 	while (sch->q.qlen >= q->limit-1)
399 		sfq_drop(sch);
400 
401 	del_timer(&q->perturb_timer);
402 	if (q->perturb_period) {
403 		q->perturb_timer.expires = jiffies + q->perturb_period;
404 		add_timer(&q->perturb_timer);
405 	}
406 	sch_tree_unlock(sch);
407 	return 0;
408 }
409 
410 static int sfq_init(struct Qdisc *sch, struct rtattr *opt)
411 {
412 	struct sfq_sched_data *q = qdisc_priv(sch);
413 	int i;
414 
415 	init_timer(&q->perturb_timer);
416 	q->perturb_timer.data = (unsigned long)sch;
417 	q->perturb_timer.function = sfq_perturbation;
418 
419 	for (i=0; i<SFQ_HASH_DIVISOR; i++)
420 		q->ht[i] = SFQ_DEPTH;
421 	for (i=0; i<SFQ_DEPTH; i++) {
422 		skb_queue_head_init(&q->qs[i]);
423 		q->dep[i+SFQ_DEPTH].next = i+SFQ_DEPTH;
424 		q->dep[i+SFQ_DEPTH].prev = i+SFQ_DEPTH;
425 	}
426 	q->limit = SFQ_DEPTH;
427 	q->max_depth = 0;
428 	q->tail = SFQ_DEPTH;
429 	if (opt == NULL) {
430 		q->quantum = psched_mtu(sch->dev);
431 		q->perturb_period = 0;
432 	} else {
433 		int err = sfq_change(sch, opt);
434 		if (err)
435 			return err;
436 	}
437 	for (i=0; i<SFQ_DEPTH; i++)
438 		sfq_link(q, i);
439 	return 0;
440 }
441 
442 static void sfq_destroy(struct Qdisc *sch)
443 {
444 	struct sfq_sched_data *q = qdisc_priv(sch);
445 	del_timer(&q->perturb_timer);
446 }
447 
448 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
449 {
450 	struct sfq_sched_data *q = qdisc_priv(sch);
451 	unsigned char	 *b = skb->tail;
452 	struct tc_sfq_qopt opt;
453 
454 	opt.quantum = q->quantum;
455 	opt.perturb_period = q->perturb_period/HZ;
456 
457 	opt.limit = q->limit;
458 	opt.divisor = SFQ_HASH_DIVISOR;
459 	opt.flows = q->limit;
460 
461 	RTA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
462 
463 	return skb->len;
464 
465 rtattr_failure:
466 	skb_trim(skb, b - skb->data);
467 	return -1;
468 }
469 
470 static struct Qdisc_ops sfq_qdisc_ops = {
471 	.next		=	NULL,
472 	.cl_ops		=	NULL,
473 	.id		=	"sfq",
474 	.priv_size	=	sizeof(struct sfq_sched_data),
475 	.enqueue	=	sfq_enqueue,
476 	.dequeue	=	sfq_dequeue,
477 	.requeue	=	sfq_requeue,
478 	.drop		=	sfq_drop,
479 	.init		=	sfq_init,
480 	.reset		=	sfq_reset,
481 	.destroy	=	sfq_destroy,
482 	.change		=	NULL,
483 	.dump		=	sfq_dump,
484 	.owner		=	THIS_MODULE,
485 };
486 
487 static int __init sfq_module_init(void)
488 {
489 	return register_qdisc(&sfq_qdisc_ops);
490 }
491 static void __exit sfq_module_exit(void)
492 {
493 	unregister_qdisc(&sfq_qdisc_ops);
494 }
495 module_init(sfq_module_init)
496 module_exit(sfq_module_exit)
497 MODULE_LICENSE("GPL");
498