1 /* 2 * net/sched/sch_sfb.c Stochastic Fair Blue 3 * 4 * Copyright (c) 2008-2011 Juliusz Chroboczek <jch@pps.jussieu.fr> 5 * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * version 2 as published by the Free Software Foundation. 10 * 11 * W. Feng, D. Kandlur, D. Saha, K. Shin. Blue: 12 * A New Class of Active Queue Management Algorithms. 13 * U. Michigan CSE-TR-387-99, April 1999. 14 * 15 * http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf 16 * 17 */ 18 19 #include <linux/module.h> 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/errno.h> 23 #include <linux/skbuff.h> 24 #include <linux/random.h> 25 #include <linux/jhash.h> 26 #include <net/ip.h> 27 #include <net/pkt_sched.h> 28 #include <net/pkt_cls.h> 29 #include <net/inet_ecn.h> 30 31 /* 32 * SFB uses two B[l][n] : L x N arrays of bins (L levels, N bins per level) 33 * This implementation uses L = 8 and N = 16 34 * This permits us to split one 32bit hash (provided per packet by rxhash or 35 * external classifier) into 8 subhashes of 4 bits. 36 */ 37 #define SFB_BUCKET_SHIFT 4 38 #define SFB_NUMBUCKETS (1 << SFB_BUCKET_SHIFT) /* N bins per Level */ 39 #define SFB_BUCKET_MASK (SFB_NUMBUCKETS - 1) 40 #define SFB_LEVELS (32 / SFB_BUCKET_SHIFT) /* L */ 41 42 /* SFB algo uses a virtual queue, named "bin" */ 43 struct sfb_bucket { 44 u16 qlen; /* length of virtual queue */ 45 u16 p_mark; /* marking probability */ 46 }; 47 48 /* We use a double buffering right before hash change 49 * (Section 4.4 of SFB reference : moving hash functions) 50 */ 51 struct sfb_bins { 52 u32 perturbation; /* jhash perturbation */ 53 struct sfb_bucket bins[SFB_LEVELS][SFB_NUMBUCKETS]; 54 }; 55 56 struct sfb_sched_data { 57 struct Qdisc *qdisc; 58 struct tcf_proto __rcu *filter_list; 59 struct tcf_block *block; 60 unsigned long rehash_interval; 61 unsigned long warmup_time; /* double buffering warmup time in jiffies */ 62 u32 max; 63 u32 bin_size; /* maximum queue length per bin */ 64 u32 increment; /* d1 */ 65 u32 decrement; /* d2 */ 66 u32 limit; /* HARD maximal queue length */ 67 u32 penalty_rate; 68 u32 penalty_burst; 69 u32 tokens_avail; 70 unsigned long rehash_time; 71 unsigned long token_time; 72 73 u8 slot; /* current active bins (0 or 1) */ 74 bool double_buffering; 75 struct sfb_bins bins[2]; 76 77 struct { 78 u32 earlydrop; 79 u32 penaltydrop; 80 u32 bucketdrop; 81 u32 queuedrop; 82 u32 childdrop; /* drops in child qdisc */ 83 u32 marked; /* ECN mark */ 84 } stats; 85 }; 86 87 /* 88 * Each queued skb might be hashed on one or two bins 89 * We store in skb_cb the two hash values. 90 * (A zero value means double buffering was not used) 91 */ 92 struct sfb_skb_cb { 93 u32 hashes[2]; 94 }; 95 96 static inline struct sfb_skb_cb *sfb_skb_cb(const struct sk_buff *skb) 97 { 98 qdisc_cb_private_validate(skb, sizeof(struct sfb_skb_cb)); 99 return (struct sfb_skb_cb *)qdisc_skb_cb(skb)->data; 100 } 101 102 /* 103 * If using 'internal' SFB flow classifier, hash comes from skb rxhash 104 * If using external classifier, hash comes from the classid. 105 */ 106 static u32 sfb_hash(const struct sk_buff *skb, u32 slot) 107 { 108 return sfb_skb_cb(skb)->hashes[slot]; 109 } 110 111 /* Probabilities are coded as Q0.16 fixed-point values, 112 * with 0xFFFF representing 65535/65536 (almost 1.0) 113 * Addition and subtraction are saturating in [0, 65535] 114 */ 115 static u32 prob_plus(u32 p1, u32 p2) 116 { 117 u32 res = p1 + p2; 118 119 return min_t(u32, res, SFB_MAX_PROB); 120 } 121 122 static u32 prob_minus(u32 p1, u32 p2) 123 { 124 return p1 > p2 ? p1 - p2 : 0; 125 } 126 127 static void increment_one_qlen(u32 sfbhash, u32 slot, struct sfb_sched_data *q) 128 { 129 int i; 130 struct sfb_bucket *b = &q->bins[slot].bins[0][0]; 131 132 for (i = 0; i < SFB_LEVELS; i++) { 133 u32 hash = sfbhash & SFB_BUCKET_MASK; 134 135 sfbhash >>= SFB_BUCKET_SHIFT; 136 if (b[hash].qlen < 0xFFFF) 137 b[hash].qlen++; 138 b += SFB_NUMBUCKETS; /* next level */ 139 } 140 } 141 142 static void increment_qlen(const struct sk_buff *skb, struct sfb_sched_data *q) 143 { 144 u32 sfbhash; 145 146 sfbhash = sfb_hash(skb, 0); 147 if (sfbhash) 148 increment_one_qlen(sfbhash, 0, q); 149 150 sfbhash = sfb_hash(skb, 1); 151 if (sfbhash) 152 increment_one_qlen(sfbhash, 1, q); 153 } 154 155 static void decrement_one_qlen(u32 sfbhash, u32 slot, 156 struct sfb_sched_data *q) 157 { 158 int i; 159 struct sfb_bucket *b = &q->bins[slot].bins[0][0]; 160 161 for (i = 0; i < SFB_LEVELS; i++) { 162 u32 hash = sfbhash & SFB_BUCKET_MASK; 163 164 sfbhash >>= SFB_BUCKET_SHIFT; 165 if (b[hash].qlen > 0) 166 b[hash].qlen--; 167 b += SFB_NUMBUCKETS; /* next level */ 168 } 169 } 170 171 static void decrement_qlen(const struct sk_buff *skb, struct sfb_sched_data *q) 172 { 173 u32 sfbhash; 174 175 sfbhash = sfb_hash(skb, 0); 176 if (sfbhash) 177 decrement_one_qlen(sfbhash, 0, q); 178 179 sfbhash = sfb_hash(skb, 1); 180 if (sfbhash) 181 decrement_one_qlen(sfbhash, 1, q); 182 } 183 184 static void decrement_prob(struct sfb_bucket *b, struct sfb_sched_data *q) 185 { 186 b->p_mark = prob_minus(b->p_mark, q->decrement); 187 } 188 189 static void increment_prob(struct sfb_bucket *b, struct sfb_sched_data *q) 190 { 191 b->p_mark = prob_plus(b->p_mark, q->increment); 192 } 193 194 static void sfb_zero_all_buckets(struct sfb_sched_data *q) 195 { 196 memset(&q->bins, 0, sizeof(q->bins)); 197 } 198 199 /* 200 * compute max qlen, max p_mark, and avg p_mark 201 */ 202 static u32 sfb_compute_qlen(u32 *prob_r, u32 *avgpm_r, const struct sfb_sched_data *q) 203 { 204 int i; 205 u32 qlen = 0, prob = 0, totalpm = 0; 206 const struct sfb_bucket *b = &q->bins[q->slot].bins[0][0]; 207 208 for (i = 0; i < SFB_LEVELS * SFB_NUMBUCKETS; i++) { 209 if (qlen < b->qlen) 210 qlen = b->qlen; 211 totalpm += b->p_mark; 212 if (prob < b->p_mark) 213 prob = b->p_mark; 214 b++; 215 } 216 *prob_r = prob; 217 *avgpm_r = totalpm / (SFB_LEVELS * SFB_NUMBUCKETS); 218 return qlen; 219 } 220 221 222 static void sfb_init_perturbation(u32 slot, struct sfb_sched_data *q) 223 { 224 q->bins[slot].perturbation = prandom_u32(); 225 } 226 227 static void sfb_swap_slot(struct sfb_sched_data *q) 228 { 229 sfb_init_perturbation(q->slot, q); 230 q->slot ^= 1; 231 q->double_buffering = false; 232 } 233 234 /* Non elastic flows are allowed to use part of the bandwidth, expressed 235 * in "penalty_rate" packets per second, with "penalty_burst" burst 236 */ 237 static bool sfb_rate_limit(struct sk_buff *skb, struct sfb_sched_data *q) 238 { 239 if (q->penalty_rate == 0 || q->penalty_burst == 0) 240 return true; 241 242 if (q->tokens_avail < 1) { 243 unsigned long age = min(10UL * HZ, jiffies - q->token_time); 244 245 q->tokens_avail = (age * q->penalty_rate) / HZ; 246 if (q->tokens_avail > q->penalty_burst) 247 q->tokens_avail = q->penalty_burst; 248 q->token_time = jiffies; 249 if (q->tokens_avail < 1) 250 return true; 251 } 252 253 q->tokens_avail--; 254 return false; 255 } 256 257 static bool sfb_classify(struct sk_buff *skb, struct tcf_proto *fl, 258 int *qerr, u32 *salt) 259 { 260 struct tcf_result res; 261 int result; 262 263 result = tcf_classify(skb, fl, &res, false); 264 if (result >= 0) { 265 #ifdef CONFIG_NET_CLS_ACT 266 switch (result) { 267 case TC_ACT_STOLEN: 268 case TC_ACT_QUEUED: 269 case TC_ACT_TRAP: 270 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 271 /* fall through */ 272 case TC_ACT_SHOT: 273 return false; 274 } 275 #endif 276 *salt = TC_H_MIN(res.classid); 277 return true; 278 } 279 return false; 280 } 281 282 static int sfb_enqueue(struct sk_buff *skb, struct Qdisc *sch, 283 struct sk_buff **to_free) 284 { 285 286 struct sfb_sched_data *q = qdisc_priv(sch); 287 struct Qdisc *child = q->qdisc; 288 struct tcf_proto *fl; 289 int i; 290 u32 p_min = ~0; 291 u32 minqlen = ~0; 292 u32 r, sfbhash; 293 u32 slot = q->slot; 294 int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 295 296 if (unlikely(sch->q.qlen >= q->limit)) { 297 qdisc_qstats_overlimit(sch); 298 q->stats.queuedrop++; 299 goto drop; 300 } 301 302 if (q->rehash_interval > 0) { 303 unsigned long limit = q->rehash_time + q->rehash_interval; 304 305 if (unlikely(time_after(jiffies, limit))) { 306 sfb_swap_slot(q); 307 q->rehash_time = jiffies; 308 } else if (unlikely(!q->double_buffering && q->warmup_time > 0 && 309 time_after(jiffies, limit - q->warmup_time))) { 310 q->double_buffering = true; 311 } 312 } 313 314 fl = rcu_dereference_bh(q->filter_list); 315 if (fl) { 316 u32 salt; 317 318 /* If using external classifiers, get result and record it. */ 319 if (!sfb_classify(skb, fl, &ret, &salt)) 320 goto other_drop; 321 sfbhash = jhash_1word(salt, q->bins[slot].perturbation); 322 } else { 323 sfbhash = skb_get_hash_perturb(skb, q->bins[slot].perturbation); 324 } 325 326 327 if (!sfbhash) 328 sfbhash = 1; 329 sfb_skb_cb(skb)->hashes[slot] = sfbhash; 330 331 for (i = 0; i < SFB_LEVELS; i++) { 332 u32 hash = sfbhash & SFB_BUCKET_MASK; 333 struct sfb_bucket *b = &q->bins[slot].bins[i][hash]; 334 335 sfbhash >>= SFB_BUCKET_SHIFT; 336 if (b->qlen == 0) 337 decrement_prob(b, q); 338 else if (b->qlen >= q->bin_size) 339 increment_prob(b, q); 340 if (minqlen > b->qlen) 341 minqlen = b->qlen; 342 if (p_min > b->p_mark) 343 p_min = b->p_mark; 344 } 345 346 slot ^= 1; 347 sfb_skb_cb(skb)->hashes[slot] = 0; 348 349 if (unlikely(minqlen >= q->max)) { 350 qdisc_qstats_overlimit(sch); 351 q->stats.bucketdrop++; 352 goto drop; 353 } 354 355 if (unlikely(p_min >= SFB_MAX_PROB)) { 356 /* Inelastic flow */ 357 if (q->double_buffering) { 358 sfbhash = skb_get_hash_perturb(skb, 359 q->bins[slot].perturbation); 360 if (!sfbhash) 361 sfbhash = 1; 362 sfb_skb_cb(skb)->hashes[slot] = sfbhash; 363 364 for (i = 0; i < SFB_LEVELS; i++) { 365 u32 hash = sfbhash & SFB_BUCKET_MASK; 366 struct sfb_bucket *b = &q->bins[slot].bins[i][hash]; 367 368 sfbhash >>= SFB_BUCKET_SHIFT; 369 if (b->qlen == 0) 370 decrement_prob(b, q); 371 else if (b->qlen >= q->bin_size) 372 increment_prob(b, q); 373 } 374 } 375 if (sfb_rate_limit(skb, q)) { 376 qdisc_qstats_overlimit(sch); 377 q->stats.penaltydrop++; 378 goto drop; 379 } 380 goto enqueue; 381 } 382 383 r = prandom_u32() & SFB_MAX_PROB; 384 385 if (unlikely(r < p_min)) { 386 if (unlikely(p_min > SFB_MAX_PROB / 2)) { 387 /* If we're marking that many packets, then either 388 * this flow is unresponsive, or we're badly congested. 389 * In either case, we want to start dropping packets. 390 */ 391 if (r < (p_min - SFB_MAX_PROB / 2) * 2) { 392 q->stats.earlydrop++; 393 goto drop; 394 } 395 } 396 if (INET_ECN_set_ce(skb)) { 397 q->stats.marked++; 398 } else { 399 q->stats.earlydrop++; 400 goto drop; 401 } 402 } 403 404 enqueue: 405 ret = qdisc_enqueue(skb, child, to_free); 406 if (likely(ret == NET_XMIT_SUCCESS)) { 407 qdisc_qstats_backlog_inc(sch, skb); 408 sch->q.qlen++; 409 increment_qlen(skb, q); 410 } else if (net_xmit_drop_count(ret)) { 411 q->stats.childdrop++; 412 qdisc_qstats_drop(sch); 413 } 414 return ret; 415 416 drop: 417 qdisc_drop(skb, sch, to_free); 418 return NET_XMIT_CN; 419 other_drop: 420 if (ret & __NET_XMIT_BYPASS) 421 qdisc_qstats_drop(sch); 422 kfree_skb(skb); 423 return ret; 424 } 425 426 static struct sk_buff *sfb_dequeue(struct Qdisc *sch) 427 { 428 struct sfb_sched_data *q = qdisc_priv(sch); 429 struct Qdisc *child = q->qdisc; 430 struct sk_buff *skb; 431 432 skb = child->dequeue(q->qdisc); 433 434 if (skb) { 435 qdisc_bstats_update(sch, skb); 436 qdisc_qstats_backlog_dec(sch, skb); 437 sch->q.qlen--; 438 decrement_qlen(skb, q); 439 } 440 441 return skb; 442 } 443 444 static struct sk_buff *sfb_peek(struct Qdisc *sch) 445 { 446 struct sfb_sched_data *q = qdisc_priv(sch); 447 struct Qdisc *child = q->qdisc; 448 449 return child->ops->peek(child); 450 } 451 452 /* No sfb_drop -- impossible since the child doesn't return the dropped skb. */ 453 454 static void sfb_reset(struct Qdisc *sch) 455 { 456 struct sfb_sched_data *q = qdisc_priv(sch); 457 458 qdisc_reset(q->qdisc); 459 sch->qstats.backlog = 0; 460 sch->q.qlen = 0; 461 q->slot = 0; 462 q->double_buffering = false; 463 sfb_zero_all_buckets(q); 464 sfb_init_perturbation(0, q); 465 } 466 467 static void sfb_destroy(struct Qdisc *sch) 468 { 469 struct sfb_sched_data *q = qdisc_priv(sch); 470 471 tcf_block_put(q->block); 472 qdisc_put(q->qdisc); 473 } 474 475 static const struct nla_policy sfb_policy[TCA_SFB_MAX + 1] = { 476 [TCA_SFB_PARMS] = { .len = sizeof(struct tc_sfb_qopt) }, 477 }; 478 479 static const struct tc_sfb_qopt sfb_default_ops = { 480 .rehash_interval = 600 * MSEC_PER_SEC, 481 .warmup_time = 60 * MSEC_PER_SEC, 482 .limit = 0, 483 .max = 25, 484 .bin_size = 20, 485 .increment = (SFB_MAX_PROB + 500) / 1000, /* 0.1 % */ 486 .decrement = (SFB_MAX_PROB + 3000) / 6000, 487 .penalty_rate = 10, 488 .penalty_burst = 20, 489 }; 490 491 static int sfb_change(struct Qdisc *sch, struct nlattr *opt, 492 struct netlink_ext_ack *extack) 493 { 494 struct sfb_sched_data *q = qdisc_priv(sch); 495 struct Qdisc *child; 496 struct nlattr *tb[TCA_SFB_MAX + 1]; 497 const struct tc_sfb_qopt *ctl = &sfb_default_ops; 498 u32 limit; 499 int err; 500 501 if (opt) { 502 err = nla_parse_nested(tb, TCA_SFB_MAX, opt, sfb_policy, NULL); 503 if (err < 0) 504 return -EINVAL; 505 506 if (tb[TCA_SFB_PARMS] == NULL) 507 return -EINVAL; 508 509 ctl = nla_data(tb[TCA_SFB_PARMS]); 510 } 511 512 limit = ctl->limit; 513 if (limit == 0) 514 limit = qdisc_dev(sch)->tx_queue_len; 515 516 child = fifo_create_dflt(sch, &pfifo_qdisc_ops, limit, extack); 517 if (IS_ERR(child)) 518 return PTR_ERR(child); 519 520 if (child != &noop_qdisc) 521 qdisc_hash_add(child, true); 522 sch_tree_lock(sch); 523 524 qdisc_tree_reduce_backlog(q->qdisc, q->qdisc->q.qlen, 525 q->qdisc->qstats.backlog); 526 qdisc_put(q->qdisc); 527 q->qdisc = child; 528 529 q->rehash_interval = msecs_to_jiffies(ctl->rehash_interval); 530 q->warmup_time = msecs_to_jiffies(ctl->warmup_time); 531 q->rehash_time = jiffies; 532 q->limit = limit; 533 q->increment = ctl->increment; 534 q->decrement = ctl->decrement; 535 q->max = ctl->max; 536 q->bin_size = ctl->bin_size; 537 q->penalty_rate = ctl->penalty_rate; 538 q->penalty_burst = ctl->penalty_burst; 539 q->tokens_avail = ctl->penalty_burst; 540 q->token_time = jiffies; 541 542 q->slot = 0; 543 q->double_buffering = false; 544 sfb_zero_all_buckets(q); 545 sfb_init_perturbation(0, q); 546 sfb_init_perturbation(1, q); 547 548 sch_tree_unlock(sch); 549 550 return 0; 551 } 552 553 static int sfb_init(struct Qdisc *sch, struct nlattr *opt, 554 struct netlink_ext_ack *extack) 555 { 556 struct sfb_sched_data *q = qdisc_priv(sch); 557 int err; 558 559 err = tcf_block_get(&q->block, &q->filter_list, sch, extack); 560 if (err) 561 return err; 562 563 q->qdisc = &noop_qdisc; 564 return sfb_change(sch, opt, extack); 565 } 566 567 static int sfb_dump(struct Qdisc *sch, struct sk_buff *skb) 568 { 569 struct sfb_sched_data *q = qdisc_priv(sch); 570 struct nlattr *opts; 571 struct tc_sfb_qopt opt = { 572 .rehash_interval = jiffies_to_msecs(q->rehash_interval), 573 .warmup_time = jiffies_to_msecs(q->warmup_time), 574 .limit = q->limit, 575 .max = q->max, 576 .bin_size = q->bin_size, 577 .increment = q->increment, 578 .decrement = q->decrement, 579 .penalty_rate = q->penalty_rate, 580 .penalty_burst = q->penalty_burst, 581 }; 582 583 sch->qstats.backlog = q->qdisc->qstats.backlog; 584 opts = nla_nest_start(skb, TCA_OPTIONS); 585 if (opts == NULL) 586 goto nla_put_failure; 587 if (nla_put(skb, TCA_SFB_PARMS, sizeof(opt), &opt)) 588 goto nla_put_failure; 589 return nla_nest_end(skb, opts); 590 591 nla_put_failure: 592 nla_nest_cancel(skb, opts); 593 return -EMSGSIZE; 594 } 595 596 static int sfb_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 597 { 598 struct sfb_sched_data *q = qdisc_priv(sch); 599 struct tc_sfb_xstats st = { 600 .earlydrop = q->stats.earlydrop, 601 .penaltydrop = q->stats.penaltydrop, 602 .bucketdrop = q->stats.bucketdrop, 603 .queuedrop = q->stats.queuedrop, 604 .childdrop = q->stats.childdrop, 605 .marked = q->stats.marked, 606 }; 607 608 st.maxqlen = sfb_compute_qlen(&st.maxprob, &st.avgprob, q); 609 610 return gnet_stats_copy_app(d, &st, sizeof(st)); 611 } 612 613 static int sfb_dump_class(struct Qdisc *sch, unsigned long cl, 614 struct sk_buff *skb, struct tcmsg *tcm) 615 { 616 return -ENOSYS; 617 } 618 619 static int sfb_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 620 struct Qdisc **old, struct netlink_ext_ack *extack) 621 { 622 struct sfb_sched_data *q = qdisc_priv(sch); 623 624 if (new == NULL) 625 new = &noop_qdisc; 626 627 *old = qdisc_replace(sch, new, &q->qdisc); 628 return 0; 629 } 630 631 static struct Qdisc *sfb_leaf(struct Qdisc *sch, unsigned long arg) 632 { 633 struct sfb_sched_data *q = qdisc_priv(sch); 634 635 return q->qdisc; 636 } 637 638 static unsigned long sfb_find(struct Qdisc *sch, u32 classid) 639 { 640 return 1; 641 } 642 643 static void sfb_unbind(struct Qdisc *sch, unsigned long arg) 644 { 645 } 646 647 static int sfb_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 648 struct nlattr **tca, unsigned long *arg, 649 struct netlink_ext_ack *extack) 650 { 651 return -ENOSYS; 652 } 653 654 static int sfb_delete(struct Qdisc *sch, unsigned long cl) 655 { 656 return -ENOSYS; 657 } 658 659 static void sfb_walk(struct Qdisc *sch, struct qdisc_walker *walker) 660 { 661 if (!walker->stop) { 662 if (walker->count >= walker->skip) 663 if (walker->fn(sch, 1, walker) < 0) { 664 walker->stop = 1; 665 return; 666 } 667 walker->count++; 668 } 669 } 670 671 static struct tcf_block *sfb_tcf_block(struct Qdisc *sch, unsigned long cl, 672 struct netlink_ext_ack *extack) 673 { 674 struct sfb_sched_data *q = qdisc_priv(sch); 675 676 if (cl) 677 return NULL; 678 return q->block; 679 } 680 681 static unsigned long sfb_bind(struct Qdisc *sch, unsigned long parent, 682 u32 classid) 683 { 684 return 0; 685 } 686 687 688 static const struct Qdisc_class_ops sfb_class_ops = { 689 .graft = sfb_graft, 690 .leaf = sfb_leaf, 691 .find = sfb_find, 692 .change = sfb_change_class, 693 .delete = sfb_delete, 694 .walk = sfb_walk, 695 .tcf_block = sfb_tcf_block, 696 .bind_tcf = sfb_bind, 697 .unbind_tcf = sfb_unbind, 698 .dump = sfb_dump_class, 699 }; 700 701 static struct Qdisc_ops sfb_qdisc_ops __read_mostly = { 702 .id = "sfb", 703 .priv_size = sizeof(struct sfb_sched_data), 704 .cl_ops = &sfb_class_ops, 705 .enqueue = sfb_enqueue, 706 .dequeue = sfb_dequeue, 707 .peek = sfb_peek, 708 .init = sfb_init, 709 .reset = sfb_reset, 710 .destroy = sfb_destroy, 711 .change = sfb_change, 712 .dump = sfb_dump, 713 .dump_stats = sfb_dump_stats, 714 .owner = THIS_MODULE, 715 }; 716 717 static int __init sfb_module_init(void) 718 { 719 return register_qdisc(&sfb_qdisc_ops); 720 } 721 722 static void __exit sfb_module_exit(void) 723 { 724 unregister_qdisc(&sfb_qdisc_ops); 725 } 726 727 module_init(sfb_module_init) 728 module_exit(sfb_module_exit) 729 730 MODULE_DESCRIPTION("Stochastic Fair Blue queue discipline"); 731 MODULE_AUTHOR("Juliusz Chroboczek"); 732 MODULE_AUTHOR("Eric Dumazet"); 733 MODULE_LICENSE("GPL"); 734