xref: /openbmc/linux/net/sched/sch_qfq.c (revision f7d84fa7)
1 /*
2  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
3  *
4  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5  * Copyright (c) 2012 Paolo Valente.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21 
22 
23 /*  Quick Fair Queueing Plus
24     ========================
25 
26     Sources:
27 
28     [1] Paolo Valente,
29     "Reducing the Execution Time of Fair-Queueing Schedulers."
30     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31 
32     Sources for QFQ:
33 
34     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36 
37     See also:
38     http://retis.sssup.it/~fabio/linux/qfq/
39  */
40 
41 /*
42 
43   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44   classes. Each aggregate is timestamped with a virtual start time S
45   and a virtual finish time F, and scheduled according to its
46   timestamps. S and F are computed as a function of a system virtual
47   time function V. The classes within each aggregate are instead
48   scheduled with DRR.
49 
50   To speed up operations, QFQ+ divides also aggregates into a limited
51   number of groups. Which group a class belongs to depends on the
52   ratio between the maximum packet length for the class and the weight
53   of the class. Groups have their own S and F. In the end, QFQ+
54   schedules groups, then aggregates within groups, then classes within
55   aggregates. See [1] and [2] for a full description.
56 
57   Virtual time computations.
58 
59   S, F and V are all computed in fixed point arithmetic with
60   FRAC_BITS decimal bits.
61 
62   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 	one bit per index.
64   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65 
66   The layout of the bits is as below:
67 
68                    [ MTU_SHIFT ][      FRAC_BITS    ]
69                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
70 				 ^.__grp->index = 0
71 				 *.__grp->slot_shift
72 
73   where MIN_SLOT_SHIFT is derived by difference from the others.
74 
75   The max group index corresponds to Lmax/w_min, where
76   Lmax=1<<MTU_SHIFT, w_min = 1 .
77   From this, and knowing how many groups (MAX_INDEX) we want,
78   we can derive the shift corresponding to each group.
79 
80   Because we often need to compute
81 	F = S + len/w_i  and V = V + len/wsum
82   instead of storing w_i store the value
83 	inv_w = (1<<FRAC_BITS)/w_i
84   so we can do F = S + len * inv_w * wsum.
85   We use W_TOT in the formulas so we can easily move between
86   static and adaptive weight sum.
87 
88   The per-scheduler-instance data contain all the data structures
89   for the scheduler: bitmaps and bucket lists.
90 
91  */
92 
93 /*
94  * Maximum number of consecutive slots occupied by backlogged classes
95  * inside a group.
96  */
97 #define QFQ_MAX_SLOTS	32
98 
99 /*
100  * Shifts used for aggregate<->group mapping.  We allow class weights that are
101  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102  * group with the smallest index that can support the L_i / r_i configured
103  * for the classes in the aggregate.
104  *
105  * grp->index is the index of the group; and grp->slot_shift
106  * is the shift for the corresponding (scaled) sigma_i.
107  */
108 #define QFQ_MAX_INDEX		24
109 #define QFQ_MAX_WSHIFT		10
110 
111 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
113 
114 #define FRAC_BITS		30	/* fixed point arithmetic */
115 #define ONE_FP			(1UL << FRAC_BITS)
116 
117 #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
118 #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
119 
120 #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
121 
122 /*
123  * Possible group states.  These values are used as indexes for the bitmaps
124  * array of struct qfq_queue.
125  */
126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
127 
128 struct qfq_group;
129 
130 struct qfq_aggregate;
131 
132 struct qfq_class {
133 	struct Qdisc_class_common common;
134 
135 	unsigned int refcnt;
136 	unsigned int filter_cnt;
137 
138 	struct gnet_stats_basic_packed bstats;
139 	struct gnet_stats_queue qstats;
140 	struct net_rate_estimator __rcu *rate_est;
141 	struct Qdisc *qdisc;
142 	struct list_head alist;		/* Link for active-classes list. */
143 	struct qfq_aggregate *agg;	/* Parent aggregate. */
144 	int deficit;			/* DRR deficit counter. */
145 };
146 
147 struct qfq_aggregate {
148 	struct hlist_node next;	/* Link for the slot list. */
149 	u64 S, F;		/* flow timestamps (exact) */
150 
151 	/* group we belong to. In principle we would need the index,
152 	 * which is log_2(lmax/weight), but we never reference it
153 	 * directly, only the group.
154 	 */
155 	struct qfq_group *grp;
156 
157 	/* these are copied from the flowset. */
158 	u32	class_weight; /* Weight of each class in this aggregate. */
159 	/* Max pkt size for the classes in this aggregate, DRR quantum. */
160 	int	lmax;
161 
162 	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
163 	u32	budgetmax;  /* Max budget for this aggregate. */
164 	u32	initial_budget, budget;     /* Initial and current budget. */
165 
166 	int		  num_classes;	/* Number of classes in this aggr. */
167 	struct list_head  active;	/* DRR queue of active classes. */
168 
169 	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
170 };
171 
172 struct qfq_group {
173 	u64 S, F;			/* group timestamps (approx). */
174 	unsigned int slot_shift;	/* Slot shift. */
175 	unsigned int index;		/* Group index. */
176 	unsigned int front;		/* Index of the front slot. */
177 	unsigned long full_slots;	/* non-empty slots */
178 
179 	/* Array of RR lists of active aggregates. */
180 	struct hlist_head slots[QFQ_MAX_SLOTS];
181 };
182 
183 struct qfq_sched {
184 	struct tcf_proto __rcu *filter_list;
185 	struct Qdisc_class_hash clhash;
186 
187 	u64			oldV, V;	/* Precise virtual times. */
188 	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
189 	u32			wsum;		/* weight sum */
190 	u32			iwsum;		/* inverse weight sum */
191 
192 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
193 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
194 	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
195 
196 	u32 max_agg_classes;		/* Max number of classes per aggr. */
197 	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
198 };
199 
200 /*
201  * Possible reasons why the timestamps of an aggregate are updated
202  * enqueue: the aggregate switches from idle to active and must scheduled
203  *	    for service
204  * requeue: the aggregate finishes its budget, so it stops being served and
205  *	    must be rescheduled for service
206  */
207 enum update_reason {enqueue, requeue};
208 
209 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
210 {
211 	struct qfq_sched *q = qdisc_priv(sch);
212 	struct Qdisc_class_common *clc;
213 
214 	clc = qdisc_class_find(&q->clhash, classid);
215 	if (clc == NULL)
216 		return NULL;
217 	return container_of(clc, struct qfq_class, common);
218 }
219 
220 static void qfq_purge_queue(struct qfq_class *cl)
221 {
222 	unsigned int len = cl->qdisc->q.qlen;
223 	unsigned int backlog = cl->qdisc->qstats.backlog;
224 
225 	qdisc_reset(cl->qdisc);
226 	qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
227 }
228 
229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 	[TCA_QFQ_LMAX] = { .type = NLA_U32 },
232 };
233 
234 /*
235  * Calculate a flow index, given its weight and maximum packet length.
236  * index = log_2(maxlen/weight) but we need to apply the scaling.
237  * This is used only once at flow creation.
238  */
239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
240 {
241 	u64 slot_size = (u64)maxlen * inv_w;
242 	unsigned long size_map;
243 	int index = 0;
244 
245 	size_map = slot_size >> min_slot_shift;
246 	if (!size_map)
247 		goto out;
248 
249 	index = __fls(size_map) + 1;	/* basically a log_2 */
250 	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
251 
252 	if (index < 0)
253 		index = 0;
254 out:
255 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
257 
258 	return index;
259 }
260 
261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 			     enum update_reason);
264 
265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 			 u32 lmax, u32 weight)
267 {
268 	INIT_LIST_HEAD(&agg->active);
269 	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270 
271 	agg->lmax = lmax;
272 	agg->class_weight = weight;
273 }
274 
275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 					  u32 lmax, u32 weight)
277 {
278 	struct qfq_aggregate *agg;
279 
280 	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281 		if (agg->lmax == lmax && agg->class_weight == weight)
282 			return agg;
283 
284 	return NULL;
285 }
286 
287 
288 /* Update aggregate as a function of the new number of classes. */
289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 			   int new_num_classes)
291 {
292 	u32 new_agg_weight;
293 
294 	if (new_num_classes == q->max_agg_classes)
295 		hlist_del_init(&agg->nonfull_next);
296 
297 	if (agg->num_classes > new_num_classes &&
298 	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300 
301 	/* The next assignment may let
302 	 * agg->initial_budget > agg->budgetmax
303 	 * hold, we will take it into account in charge_actual_service().
304 	 */
305 	agg->budgetmax = new_num_classes * agg->lmax;
306 	new_agg_weight = agg->class_weight * new_num_classes;
307 	agg->inv_w = ONE_FP/new_agg_weight;
308 
309 	if (agg->grp == NULL) {
310 		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311 				       q->min_slot_shift);
312 		agg->grp = &q->groups[i];
313 	}
314 
315 	q->wsum +=
316 		(int) agg->class_weight * (new_num_classes - agg->num_classes);
317 	q->iwsum = ONE_FP / q->wsum;
318 
319 	agg->num_classes = new_num_classes;
320 }
321 
322 /* Add class to aggregate. */
323 static void qfq_add_to_agg(struct qfq_sched *q,
324 			   struct qfq_aggregate *agg,
325 			   struct qfq_class *cl)
326 {
327 	cl->agg = agg;
328 
329 	qfq_update_agg(q, agg, agg->num_classes+1);
330 	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
331 		list_add_tail(&cl->alist, &agg->active);
332 		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
333 		    cl && q->in_serv_agg != agg) /* agg was inactive */
334 			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
335 	}
336 }
337 
338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
339 
340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
341 {
342 	hlist_del_init(&agg->nonfull_next);
343 	q->wsum -= agg->class_weight;
344 	if (q->wsum != 0)
345 		q->iwsum = ONE_FP / q->wsum;
346 
347 	if (q->in_serv_agg == agg)
348 		q->in_serv_agg = qfq_choose_next_agg(q);
349 	kfree(agg);
350 }
351 
352 /* Deschedule class from within its parent aggregate. */
353 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
354 {
355 	struct qfq_aggregate *agg = cl->agg;
356 
357 
358 	list_del(&cl->alist); /* remove from RR queue of the aggregate */
359 	if (list_empty(&agg->active)) /* agg is now inactive */
360 		qfq_deactivate_agg(q, agg);
361 }
362 
363 /* Remove class from its parent aggregate. */
364 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
365 {
366 	struct qfq_aggregate *agg = cl->agg;
367 
368 	cl->agg = NULL;
369 	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
370 		qfq_destroy_agg(q, agg);
371 		return;
372 	}
373 	qfq_update_agg(q, agg, agg->num_classes-1);
374 }
375 
376 /* Deschedule class and remove it from its parent aggregate. */
377 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
378 {
379 	if (cl->qdisc->q.qlen > 0) /* class is active */
380 		qfq_deactivate_class(q, cl);
381 
382 	qfq_rm_from_agg(q, cl);
383 }
384 
385 /* Move class to a new aggregate, matching the new class weight and/or lmax */
386 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
387 			   u32 lmax)
388 {
389 	struct qfq_sched *q = qdisc_priv(sch);
390 	struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
391 
392 	if (new_agg == NULL) { /* create new aggregate */
393 		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
394 		if (new_agg == NULL)
395 			return -ENOBUFS;
396 		qfq_init_agg(q, new_agg, lmax, weight);
397 	}
398 	qfq_deact_rm_from_agg(q, cl);
399 	qfq_add_to_agg(q, new_agg, cl);
400 
401 	return 0;
402 }
403 
404 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
405 			    struct nlattr **tca, unsigned long *arg)
406 {
407 	struct qfq_sched *q = qdisc_priv(sch);
408 	struct qfq_class *cl = (struct qfq_class *)*arg;
409 	bool existing = false;
410 	struct nlattr *tb[TCA_QFQ_MAX + 1];
411 	struct qfq_aggregate *new_agg = NULL;
412 	u32 weight, lmax, inv_w;
413 	int err;
414 	int delta_w;
415 
416 	if (tca[TCA_OPTIONS] == NULL) {
417 		pr_notice("qfq: no options\n");
418 		return -EINVAL;
419 	}
420 
421 	err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy,
422 			       NULL);
423 	if (err < 0)
424 		return err;
425 
426 	if (tb[TCA_QFQ_WEIGHT]) {
427 		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
428 		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
429 			pr_notice("qfq: invalid weight %u\n", weight);
430 			return -EINVAL;
431 		}
432 	} else
433 		weight = 1;
434 
435 	if (tb[TCA_QFQ_LMAX]) {
436 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
437 		if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
438 			pr_notice("qfq: invalid max length %u\n", lmax);
439 			return -EINVAL;
440 		}
441 	} else
442 		lmax = psched_mtu(qdisc_dev(sch));
443 
444 	inv_w = ONE_FP / weight;
445 	weight = ONE_FP / inv_w;
446 
447 	if (cl != NULL &&
448 	    lmax == cl->agg->lmax &&
449 	    weight == cl->agg->class_weight)
450 		return 0; /* nothing to change */
451 
452 	delta_w = weight - (cl ? cl->agg->class_weight : 0);
453 
454 	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
455 		pr_notice("qfq: total weight out of range (%d + %u)\n",
456 			  delta_w, q->wsum);
457 		return -EINVAL;
458 	}
459 
460 	if (cl != NULL) { /* modify existing class */
461 		if (tca[TCA_RATE]) {
462 			err = gen_replace_estimator(&cl->bstats, NULL,
463 						    &cl->rate_est,
464 						    NULL,
465 						    qdisc_root_sleeping_running(sch),
466 						    tca[TCA_RATE]);
467 			if (err)
468 				return err;
469 		}
470 		existing = true;
471 		goto set_change_agg;
472 	}
473 
474 	/* create and init new class */
475 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
476 	if (cl == NULL)
477 		return -ENOBUFS;
478 
479 	cl->refcnt = 1;
480 	cl->common.classid = classid;
481 	cl->deficit = lmax;
482 
483 	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
484 				      &pfifo_qdisc_ops, classid);
485 	if (cl->qdisc == NULL)
486 		cl->qdisc = &noop_qdisc;
487 
488 	if (tca[TCA_RATE]) {
489 		err = gen_new_estimator(&cl->bstats, NULL,
490 					&cl->rate_est,
491 					NULL,
492 					qdisc_root_sleeping_running(sch),
493 					tca[TCA_RATE]);
494 		if (err)
495 			goto destroy_class;
496 	}
497 
498 	if (cl->qdisc != &noop_qdisc)
499 		qdisc_hash_add(cl->qdisc, true);
500 	sch_tree_lock(sch);
501 	qdisc_class_hash_insert(&q->clhash, &cl->common);
502 	sch_tree_unlock(sch);
503 
504 	qdisc_class_hash_grow(sch, &q->clhash);
505 
506 set_change_agg:
507 	sch_tree_lock(sch);
508 	new_agg = qfq_find_agg(q, lmax, weight);
509 	if (new_agg == NULL) { /* create new aggregate */
510 		sch_tree_unlock(sch);
511 		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
512 		if (new_agg == NULL) {
513 			err = -ENOBUFS;
514 			gen_kill_estimator(&cl->rate_est);
515 			goto destroy_class;
516 		}
517 		sch_tree_lock(sch);
518 		qfq_init_agg(q, new_agg, lmax, weight);
519 	}
520 	if (existing)
521 		qfq_deact_rm_from_agg(q, cl);
522 	qfq_add_to_agg(q, new_agg, cl);
523 	sch_tree_unlock(sch);
524 
525 	*arg = (unsigned long)cl;
526 	return 0;
527 
528 destroy_class:
529 	qdisc_destroy(cl->qdisc);
530 	kfree(cl);
531 	return err;
532 }
533 
534 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
535 {
536 	struct qfq_sched *q = qdisc_priv(sch);
537 
538 	qfq_rm_from_agg(q, cl);
539 	gen_kill_estimator(&cl->rate_est);
540 	qdisc_destroy(cl->qdisc);
541 	kfree(cl);
542 }
543 
544 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
545 {
546 	struct qfq_sched *q = qdisc_priv(sch);
547 	struct qfq_class *cl = (struct qfq_class *)arg;
548 
549 	if (cl->filter_cnt > 0)
550 		return -EBUSY;
551 
552 	sch_tree_lock(sch);
553 
554 	qfq_purge_queue(cl);
555 	qdisc_class_hash_remove(&q->clhash, &cl->common);
556 
557 	BUG_ON(--cl->refcnt == 0);
558 	/*
559 	 * This shouldn't happen: we "hold" one cops->get() when called
560 	 * from tc_ctl_tclass; the destroy method is done from cops->put().
561 	 */
562 
563 	sch_tree_unlock(sch);
564 	return 0;
565 }
566 
567 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
568 {
569 	struct qfq_class *cl = qfq_find_class(sch, classid);
570 
571 	if (cl != NULL)
572 		cl->refcnt++;
573 
574 	return (unsigned long)cl;
575 }
576 
577 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
578 {
579 	struct qfq_class *cl = (struct qfq_class *)arg;
580 
581 	if (--cl->refcnt == 0)
582 		qfq_destroy_class(sch, cl);
583 }
584 
585 static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch,
586 					      unsigned long cl)
587 {
588 	struct qfq_sched *q = qdisc_priv(sch);
589 
590 	if (cl)
591 		return NULL;
592 
593 	return &q->filter_list;
594 }
595 
596 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
597 				  u32 classid)
598 {
599 	struct qfq_class *cl = qfq_find_class(sch, classid);
600 
601 	if (cl != NULL)
602 		cl->filter_cnt++;
603 
604 	return (unsigned long)cl;
605 }
606 
607 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
608 {
609 	struct qfq_class *cl = (struct qfq_class *)arg;
610 
611 	cl->filter_cnt--;
612 }
613 
614 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
615 			   struct Qdisc *new, struct Qdisc **old)
616 {
617 	struct qfq_class *cl = (struct qfq_class *)arg;
618 
619 	if (new == NULL) {
620 		new = qdisc_create_dflt(sch->dev_queue,
621 					&pfifo_qdisc_ops, cl->common.classid);
622 		if (new == NULL)
623 			new = &noop_qdisc;
624 	}
625 
626 	*old = qdisc_replace(sch, new, &cl->qdisc);
627 	return 0;
628 }
629 
630 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
631 {
632 	struct qfq_class *cl = (struct qfq_class *)arg;
633 
634 	return cl->qdisc;
635 }
636 
637 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
638 			  struct sk_buff *skb, struct tcmsg *tcm)
639 {
640 	struct qfq_class *cl = (struct qfq_class *)arg;
641 	struct nlattr *nest;
642 
643 	tcm->tcm_parent	= TC_H_ROOT;
644 	tcm->tcm_handle	= cl->common.classid;
645 	tcm->tcm_info	= cl->qdisc->handle;
646 
647 	nest = nla_nest_start(skb, TCA_OPTIONS);
648 	if (nest == NULL)
649 		goto nla_put_failure;
650 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
651 	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
652 		goto nla_put_failure;
653 	return nla_nest_end(skb, nest);
654 
655 nla_put_failure:
656 	nla_nest_cancel(skb, nest);
657 	return -EMSGSIZE;
658 }
659 
660 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
661 				struct gnet_dump *d)
662 {
663 	struct qfq_class *cl = (struct qfq_class *)arg;
664 	struct tc_qfq_stats xstats;
665 
666 	memset(&xstats, 0, sizeof(xstats));
667 
668 	xstats.weight = cl->agg->class_weight;
669 	xstats.lmax = cl->agg->lmax;
670 
671 	if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch),
672 				  d, NULL, &cl->bstats) < 0 ||
673 	    gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
674 	    gnet_stats_copy_queue(d, NULL,
675 				  &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
676 		return -1;
677 
678 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
679 }
680 
681 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
682 {
683 	struct qfq_sched *q = qdisc_priv(sch);
684 	struct qfq_class *cl;
685 	unsigned int i;
686 
687 	if (arg->stop)
688 		return;
689 
690 	for (i = 0; i < q->clhash.hashsize; i++) {
691 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
692 			if (arg->count < arg->skip) {
693 				arg->count++;
694 				continue;
695 			}
696 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
697 				arg->stop = 1;
698 				return;
699 			}
700 			arg->count++;
701 		}
702 	}
703 }
704 
705 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
706 				      int *qerr)
707 {
708 	struct qfq_sched *q = qdisc_priv(sch);
709 	struct qfq_class *cl;
710 	struct tcf_result res;
711 	struct tcf_proto *fl;
712 	int result;
713 
714 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
715 		pr_debug("qfq_classify: found %d\n", skb->priority);
716 		cl = qfq_find_class(sch, skb->priority);
717 		if (cl != NULL)
718 			return cl;
719 	}
720 
721 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
722 	fl = rcu_dereference_bh(q->filter_list);
723 	result = tc_classify(skb, fl, &res, false);
724 	if (result >= 0) {
725 #ifdef CONFIG_NET_CLS_ACT
726 		switch (result) {
727 		case TC_ACT_QUEUED:
728 		case TC_ACT_STOLEN:
729 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
730 		case TC_ACT_SHOT:
731 			return NULL;
732 		}
733 #endif
734 		cl = (struct qfq_class *)res.class;
735 		if (cl == NULL)
736 			cl = qfq_find_class(sch, res.classid);
737 		return cl;
738 	}
739 
740 	return NULL;
741 }
742 
743 /* Generic comparison function, handling wraparound. */
744 static inline int qfq_gt(u64 a, u64 b)
745 {
746 	return (s64)(a - b) > 0;
747 }
748 
749 /* Round a precise timestamp to its slotted value. */
750 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
751 {
752 	return ts & ~((1ULL << shift) - 1);
753 }
754 
755 /* return the pointer to the group with lowest index in the bitmap */
756 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
757 					unsigned long bitmap)
758 {
759 	int index = __ffs(bitmap);
760 	return &q->groups[index];
761 }
762 /* Calculate a mask to mimic what would be ffs_from(). */
763 static inline unsigned long mask_from(unsigned long bitmap, int from)
764 {
765 	return bitmap & ~((1UL << from) - 1);
766 }
767 
768 /*
769  * The state computation relies on ER=0, IR=1, EB=2, IB=3
770  * First compute eligibility comparing grp->S, q->V,
771  * then check if someone is blocking us and possibly add EB
772  */
773 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
774 {
775 	/* if S > V we are not eligible */
776 	unsigned int state = qfq_gt(grp->S, q->V);
777 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
778 	struct qfq_group *next;
779 
780 	if (mask) {
781 		next = qfq_ffs(q, mask);
782 		if (qfq_gt(grp->F, next->F))
783 			state |= EB;
784 	}
785 
786 	return state;
787 }
788 
789 
790 /*
791  * In principle
792  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
793  *	q->bitmaps[src] &= ~mask;
794  * but we should make sure that src != dst
795  */
796 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
797 				   int src, int dst)
798 {
799 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
800 	q->bitmaps[src] &= ~mask;
801 }
802 
803 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
804 {
805 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
806 	struct qfq_group *next;
807 
808 	if (mask) {
809 		next = qfq_ffs(q, mask);
810 		if (!qfq_gt(next->F, old_F))
811 			return;
812 	}
813 
814 	mask = (1UL << index) - 1;
815 	qfq_move_groups(q, mask, EB, ER);
816 	qfq_move_groups(q, mask, IB, IR);
817 }
818 
819 /*
820  * perhaps
821  *
822 	old_V ^= q->V;
823 	old_V >>= q->min_slot_shift;
824 	if (old_V) {
825 		...
826 	}
827  *
828  */
829 static void qfq_make_eligible(struct qfq_sched *q)
830 {
831 	unsigned long vslot = q->V >> q->min_slot_shift;
832 	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
833 
834 	if (vslot != old_vslot) {
835 		unsigned long mask;
836 		int last_flip_pos = fls(vslot ^ old_vslot);
837 
838 		if (last_flip_pos > 31) /* higher than the number of groups */
839 			mask = ~0UL;    /* make all groups eligible */
840 		else
841 			mask = (1UL << last_flip_pos) - 1;
842 
843 		qfq_move_groups(q, mask, IR, ER);
844 		qfq_move_groups(q, mask, IB, EB);
845 	}
846 }
847 
848 /*
849  * The index of the slot in which the input aggregate agg is to be
850  * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
851  * and not a '-1' because the start time of the group may be moved
852  * backward by one slot after the aggregate has been inserted, and
853  * this would cause non-empty slots to be right-shifted by one
854  * position.
855  *
856  * QFQ+ fully satisfies this bound to the slot index if the parameters
857  * of the classes are not changed dynamically, and if QFQ+ never
858  * happens to postpone the service of agg unjustly, i.e., it never
859  * happens that the aggregate becomes backlogged and eligible, or just
860  * eligible, while an aggregate with a higher approximated finish time
861  * is being served. In particular, in this case QFQ+ guarantees that
862  * the timestamps of agg are low enough that the slot index is never
863  * higher than 2. Unfortunately, QFQ+ cannot provide the same
864  * guarantee if it happens to unjustly postpone the service of agg, or
865  * if the parameters of some class are changed.
866  *
867  * As for the first event, i.e., an out-of-order service, the
868  * upper bound to the slot index guaranteed by QFQ+ grows to
869  * 2 +
870  * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
871  * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
872  *
873  * The following function deals with this problem by backward-shifting
874  * the timestamps of agg, if needed, so as to guarantee that the slot
875  * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
876  * cause the service of other aggregates to be postponed, yet the
877  * worst-case guarantees of these aggregates are not violated.  In
878  * fact, in case of no out-of-order service, the timestamps of agg
879  * would have been even lower than they are after the backward shift,
880  * because QFQ+ would have guaranteed a maximum value equal to 2 for
881  * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
882  * service is postponed because of the backward-shift would have
883  * however waited for the service of agg before being served.
884  *
885  * The other event that may cause the slot index to be higher than 2
886  * for agg is a recent change of the parameters of some class. If the
887  * weight of a class is increased or the lmax (max_pkt_size) of the
888  * class is decreased, then a new aggregate with smaller slot size
889  * than the original parent aggregate of the class may happen to be
890  * activated. The activation of this aggregate should be properly
891  * delayed to when the service of the class has finished in the ideal
892  * system tracked by QFQ+. If the activation of the aggregate is not
893  * delayed to this reference time instant, then this aggregate may be
894  * unjustly served before other aggregates waiting for service. This
895  * may cause the above bound to the slot index to be violated for some
896  * of these unlucky aggregates.
897  *
898  * Instead of delaying the activation of the new aggregate, which is
899  * quite complex, the above-discussed capping of the slot index is
900  * used to handle also the consequences of a change of the parameters
901  * of a class.
902  */
903 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
904 			    u64 roundedS)
905 {
906 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
907 	unsigned int i; /* slot index in the bucket list */
908 
909 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
910 		u64 deltaS = roundedS - grp->S -
911 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
912 		agg->S -= deltaS;
913 		agg->F -= deltaS;
914 		slot = QFQ_MAX_SLOTS - 2;
915 	}
916 
917 	i = (grp->front + slot) % QFQ_MAX_SLOTS;
918 
919 	hlist_add_head(&agg->next, &grp->slots[i]);
920 	__set_bit(slot, &grp->full_slots);
921 }
922 
923 /* Maybe introduce hlist_first_entry?? */
924 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
925 {
926 	return hlist_entry(grp->slots[grp->front].first,
927 			   struct qfq_aggregate, next);
928 }
929 
930 /*
931  * remove the entry from the slot
932  */
933 static void qfq_front_slot_remove(struct qfq_group *grp)
934 {
935 	struct qfq_aggregate *agg = qfq_slot_head(grp);
936 
937 	BUG_ON(!agg);
938 	hlist_del(&agg->next);
939 	if (hlist_empty(&grp->slots[grp->front]))
940 		__clear_bit(0, &grp->full_slots);
941 }
942 
943 /*
944  * Returns the first aggregate in the first non-empty bucket of the
945  * group. As a side effect, adjusts the bucket list so the first
946  * non-empty bucket is at position 0 in full_slots.
947  */
948 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
949 {
950 	unsigned int i;
951 
952 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
953 		 grp->index, grp->full_slots);
954 
955 	if (grp->full_slots == 0)
956 		return NULL;
957 
958 	i = __ffs(grp->full_slots);  /* zero based */
959 	if (i > 0) {
960 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
961 		grp->full_slots >>= i;
962 	}
963 
964 	return qfq_slot_head(grp);
965 }
966 
967 /*
968  * adjust the bucket list. When the start time of a group decreases,
969  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
970  * move the objects. The mask of occupied slots must be shifted
971  * because we use ffs() to find the first non-empty slot.
972  * This covers decreases in the group's start time, but what about
973  * increases of the start time ?
974  * Here too we should make sure that i is less than 32
975  */
976 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
977 {
978 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
979 
980 	grp->full_slots <<= i;
981 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
982 }
983 
984 static void qfq_update_eligible(struct qfq_sched *q)
985 {
986 	struct qfq_group *grp;
987 	unsigned long ineligible;
988 
989 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
990 	if (ineligible) {
991 		if (!q->bitmaps[ER]) {
992 			grp = qfq_ffs(q, ineligible);
993 			if (qfq_gt(grp->S, q->V))
994 				q->V = grp->S;
995 		}
996 		qfq_make_eligible(q);
997 	}
998 }
999 
1000 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
1001 static void agg_dequeue(struct qfq_aggregate *agg,
1002 			struct qfq_class *cl, unsigned int len)
1003 {
1004 	qdisc_dequeue_peeked(cl->qdisc);
1005 
1006 	cl->deficit -= (int) len;
1007 
1008 	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1009 		list_del(&cl->alist);
1010 	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
1011 		cl->deficit += agg->lmax;
1012 		list_move_tail(&cl->alist, &agg->active);
1013 	}
1014 }
1015 
1016 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1017 					   struct qfq_class **cl,
1018 					   unsigned int *len)
1019 {
1020 	struct sk_buff *skb;
1021 
1022 	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
1023 	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1024 	if (skb == NULL)
1025 		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1026 	else
1027 		*len = qdisc_pkt_len(skb);
1028 
1029 	return skb;
1030 }
1031 
1032 /* Update F according to the actual service received by the aggregate. */
1033 static inline void charge_actual_service(struct qfq_aggregate *agg)
1034 {
1035 	/* Compute the service received by the aggregate, taking into
1036 	 * account that, after decreasing the number of classes in
1037 	 * agg, it may happen that
1038 	 * agg->initial_budget - agg->budget > agg->bugdetmax
1039 	 */
1040 	u32 service_received = min(agg->budgetmax,
1041 				   agg->initial_budget - agg->budget);
1042 
1043 	agg->F = agg->S + (u64)service_received * agg->inv_w;
1044 }
1045 
1046 /* Assign a reasonable start time for a new aggregate in group i.
1047  * Admissible values for \hat(F) are multiples of \sigma_i
1048  * no greater than V+\sigma_i . Larger values mean that
1049  * we had a wraparound so we consider the timestamp to be stale.
1050  *
1051  * If F is not stale and F >= V then we set S = F.
1052  * Otherwise we should assign S = V, but this may violate
1053  * the ordering in EB (see [2]). So, if we have groups in ER,
1054  * set S to the F_j of the first group j which would be blocking us.
1055  * We are guaranteed not to move S backward because
1056  * otherwise our group i would still be blocked.
1057  */
1058 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1059 {
1060 	unsigned long mask;
1061 	u64 limit, roundedF;
1062 	int slot_shift = agg->grp->slot_shift;
1063 
1064 	roundedF = qfq_round_down(agg->F, slot_shift);
1065 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1066 
1067 	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1068 		/* timestamp was stale */
1069 		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1070 		if (mask) {
1071 			struct qfq_group *next = qfq_ffs(q, mask);
1072 			if (qfq_gt(roundedF, next->F)) {
1073 				if (qfq_gt(limit, next->F))
1074 					agg->S = next->F;
1075 				else /* preserve timestamp correctness */
1076 					agg->S = limit;
1077 				return;
1078 			}
1079 		}
1080 		agg->S = q->V;
1081 	} else  /* timestamp is not stale */
1082 		agg->S = agg->F;
1083 }
1084 
1085 /* Update the timestamps of agg before scheduling/rescheduling it for
1086  * service.  In particular, assign to agg->F its maximum possible
1087  * value, i.e., the virtual finish time with which the aggregate
1088  * should be labeled if it used all its budget once in service.
1089  */
1090 static inline void
1091 qfq_update_agg_ts(struct qfq_sched *q,
1092 		    struct qfq_aggregate *agg, enum update_reason reason)
1093 {
1094 	if (reason != requeue)
1095 		qfq_update_start(q, agg);
1096 	else /* just charge agg for the service received */
1097 		agg->S = agg->F;
1098 
1099 	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1100 }
1101 
1102 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1103 
1104 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1105 {
1106 	struct qfq_sched *q = qdisc_priv(sch);
1107 	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1108 	struct qfq_class *cl;
1109 	struct sk_buff *skb = NULL;
1110 	/* next-packet len, 0 means no more active classes in in-service agg */
1111 	unsigned int len = 0;
1112 
1113 	if (in_serv_agg == NULL)
1114 		return NULL;
1115 
1116 	if (!list_empty(&in_serv_agg->active))
1117 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1118 
1119 	/*
1120 	 * If there are no active classes in the in-service aggregate,
1121 	 * or if the aggregate has not enough budget to serve its next
1122 	 * class, then choose the next aggregate to serve.
1123 	 */
1124 	if (len == 0 || in_serv_agg->budget < len) {
1125 		charge_actual_service(in_serv_agg);
1126 
1127 		/* recharge the budget of the aggregate */
1128 		in_serv_agg->initial_budget = in_serv_agg->budget =
1129 			in_serv_agg->budgetmax;
1130 
1131 		if (!list_empty(&in_serv_agg->active)) {
1132 			/*
1133 			 * Still active: reschedule for
1134 			 * service. Possible optimization: if no other
1135 			 * aggregate is active, then there is no point
1136 			 * in rescheduling this aggregate, and we can
1137 			 * just keep it as the in-service one. This
1138 			 * should be however a corner case, and to
1139 			 * handle it, we would need to maintain an
1140 			 * extra num_active_aggs field.
1141 			*/
1142 			qfq_update_agg_ts(q, in_serv_agg, requeue);
1143 			qfq_schedule_agg(q, in_serv_agg);
1144 		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1145 			q->in_serv_agg = NULL;
1146 			return NULL;
1147 		}
1148 
1149 		/*
1150 		 * If we get here, there are other aggregates queued:
1151 		 * choose the new aggregate to serve.
1152 		 */
1153 		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1154 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1155 	}
1156 	if (!skb)
1157 		return NULL;
1158 
1159 	qdisc_qstats_backlog_dec(sch, skb);
1160 	sch->q.qlen--;
1161 	qdisc_bstats_update(sch, skb);
1162 
1163 	agg_dequeue(in_serv_agg, cl, len);
1164 	/* If lmax is lowered, through qfq_change_class, for a class
1165 	 * owning pending packets with larger size than the new value
1166 	 * of lmax, then the following condition may hold.
1167 	 */
1168 	if (unlikely(in_serv_agg->budget < len))
1169 		in_serv_agg->budget = 0;
1170 	else
1171 		in_serv_agg->budget -= len;
1172 
1173 	q->V += (u64)len * q->iwsum;
1174 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1175 		 len, (unsigned long long) in_serv_agg->F,
1176 		 (unsigned long long) q->V);
1177 
1178 	return skb;
1179 }
1180 
1181 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1182 {
1183 	struct qfq_group *grp;
1184 	struct qfq_aggregate *agg, *new_front_agg;
1185 	u64 old_F;
1186 
1187 	qfq_update_eligible(q);
1188 	q->oldV = q->V;
1189 
1190 	if (!q->bitmaps[ER])
1191 		return NULL;
1192 
1193 	grp = qfq_ffs(q, q->bitmaps[ER]);
1194 	old_F = grp->F;
1195 
1196 	agg = qfq_slot_head(grp);
1197 
1198 	/* agg starts to be served, remove it from schedule */
1199 	qfq_front_slot_remove(grp);
1200 
1201 	new_front_agg = qfq_slot_scan(grp);
1202 
1203 	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1204 		__clear_bit(grp->index, &q->bitmaps[ER]);
1205 	else {
1206 		u64 roundedS = qfq_round_down(new_front_agg->S,
1207 					      grp->slot_shift);
1208 		unsigned int s;
1209 
1210 		if (grp->S == roundedS)
1211 			return agg;
1212 		grp->S = roundedS;
1213 		grp->F = roundedS + (2ULL << grp->slot_shift);
1214 		__clear_bit(grp->index, &q->bitmaps[ER]);
1215 		s = qfq_calc_state(q, grp);
1216 		__set_bit(grp->index, &q->bitmaps[s]);
1217 	}
1218 
1219 	qfq_unblock_groups(q, grp->index, old_F);
1220 
1221 	return agg;
1222 }
1223 
1224 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1225 		       struct sk_buff **to_free)
1226 {
1227 	struct qfq_sched *q = qdisc_priv(sch);
1228 	struct qfq_class *cl;
1229 	struct qfq_aggregate *agg;
1230 	int err = 0;
1231 
1232 	cl = qfq_classify(skb, sch, &err);
1233 	if (cl == NULL) {
1234 		if (err & __NET_XMIT_BYPASS)
1235 			qdisc_qstats_drop(sch);
1236 		kfree_skb(skb);
1237 		return err;
1238 	}
1239 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1240 
1241 	if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1242 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1243 			 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1244 		err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1245 				     qdisc_pkt_len(skb));
1246 		if (err) {
1247 			cl->qstats.drops++;
1248 			return qdisc_drop(skb, sch, to_free);
1249 		}
1250 	}
1251 
1252 	err = qdisc_enqueue(skb, cl->qdisc, to_free);
1253 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1254 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1255 		if (net_xmit_drop_count(err)) {
1256 			cl->qstats.drops++;
1257 			qdisc_qstats_drop(sch);
1258 		}
1259 		return err;
1260 	}
1261 
1262 	bstats_update(&cl->bstats, skb);
1263 	qdisc_qstats_backlog_inc(sch, skb);
1264 	++sch->q.qlen;
1265 
1266 	agg = cl->agg;
1267 	/* if the queue was not empty, then done here */
1268 	if (cl->qdisc->q.qlen != 1) {
1269 		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1270 		    list_first_entry(&agg->active, struct qfq_class, alist)
1271 		    == cl && cl->deficit < qdisc_pkt_len(skb))
1272 			list_move_tail(&cl->alist, &agg->active);
1273 
1274 		return err;
1275 	}
1276 
1277 	/* schedule class for service within the aggregate */
1278 	cl->deficit = agg->lmax;
1279 	list_add_tail(&cl->alist, &agg->active);
1280 
1281 	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1282 	    q->in_serv_agg == agg)
1283 		return err; /* non-empty or in service, nothing else to do */
1284 
1285 	qfq_activate_agg(q, agg, enqueue);
1286 
1287 	return err;
1288 }
1289 
1290 /*
1291  * Schedule aggregate according to its timestamps.
1292  */
1293 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1294 {
1295 	struct qfq_group *grp = agg->grp;
1296 	u64 roundedS;
1297 	int s;
1298 
1299 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1300 
1301 	/*
1302 	 * Insert agg in the correct bucket.
1303 	 * If agg->S >= grp->S we don't need to adjust the
1304 	 * bucket list and simply go to the insertion phase.
1305 	 * Otherwise grp->S is decreasing, we must make room
1306 	 * in the bucket list, and also recompute the group state.
1307 	 * Finally, if there were no flows in this group and nobody
1308 	 * was in ER make sure to adjust V.
1309 	 */
1310 	if (grp->full_slots) {
1311 		if (!qfq_gt(grp->S, agg->S))
1312 			goto skip_update;
1313 
1314 		/* create a slot for this agg->S */
1315 		qfq_slot_rotate(grp, roundedS);
1316 		/* group was surely ineligible, remove */
1317 		__clear_bit(grp->index, &q->bitmaps[IR]);
1318 		__clear_bit(grp->index, &q->bitmaps[IB]);
1319 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1320 		   q->in_serv_agg == NULL)
1321 		q->V = roundedS;
1322 
1323 	grp->S = roundedS;
1324 	grp->F = roundedS + (2ULL << grp->slot_shift);
1325 	s = qfq_calc_state(q, grp);
1326 	__set_bit(grp->index, &q->bitmaps[s]);
1327 
1328 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1329 		 s, q->bitmaps[s],
1330 		 (unsigned long long) agg->S,
1331 		 (unsigned long long) agg->F,
1332 		 (unsigned long long) q->V);
1333 
1334 skip_update:
1335 	qfq_slot_insert(grp, agg, roundedS);
1336 }
1337 
1338 
1339 /* Update agg ts and schedule agg for service */
1340 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1341 			     enum update_reason reason)
1342 {
1343 	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1344 
1345 	qfq_update_agg_ts(q, agg, reason);
1346 	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1347 		q->in_serv_agg = agg; /* start serving this aggregate */
1348 		 /* update V: to be in service, agg must be eligible */
1349 		q->oldV = q->V = agg->S;
1350 	} else if (agg != q->in_serv_agg)
1351 		qfq_schedule_agg(q, agg);
1352 }
1353 
1354 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1355 			    struct qfq_aggregate *agg)
1356 {
1357 	unsigned int i, offset;
1358 	u64 roundedS;
1359 
1360 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1361 	offset = (roundedS - grp->S) >> grp->slot_shift;
1362 
1363 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1364 
1365 	hlist_del(&agg->next);
1366 	if (hlist_empty(&grp->slots[i]))
1367 		__clear_bit(offset, &grp->full_slots);
1368 }
1369 
1370 /*
1371  * Called to forcibly deschedule an aggregate.  If the aggregate is
1372  * not in the front bucket, or if the latter has other aggregates in
1373  * the front bucket, we can simply remove the aggregate with no other
1374  * side effects.
1375  * Otherwise we must propagate the event up.
1376  */
1377 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1378 {
1379 	struct qfq_group *grp = agg->grp;
1380 	unsigned long mask;
1381 	u64 roundedS;
1382 	int s;
1383 
1384 	if (agg == q->in_serv_agg) {
1385 		charge_actual_service(agg);
1386 		q->in_serv_agg = qfq_choose_next_agg(q);
1387 		return;
1388 	}
1389 
1390 	agg->F = agg->S;
1391 	qfq_slot_remove(q, grp, agg);
1392 
1393 	if (!grp->full_slots) {
1394 		__clear_bit(grp->index, &q->bitmaps[IR]);
1395 		__clear_bit(grp->index, &q->bitmaps[EB]);
1396 		__clear_bit(grp->index, &q->bitmaps[IB]);
1397 
1398 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1399 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1400 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1401 			if (mask)
1402 				mask = ~((1UL << __fls(mask)) - 1);
1403 			else
1404 				mask = ~0UL;
1405 			qfq_move_groups(q, mask, EB, ER);
1406 			qfq_move_groups(q, mask, IB, IR);
1407 		}
1408 		__clear_bit(grp->index, &q->bitmaps[ER]);
1409 	} else if (hlist_empty(&grp->slots[grp->front])) {
1410 		agg = qfq_slot_scan(grp);
1411 		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1412 		if (grp->S != roundedS) {
1413 			__clear_bit(grp->index, &q->bitmaps[ER]);
1414 			__clear_bit(grp->index, &q->bitmaps[IR]);
1415 			__clear_bit(grp->index, &q->bitmaps[EB]);
1416 			__clear_bit(grp->index, &q->bitmaps[IB]);
1417 			grp->S = roundedS;
1418 			grp->F = roundedS + (2ULL << grp->slot_shift);
1419 			s = qfq_calc_state(q, grp);
1420 			__set_bit(grp->index, &q->bitmaps[s]);
1421 		}
1422 	}
1423 }
1424 
1425 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1426 {
1427 	struct qfq_sched *q = qdisc_priv(sch);
1428 	struct qfq_class *cl = (struct qfq_class *)arg;
1429 
1430 	if (cl->qdisc->q.qlen == 0)
1431 		qfq_deactivate_class(q, cl);
1432 }
1433 
1434 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1435 {
1436 	struct qfq_sched *q = qdisc_priv(sch);
1437 	struct qfq_group *grp;
1438 	int i, j, err;
1439 	u32 max_cl_shift, maxbudg_shift, max_classes;
1440 
1441 	err = qdisc_class_hash_init(&q->clhash);
1442 	if (err < 0)
1443 		return err;
1444 
1445 	if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1446 		max_classes = QFQ_MAX_AGG_CLASSES;
1447 	else
1448 		max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1449 	/* max_cl_shift = floor(log_2(max_classes)) */
1450 	max_cl_shift = __fls(max_classes);
1451 	q->max_agg_classes = 1<<max_cl_shift;
1452 
1453 	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1454 	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1455 	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1456 
1457 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1458 		grp = &q->groups[i];
1459 		grp->index = i;
1460 		grp->slot_shift = q->min_slot_shift + i;
1461 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1462 			INIT_HLIST_HEAD(&grp->slots[j]);
1463 	}
1464 
1465 	INIT_HLIST_HEAD(&q->nonfull_aggs);
1466 
1467 	return 0;
1468 }
1469 
1470 static void qfq_reset_qdisc(struct Qdisc *sch)
1471 {
1472 	struct qfq_sched *q = qdisc_priv(sch);
1473 	struct qfq_class *cl;
1474 	unsigned int i;
1475 
1476 	for (i = 0; i < q->clhash.hashsize; i++) {
1477 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1478 			if (cl->qdisc->q.qlen > 0)
1479 				qfq_deactivate_class(q, cl);
1480 
1481 			qdisc_reset(cl->qdisc);
1482 		}
1483 	}
1484 	sch->qstats.backlog = 0;
1485 	sch->q.qlen = 0;
1486 }
1487 
1488 static void qfq_destroy_qdisc(struct Qdisc *sch)
1489 {
1490 	struct qfq_sched *q = qdisc_priv(sch);
1491 	struct qfq_class *cl;
1492 	struct hlist_node *next;
1493 	unsigned int i;
1494 
1495 	tcf_destroy_chain(&q->filter_list);
1496 
1497 	for (i = 0; i < q->clhash.hashsize; i++) {
1498 		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1499 					  common.hnode) {
1500 			qfq_destroy_class(sch, cl);
1501 		}
1502 	}
1503 	qdisc_class_hash_destroy(&q->clhash);
1504 }
1505 
1506 static const struct Qdisc_class_ops qfq_class_ops = {
1507 	.change		= qfq_change_class,
1508 	.delete		= qfq_delete_class,
1509 	.get		= qfq_get_class,
1510 	.put		= qfq_put_class,
1511 	.tcf_chain	= qfq_tcf_chain,
1512 	.bind_tcf	= qfq_bind_tcf,
1513 	.unbind_tcf	= qfq_unbind_tcf,
1514 	.graft		= qfq_graft_class,
1515 	.leaf		= qfq_class_leaf,
1516 	.qlen_notify	= qfq_qlen_notify,
1517 	.dump		= qfq_dump_class,
1518 	.dump_stats	= qfq_dump_class_stats,
1519 	.walk		= qfq_walk,
1520 };
1521 
1522 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1523 	.cl_ops		= &qfq_class_ops,
1524 	.id		= "qfq",
1525 	.priv_size	= sizeof(struct qfq_sched),
1526 	.enqueue	= qfq_enqueue,
1527 	.dequeue	= qfq_dequeue,
1528 	.peek		= qdisc_peek_dequeued,
1529 	.init		= qfq_init_qdisc,
1530 	.reset		= qfq_reset_qdisc,
1531 	.destroy	= qfq_destroy_qdisc,
1532 	.owner		= THIS_MODULE,
1533 };
1534 
1535 static int __init qfq_init(void)
1536 {
1537 	return register_qdisc(&qfq_qdisc_ops);
1538 }
1539 
1540 static void __exit qfq_exit(void)
1541 {
1542 	unregister_qdisc(&qfq_qdisc_ops);
1543 }
1544 
1545 module_init(qfq_init);
1546 module_exit(qfq_exit);
1547 MODULE_LICENSE("GPL");
1548