1 /* 2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler. 3 * 4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 5 * Copyright (c) 2012 Paolo Valente. 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * version 2 as published by the Free Software Foundation. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/bitops.h> 15 #include <linux/errno.h> 16 #include <linux/netdevice.h> 17 #include <linux/pkt_sched.h> 18 #include <net/sch_generic.h> 19 #include <net/pkt_sched.h> 20 #include <net/pkt_cls.h> 21 22 23 /* Quick Fair Queueing Plus 24 ======================== 25 26 Sources: 27 28 [1] Paolo Valente, 29 "Reducing the Execution Time of Fair-Queueing Schedulers." 30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf 31 32 Sources for QFQ: 33 34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 35 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 36 37 See also: 38 http://retis.sssup.it/~fabio/linux/qfq/ 39 */ 40 41 /* 42 43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES 44 classes. Each aggregate is timestamped with a virtual start time S 45 and a virtual finish time F, and scheduled according to its 46 timestamps. S and F are computed as a function of a system virtual 47 time function V. The classes within each aggregate are instead 48 scheduled with DRR. 49 50 To speed up operations, QFQ+ divides also aggregates into a limited 51 number of groups. Which group a class belongs to depends on the 52 ratio between the maximum packet length for the class and the weight 53 of the class. Groups have their own S and F. In the end, QFQ+ 54 schedules groups, then aggregates within groups, then classes within 55 aggregates. See [1] and [2] for a full description. 56 57 Virtual time computations. 58 59 S, F and V are all computed in fixed point arithmetic with 60 FRAC_BITS decimal bits. 61 62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 63 one bit per index. 64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 65 66 The layout of the bits is as below: 67 68 [ MTU_SHIFT ][ FRAC_BITS ] 69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 70 ^.__grp->index = 0 71 *.__grp->slot_shift 72 73 where MIN_SLOT_SHIFT is derived by difference from the others. 74 75 The max group index corresponds to Lmax/w_min, where 76 Lmax=1<<MTU_SHIFT, w_min = 1 . 77 From this, and knowing how many groups (MAX_INDEX) we want, 78 we can derive the shift corresponding to each group. 79 80 Because we often need to compute 81 F = S + len/w_i and V = V + len/wsum 82 instead of storing w_i store the value 83 inv_w = (1<<FRAC_BITS)/w_i 84 so we can do F = S + len * inv_w * wsum. 85 We use W_TOT in the formulas so we can easily move between 86 static and adaptive weight sum. 87 88 The per-scheduler-instance data contain all the data structures 89 for the scheduler: bitmaps and bucket lists. 90 91 */ 92 93 /* 94 * Maximum number of consecutive slots occupied by backlogged classes 95 * inside a group. 96 */ 97 #define QFQ_MAX_SLOTS 32 98 99 /* 100 * Shifts used for aggregate<->group mapping. We allow class weights that are 101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the 102 * group with the smallest index that can support the L_i / r_i configured 103 * for the classes in the aggregate. 104 * 105 * grp->index is the index of the group; and grp->slot_shift 106 * is the shift for the corresponding (scaled) sigma_i. 107 */ 108 #define QFQ_MAX_INDEX 24 109 #define QFQ_MAX_WSHIFT 10 110 111 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */ 112 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT) 113 114 #define FRAC_BITS 30 /* fixed point arithmetic */ 115 #define ONE_FP (1UL << FRAC_BITS) 116 117 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */ 118 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */ 119 120 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */ 121 122 /* 123 * Possible group states. These values are used as indexes for the bitmaps 124 * array of struct qfq_queue. 125 */ 126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 127 128 struct qfq_group; 129 130 struct qfq_aggregate; 131 132 struct qfq_class { 133 struct Qdisc_class_common common; 134 135 unsigned int refcnt; 136 unsigned int filter_cnt; 137 138 struct gnet_stats_basic_packed bstats; 139 struct gnet_stats_queue qstats; 140 struct net_rate_estimator __rcu *rate_est; 141 struct Qdisc *qdisc; 142 struct list_head alist; /* Link for active-classes list. */ 143 struct qfq_aggregate *agg; /* Parent aggregate. */ 144 int deficit; /* DRR deficit counter. */ 145 }; 146 147 struct qfq_aggregate { 148 struct hlist_node next; /* Link for the slot list. */ 149 u64 S, F; /* flow timestamps (exact) */ 150 151 /* group we belong to. In principle we would need the index, 152 * which is log_2(lmax/weight), but we never reference it 153 * directly, only the group. 154 */ 155 struct qfq_group *grp; 156 157 /* these are copied from the flowset. */ 158 u32 class_weight; /* Weight of each class in this aggregate. */ 159 /* Max pkt size for the classes in this aggregate, DRR quantum. */ 160 int lmax; 161 162 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */ 163 u32 budgetmax; /* Max budget for this aggregate. */ 164 u32 initial_budget, budget; /* Initial and current budget. */ 165 166 int num_classes; /* Number of classes in this aggr. */ 167 struct list_head active; /* DRR queue of active classes. */ 168 169 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */ 170 }; 171 172 struct qfq_group { 173 u64 S, F; /* group timestamps (approx). */ 174 unsigned int slot_shift; /* Slot shift. */ 175 unsigned int index; /* Group index. */ 176 unsigned int front; /* Index of the front slot. */ 177 unsigned long full_slots; /* non-empty slots */ 178 179 /* Array of RR lists of active aggregates. */ 180 struct hlist_head slots[QFQ_MAX_SLOTS]; 181 }; 182 183 struct qfq_sched { 184 struct tcf_proto __rcu *filter_list; 185 struct Qdisc_class_hash clhash; 186 187 u64 oldV, V; /* Precise virtual times. */ 188 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */ 189 u32 wsum; /* weight sum */ 190 u32 iwsum; /* inverse weight sum */ 191 192 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 193 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 194 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */ 195 196 u32 max_agg_classes; /* Max number of classes per aggr. */ 197 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */ 198 }; 199 200 /* 201 * Possible reasons why the timestamps of an aggregate are updated 202 * enqueue: the aggregate switches from idle to active and must scheduled 203 * for service 204 * requeue: the aggregate finishes its budget, so it stops being served and 205 * must be rescheduled for service 206 */ 207 enum update_reason {enqueue, requeue}; 208 209 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 210 { 211 struct qfq_sched *q = qdisc_priv(sch); 212 struct Qdisc_class_common *clc; 213 214 clc = qdisc_class_find(&q->clhash, classid); 215 if (clc == NULL) 216 return NULL; 217 return container_of(clc, struct qfq_class, common); 218 } 219 220 static void qfq_purge_queue(struct qfq_class *cl) 221 { 222 unsigned int len = cl->qdisc->q.qlen; 223 unsigned int backlog = cl->qdisc->qstats.backlog; 224 225 qdisc_reset(cl->qdisc); 226 qdisc_tree_reduce_backlog(cl->qdisc, len, backlog); 227 } 228 229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 }, 231 [TCA_QFQ_LMAX] = { .type = NLA_U32 }, 232 }; 233 234 /* 235 * Calculate a flow index, given its weight and maximum packet length. 236 * index = log_2(maxlen/weight) but we need to apply the scaling. 237 * This is used only once at flow creation. 238 */ 239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift) 240 { 241 u64 slot_size = (u64)maxlen * inv_w; 242 unsigned long size_map; 243 int index = 0; 244 245 size_map = slot_size >> min_slot_shift; 246 if (!size_map) 247 goto out; 248 249 index = __fls(size_map) + 1; /* basically a log_2 */ 250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1))); 251 252 if (index < 0) 253 index = 0; 254 out: 255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 256 (unsigned long) ONE_FP/inv_w, maxlen, index); 257 258 return index; 259 } 260 261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *); 262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *, 263 enum update_reason); 264 265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 266 u32 lmax, u32 weight) 267 { 268 INIT_LIST_HEAD(&agg->active); 269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 270 271 agg->lmax = lmax; 272 agg->class_weight = weight; 273 } 274 275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q, 276 u32 lmax, u32 weight) 277 { 278 struct qfq_aggregate *agg; 279 280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next) 281 if (agg->lmax == lmax && agg->class_weight == weight) 282 return agg; 283 284 return NULL; 285 } 286 287 288 /* Update aggregate as a function of the new number of classes. */ 289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 290 int new_num_classes) 291 { 292 u32 new_agg_weight; 293 294 if (new_num_classes == q->max_agg_classes) 295 hlist_del_init(&agg->nonfull_next); 296 297 if (agg->num_classes > new_num_classes && 298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */ 299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 300 301 /* The next assignment may let 302 * agg->initial_budget > agg->budgetmax 303 * hold, we will take it into account in charge_actual_service(). 304 */ 305 agg->budgetmax = new_num_classes * agg->lmax; 306 new_agg_weight = agg->class_weight * new_num_classes; 307 agg->inv_w = ONE_FP/new_agg_weight; 308 309 if (agg->grp == NULL) { 310 int i = qfq_calc_index(agg->inv_w, agg->budgetmax, 311 q->min_slot_shift); 312 agg->grp = &q->groups[i]; 313 } 314 315 q->wsum += 316 (int) agg->class_weight * (new_num_classes - agg->num_classes); 317 q->iwsum = ONE_FP / q->wsum; 318 319 agg->num_classes = new_num_classes; 320 } 321 322 /* Add class to aggregate. */ 323 static void qfq_add_to_agg(struct qfq_sched *q, 324 struct qfq_aggregate *agg, 325 struct qfq_class *cl) 326 { 327 cl->agg = agg; 328 329 qfq_update_agg(q, agg, agg->num_classes+1); 330 if (cl->qdisc->q.qlen > 0) { /* adding an active class */ 331 list_add_tail(&cl->alist, &agg->active); 332 if (list_first_entry(&agg->active, struct qfq_class, alist) == 333 cl && q->in_serv_agg != agg) /* agg was inactive */ 334 qfq_activate_agg(q, agg, enqueue); /* schedule agg */ 335 } 336 } 337 338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *); 339 340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 341 { 342 hlist_del_init(&agg->nonfull_next); 343 q->wsum -= agg->class_weight; 344 if (q->wsum != 0) 345 q->iwsum = ONE_FP / q->wsum; 346 347 if (q->in_serv_agg == agg) 348 q->in_serv_agg = qfq_choose_next_agg(q); 349 kfree(agg); 350 } 351 352 /* Deschedule class from within its parent aggregate. */ 353 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 354 { 355 struct qfq_aggregate *agg = cl->agg; 356 357 358 list_del(&cl->alist); /* remove from RR queue of the aggregate */ 359 if (list_empty(&agg->active)) /* agg is now inactive */ 360 qfq_deactivate_agg(q, agg); 361 } 362 363 /* Remove class from its parent aggregate. */ 364 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 365 { 366 struct qfq_aggregate *agg = cl->agg; 367 368 cl->agg = NULL; 369 if (agg->num_classes == 1) { /* agg being emptied, destroy it */ 370 qfq_destroy_agg(q, agg); 371 return; 372 } 373 qfq_update_agg(q, agg, agg->num_classes-1); 374 } 375 376 /* Deschedule class and remove it from its parent aggregate. */ 377 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 378 { 379 if (cl->qdisc->q.qlen > 0) /* class is active */ 380 qfq_deactivate_class(q, cl); 381 382 qfq_rm_from_agg(q, cl); 383 } 384 385 /* Move class to a new aggregate, matching the new class weight and/or lmax */ 386 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight, 387 u32 lmax) 388 { 389 struct qfq_sched *q = qdisc_priv(sch); 390 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight); 391 392 if (new_agg == NULL) { /* create new aggregate */ 393 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC); 394 if (new_agg == NULL) 395 return -ENOBUFS; 396 qfq_init_agg(q, new_agg, lmax, weight); 397 } 398 qfq_deact_rm_from_agg(q, cl); 399 qfq_add_to_agg(q, new_agg, cl); 400 401 return 0; 402 } 403 404 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 405 struct nlattr **tca, unsigned long *arg) 406 { 407 struct qfq_sched *q = qdisc_priv(sch); 408 struct qfq_class *cl = (struct qfq_class *)*arg; 409 bool existing = false; 410 struct nlattr *tb[TCA_QFQ_MAX + 1]; 411 struct qfq_aggregate *new_agg = NULL; 412 u32 weight, lmax, inv_w; 413 int err; 414 int delta_w; 415 416 if (tca[TCA_OPTIONS] == NULL) { 417 pr_notice("qfq: no options\n"); 418 return -EINVAL; 419 } 420 421 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy, 422 NULL); 423 if (err < 0) 424 return err; 425 426 if (tb[TCA_QFQ_WEIGHT]) { 427 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]); 428 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) { 429 pr_notice("qfq: invalid weight %u\n", weight); 430 return -EINVAL; 431 } 432 } else 433 weight = 1; 434 435 if (tb[TCA_QFQ_LMAX]) { 436 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 437 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) { 438 pr_notice("qfq: invalid max length %u\n", lmax); 439 return -EINVAL; 440 } 441 } else 442 lmax = psched_mtu(qdisc_dev(sch)); 443 444 inv_w = ONE_FP / weight; 445 weight = ONE_FP / inv_w; 446 447 if (cl != NULL && 448 lmax == cl->agg->lmax && 449 weight == cl->agg->class_weight) 450 return 0; /* nothing to change */ 451 452 delta_w = weight - (cl ? cl->agg->class_weight : 0); 453 454 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 455 pr_notice("qfq: total weight out of range (%d + %u)\n", 456 delta_w, q->wsum); 457 return -EINVAL; 458 } 459 460 if (cl != NULL) { /* modify existing class */ 461 if (tca[TCA_RATE]) { 462 err = gen_replace_estimator(&cl->bstats, NULL, 463 &cl->rate_est, 464 NULL, 465 qdisc_root_sleeping_running(sch), 466 tca[TCA_RATE]); 467 if (err) 468 return err; 469 } 470 existing = true; 471 goto set_change_agg; 472 } 473 474 /* create and init new class */ 475 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 476 if (cl == NULL) 477 return -ENOBUFS; 478 479 cl->refcnt = 1; 480 cl->common.classid = classid; 481 cl->deficit = lmax; 482 483 cl->qdisc = qdisc_create_dflt(sch->dev_queue, 484 &pfifo_qdisc_ops, classid); 485 if (cl->qdisc == NULL) 486 cl->qdisc = &noop_qdisc; 487 488 if (tca[TCA_RATE]) { 489 err = gen_new_estimator(&cl->bstats, NULL, 490 &cl->rate_est, 491 NULL, 492 qdisc_root_sleeping_running(sch), 493 tca[TCA_RATE]); 494 if (err) 495 goto destroy_class; 496 } 497 498 if (cl->qdisc != &noop_qdisc) 499 qdisc_hash_add(cl->qdisc, true); 500 sch_tree_lock(sch); 501 qdisc_class_hash_insert(&q->clhash, &cl->common); 502 sch_tree_unlock(sch); 503 504 qdisc_class_hash_grow(sch, &q->clhash); 505 506 set_change_agg: 507 sch_tree_lock(sch); 508 new_agg = qfq_find_agg(q, lmax, weight); 509 if (new_agg == NULL) { /* create new aggregate */ 510 sch_tree_unlock(sch); 511 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL); 512 if (new_agg == NULL) { 513 err = -ENOBUFS; 514 gen_kill_estimator(&cl->rate_est); 515 goto destroy_class; 516 } 517 sch_tree_lock(sch); 518 qfq_init_agg(q, new_agg, lmax, weight); 519 } 520 if (existing) 521 qfq_deact_rm_from_agg(q, cl); 522 qfq_add_to_agg(q, new_agg, cl); 523 sch_tree_unlock(sch); 524 525 *arg = (unsigned long)cl; 526 return 0; 527 528 destroy_class: 529 qdisc_destroy(cl->qdisc); 530 kfree(cl); 531 return err; 532 } 533 534 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 535 { 536 struct qfq_sched *q = qdisc_priv(sch); 537 538 qfq_rm_from_agg(q, cl); 539 gen_kill_estimator(&cl->rate_est); 540 qdisc_destroy(cl->qdisc); 541 kfree(cl); 542 } 543 544 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg) 545 { 546 struct qfq_sched *q = qdisc_priv(sch); 547 struct qfq_class *cl = (struct qfq_class *)arg; 548 549 if (cl->filter_cnt > 0) 550 return -EBUSY; 551 552 sch_tree_lock(sch); 553 554 qfq_purge_queue(cl); 555 qdisc_class_hash_remove(&q->clhash, &cl->common); 556 557 BUG_ON(--cl->refcnt == 0); 558 /* 559 * This shouldn't happen: we "hold" one cops->get() when called 560 * from tc_ctl_tclass; the destroy method is done from cops->put(). 561 */ 562 563 sch_tree_unlock(sch); 564 return 0; 565 } 566 567 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid) 568 { 569 struct qfq_class *cl = qfq_find_class(sch, classid); 570 571 if (cl != NULL) 572 cl->refcnt++; 573 574 return (unsigned long)cl; 575 } 576 577 static void qfq_put_class(struct Qdisc *sch, unsigned long arg) 578 { 579 struct qfq_class *cl = (struct qfq_class *)arg; 580 581 if (--cl->refcnt == 0) 582 qfq_destroy_class(sch, cl); 583 } 584 585 static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch, 586 unsigned long cl) 587 { 588 struct qfq_sched *q = qdisc_priv(sch); 589 590 if (cl) 591 return NULL; 592 593 return &q->filter_list; 594 } 595 596 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 597 u32 classid) 598 { 599 struct qfq_class *cl = qfq_find_class(sch, classid); 600 601 if (cl != NULL) 602 cl->filter_cnt++; 603 604 return (unsigned long)cl; 605 } 606 607 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 608 { 609 struct qfq_class *cl = (struct qfq_class *)arg; 610 611 cl->filter_cnt--; 612 } 613 614 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 615 struct Qdisc *new, struct Qdisc **old) 616 { 617 struct qfq_class *cl = (struct qfq_class *)arg; 618 619 if (new == NULL) { 620 new = qdisc_create_dflt(sch->dev_queue, 621 &pfifo_qdisc_ops, cl->common.classid); 622 if (new == NULL) 623 new = &noop_qdisc; 624 } 625 626 *old = qdisc_replace(sch, new, &cl->qdisc); 627 return 0; 628 } 629 630 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 631 { 632 struct qfq_class *cl = (struct qfq_class *)arg; 633 634 return cl->qdisc; 635 } 636 637 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 638 struct sk_buff *skb, struct tcmsg *tcm) 639 { 640 struct qfq_class *cl = (struct qfq_class *)arg; 641 struct nlattr *nest; 642 643 tcm->tcm_parent = TC_H_ROOT; 644 tcm->tcm_handle = cl->common.classid; 645 tcm->tcm_info = cl->qdisc->handle; 646 647 nest = nla_nest_start(skb, TCA_OPTIONS); 648 if (nest == NULL) 649 goto nla_put_failure; 650 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) || 651 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax)) 652 goto nla_put_failure; 653 return nla_nest_end(skb, nest); 654 655 nla_put_failure: 656 nla_nest_cancel(skb, nest); 657 return -EMSGSIZE; 658 } 659 660 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 661 struct gnet_dump *d) 662 { 663 struct qfq_class *cl = (struct qfq_class *)arg; 664 struct tc_qfq_stats xstats; 665 666 memset(&xstats, 0, sizeof(xstats)); 667 668 xstats.weight = cl->agg->class_weight; 669 xstats.lmax = cl->agg->lmax; 670 671 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch), 672 d, NULL, &cl->bstats) < 0 || 673 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || 674 gnet_stats_copy_queue(d, NULL, 675 &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0) 676 return -1; 677 678 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 679 } 680 681 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 682 { 683 struct qfq_sched *q = qdisc_priv(sch); 684 struct qfq_class *cl; 685 unsigned int i; 686 687 if (arg->stop) 688 return; 689 690 for (i = 0; i < q->clhash.hashsize; i++) { 691 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 692 if (arg->count < arg->skip) { 693 arg->count++; 694 continue; 695 } 696 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 697 arg->stop = 1; 698 return; 699 } 700 arg->count++; 701 } 702 } 703 } 704 705 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 706 int *qerr) 707 { 708 struct qfq_sched *q = qdisc_priv(sch); 709 struct qfq_class *cl; 710 struct tcf_result res; 711 struct tcf_proto *fl; 712 int result; 713 714 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 715 pr_debug("qfq_classify: found %d\n", skb->priority); 716 cl = qfq_find_class(sch, skb->priority); 717 if (cl != NULL) 718 return cl; 719 } 720 721 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 722 fl = rcu_dereference_bh(q->filter_list); 723 result = tc_classify(skb, fl, &res, false); 724 if (result >= 0) { 725 #ifdef CONFIG_NET_CLS_ACT 726 switch (result) { 727 case TC_ACT_QUEUED: 728 case TC_ACT_STOLEN: 729 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 730 case TC_ACT_SHOT: 731 return NULL; 732 } 733 #endif 734 cl = (struct qfq_class *)res.class; 735 if (cl == NULL) 736 cl = qfq_find_class(sch, res.classid); 737 return cl; 738 } 739 740 return NULL; 741 } 742 743 /* Generic comparison function, handling wraparound. */ 744 static inline int qfq_gt(u64 a, u64 b) 745 { 746 return (s64)(a - b) > 0; 747 } 748 749 /* Round a precise timestamp to its slotted value. */ 750 static inline u64 qfq_round_down(u64 ts, unsigned int shift) 751 { 752 return ts & ~((1ULL << shift) - 1); 753 } 754 755 /* return the pointer to the group with lowest index in the bitmap */ 756 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 757 unsigned long bitmap) 758 { 759 int index = __ffs(bitmap); 760 return &q->groups[index]; 761 } 762 /* Calculate a mask to mimic what would be ffs_from(). */ 763 static inline unsigned long mask_from(unsigned long bitmap, int from) 764 { 765 return bitmap & ~((1UL << from) - 1); 766 } 767 768 /* 769 * The state computation relies on ER=0, IR=1, EB=2, IB=3 770 * First compute eligibility comparing grp->S, q->V, 771 * then check if someone is blocking us and possibly add EB 772 */ 773 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 774 { 775 /* if S > V we are not eligible */ 776 unsigned int state = qfq_gt(grp->S, q->V); 777 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 778 struct qfq_group *next; 779 780 if (mask) { 781 next = qfq_ffs(q, mask); 782 if (qfq_gt(grp->F, next->F)) 783 state |= EB; 784 } 785 786 return state; 787 } 788 789 790 /* 791 * In principle 792 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 793 * q->bitmaps[src] &= ~mask; 794 * but we should make sure that src != dst 795 */ 796 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 797 int src, int dst) 798 { 799 q->bitmaps[dst] |= q->bitmaps[src] & mask; 800 q->bitmaps[src] &= ~mask; 801 } 802 803 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 804 { 805 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 806 struct qfq_group *next; 807 808 if (mask) { 809 next = qfq_ffs(q, mask); 810 if (!qfq_gt(next->F, old_F)) 811 return; 812 } 813 814 mask = (1UL << index) - 1; 815 qfq_move_groups(q, mask, EB, ER); 816 qfq_move_groups(q, mask, IB, IR); 817 } 818 819 /* 820 * perhaps 821 * 822 old_V ^= q->V; 823 old_V >>= q->min_slot_shift; 824 if (old_V) { 825 ... 826 } 827 * 828 */ 829 static void qfq_make_eligible(struct qfq_sched *q) 830 { 831 unsigned long vslot = q->V >> q->min_slot_shift; 832 unsigned long old_vslot = q->oldV >> q->min_slot_shift; 833 834 if (vslot != old_vslot) { 835 unsigned long mask; 836 int last_flip_pos = fls(vslot ^ old_vslot); 837 838 if (last_flip_pos > 31) /* higher than the number of groups */ 839 mask = ~0UL; /* make all groups eligible */ 840 else 841 mask = (1UL << last_flip_pos) - 1; 842 843 qfq_move_groups(q, mask, IR, ER); 844 qfq_move_groups(q, mask, IB, EB); 845 } 846 } 847 848 /* 849 * The index of the slot in which the input aggregate agg is to be 850 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2' 851 * and not a '-1' because the start time of the group may be moved 852 * backward by one slot after the aggregate has been inserted, and 853 * this would cause non-empty slots to be right-shifted by one 854 * position. 855 * 856 * QFQ+ fully satisfies this bound to the slot index if the parameters 857 * of the classes are not changed dynamically, and if QFQ+ never 858 * happens to postpone the service of agg unjustly, i.e., it never 859 * happens that the aggregate becomes backlogged and eligible, or just 860 * eligible, while an aggregate with a higher approximated finish time 861 * is being served. In particular, in this case QFQ+ guarantees that 862 * the timestamps of agg are low enough that the slot index is never 863 * higher than 2. Unfortunately, QFQ+ cannot provide the same 864 * guarantee if it happens to unjustly postpone the service of agg, or 865 * if the parameters of some class are changed. 866 * 867 * As for the first event, i.e., an out-of-order service, the 868 * upper bound to the slot index guaranteed by QFQ+ grows to 869 * 2 + 870 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * 871 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1. 872 * 873 * The following function deals with this problem by backward-shifting 874 * the timestamps of agg, if needed, so as to guarantee that the slot 875 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may 876 * cause the service of other aggregates to be postponed, yet the 877 * worst-case guarantees of these aggregates are not violated. In 878 * fact, in case of no out-of-order service, the timestamps of agg 879 * would have been even lower than they are after the backward shift, 880 * because QFQ+ would have guaranteed a maximum value equal to 2 for 881 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose 882 * service is postponed because of the backward-shift would have 883 * however waited for the service of agg before being served. 884 * 885 * The other event that may cause the slot index to be higher than 2 886 * for agg is a recent change of the parameters of some class. If the 887 * weight of a class is increased or the lmax (max_pkt_size) of the 888 * class is decreased, then a new aggregate with smaller slot size 889 * than the original parent aggregate of the class may happen to be 890 * activated. The activation of this aggregate should be properly 891 * delayed to when the service of the class has finished in the ideal 892 * system tracked by QFQ+. If the activation of the aggregate is not 893 * delayed to this reference time instant, then this aggregate may be 894 * unjustly served before other aggregates waiting for service. This 895 * may cause the above bound to the slot index to be violated for some 896 * of these unlucky aggregates. 897 * 898 * Instead of delaying the activation of the new aggregate, which is 899 * quite complex, the above-discussed capping of the slot index is 900 * used to handle also the consequences of a change of the parameters 901 * of a class. 902 */ 903 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg, 904 u64 roundedS) 905 { 906 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 907 unsigned int i; /* slot index in the bucket list */ 908 909 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { 910 u64 deltaS = roundedS - grp->S - 911 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); 912 agg->S -= deltaS; 913 agg->F -= deltaS; 914 slot = QFQ_MAX_SLOTS - 2; 915 } 916 917 i = (grp->front + slot) % QFQ_MAX_SLOTS; 918 919 hlist_add_head(&agg->next, &grp->slots[i]); 920 __set_bit(slot, &grp->full_slots); 921 } 922 923 /* Maybe introduce hlist_first_entry?? */ 924 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp) 925 { 926 return hlist_entry(grp->slots[grp->front].first, 927 struct qfq_aggregate, next); 928 } 929 930 /* 931 * remove the entry from the slot 932 */ 933 static void qfq_front_slot_remove(struct qfq_group *grp) 934 { 935 struct qfq_aggregate *agg = qfq_slot_head(grp); 936 937 BUG_ON(!agg); 938 hlist_del(&agg->next); 939 if (hlist_empty(&grp->slots[grp->front])) 940 __clear_bit(0, &grp->full_slots); 941 } 942 943 /* 944 * Returns the first aggregate in the first non-empty bucket of the 945 * group. As a side effect, adjusts the bucket list so the first 946 * non-empty bucket is at position 0 in full_slots. 947 */ 948 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp) 949 { 950 unsigned int i; 951 952 pr_debug("qfq slot_scan: grp %u full %#lx\n", 953 grp->index, grp->full_slots); 954 955 if (grp->full_slots == 0) 956 return NULL; 957 958 i = __ffs(grp->full_slots); /* zero based */ 959 if (i > 0) { 960 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 961 grp->full_slots >>= i; 962 } 963 964 return qfq_slot_head(grp); 965 } 966 967 /* 968 * adjust the bucket list. When the start time of a group decreases, 969 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 970 * move the objects. The mask of occupied slots must be shifted 971 * because we use ffs() to find the first non-empty slot. 972 * This covers decreases in the group's start time, but what about 973 * increases of the start time ? 974 * Here too we should make sure that i is less than 32 975 */ 976 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 977 { 978 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 979 980 grp->full_slots <<= i; 981 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 982 } 983 984 static void qfq_update_eligible(struct qfq_sched *q) 985 { 986 struct qfq_group *grp; 987 unsigned long ineligible; 988 989 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 990 if (ineligible) { 991 if (!q->bitmaps[ER]) { 992 grp = qfq_ffs(q, ineligible); 993 if (qfq_gt(grp->S, q->V)) 994 q->V = grp->S; 995 } 996 qfq_make_eligible(q); 997 } 998 } 999 1000 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */ 1001 static void agg_dequeue(struct qfq_aggregate *agg, 1002 struct qfq_class *cl, unsigned int len) 1003 { 1004 qdisc_dequeue_peeked(cl->qdisc); 1005 1006 cl->deficit -= (int) len; 1007 1008 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */ 1009 list_del(&cl->alist); 1010 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) { 1011 cl->deficit += agg->lmax; 1012 list_move_tail(&cl->alist, &agg->active); 1013 } 1014 } 1015 1016 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg, 1017 struct qfq_class **cl, 1018 unsigned int *len) 1019 { 1020 struct sk_buff *skb; 1021 1022 *cl = list_first_entry(&agg->active, struct qfq_class, alist); 1023 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc); 1024 if (skb == NULL) 1025 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n"); 1026 else 1027 *len = qdisc_pkt_len(skb); 1028 1029 return skb; 1030 } 1031 1032 /* Update F according to the actual service received by the aggregate. */ 1033 static inline void charge_actual_service(struct qfq_aggregate *agg) 1034 { 1035 /* Compute the service received by the aggregate, taking into 1036 * account that, after decreasing the number of classes in 1037 * agg, it may happen that 1038 * agg->initial_budget - agg->budget > agg->bugdetmax 1039 */ 1040 u32 service_received = min(agg->budgetmax, 1041 agg->initial_budget - agg->budget); 1042 1043 agg->F = agg->S + (u64)service_received * agg->inv_w; 1044 } 1045 1046 /* Assign a reasonable start time for a new aggregate in group i. 1047 * Admissible values for \hat(F) are multiples of \sigma_i 1048 * no greater than V+\sigma_i . Larger values mean that 1049 * we had a wraparound so we consider the timestamp to be stale. 1050 * 1051 * If F is not stale and F >= V then we set S = F. 1052 * Otherwise we should assign S = V, but this may violate 1053 * the ordering in EB (see [2]). So, if we have groups in ER, 1054 * set S to the F_j of the first group j which would be blocking us. 1055 * We are guaranteed not to move S backward because 1056 * otherwise our group i would still be blocked. 1057 */ 1058 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg) 1059 { 1060 unsigned long mask; 1061 u64 limit, roundedF; 1062 int slot_shift = agg->grp->slot_shift; 1063 1064 roundedF = qfq_round_down(agg->F, slot_shift); 1065 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 1066 1067 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) { 1068 /* timestamp was stale */ 1069 mask = mask_from(q->bitmaps[ER], agg->grp->index); 1070 if (mask) { 1071 struct qfq_group *next = qfq_ffs(q, mask); 1072 if (qfq_gt(roundedF, next->F)) { 1073 if (qfq_gt(limit, next->F)) 1074 agg->S = next->F; 1075 else /* preserve timestamp correctness */ 1076 agg->S = limit; 1077 return; 1078 } 1079 } 1080 agg->S = q->V; 1081 } else /* timestamp is not stale */ 1082 agg->S = agg->F; 1083 } 1084 1085 /* Update the timestamps of agg before scheduling/rescheduling it for 1086 * service. In particular, assign to agg->F its maximum possible 1087 * value, i.e., the virtual finish time with which the aggregate 1088 * should be labeled if it used all its budget once in service. 1089 */ 1090 static inline void 1091 qfq_update_agg_ts(struct qfq_sched *q, 1092 struct qfq_aggregate *agg, enum update_reason reason) 1093 { 1094 if (reason != requeue) 1095 qfq_update_start(q, agg); 1096 else /* just charge agg for the service received */ 1097 agg->S = agg->F; 1098 1099 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w; 1100 } 1101 1102 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg); 1103 1104 static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 1105 { 1106 struct qfq_sched *q = qdisc_priv(sch); 1107 struct qfq_aggregate *in_serv_agg = q->in_serv_agg; 1108 struct qfq_class *cl; 1109 struct sk_buff *skb = NULL; 1110 /* next-packet len, 0 means no more active classes in in-service agg */ 1111 unsigned int len = 0; 1112 1113 if (in_serv_agg == NULL) 1114 return NULL; 1115 1116 if (!list_empty(&in_serv_agg->active)) 1117 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1118 1119 /* 1120 * If there are no active classes in the in-service aggregate, 1121 * or if the aggregate has not enough budget to serve its next 1122 * class, then choose the next aggregate to serve. 1123 */ 1124 if (len == 0 || in_serv_agg->budget < len) { 1125 charge_actual_service(in_serv_agg); 1126 1127 /* recharge the budget of the aggregate */ 1128 in_serv_agg->initial_budget = in_serv_agg->budget = 1129 in_serv_agg->budgetmax; 1130 1131 if (!list_empty(&in_serv_agg->active)) { 1132 /* 1133 * Still active: reschedule for 1134 * service. Possible optimization: if no other 1135 * aggregate is active, then there is no point 1136 * in rescheduling this aggregate, and we can 1137 * just keep it as the in-service one. This 1138 * should be however a corner case, and to 1139 * handle it, we would need to maintain an 1140 * extra num_active_aggs field. 1141 */ 1142 qfq_update_agg_ts(q, in_serv_agg, requeue); 1143 qfq_schedule_agg(q, in_serv_agg); 1144 } else if (sch->q.qlen == 0) { /* no aggregate to serve */ 1145 q->in_serv_agg = NULL; 1146 return NULL; 1147 } 1148 1149 /* 1150 * If we get here, there are other aggregates queued: 1151 * choose the new aggregate to serve. 1152 */ 1153 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q); 1154 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1155 } 1156 if (!skb) 1157 return NULL; 1158 1159 qdisc_qstats_backlog_dec(sch, skb); 1160 sch->q.qlen--; 1161 qdisc_bstats_update(sch, skb); 1162 1163 agg_dequeue(in_serv_agg, cl, len); 1164 /* If lmax is lowered, through qfq_change_class, for a class 1165 * owning pending packets with larger size than the new value 1166 * of lmax, then the following condition may hold. 1167 */ 1168 if (unlikely(in_serv_agg->budget < len)) 1169 in_serv_agg->budget = 0; 1170 else 1171 in_serv_agg->budget -= len; 1172 1173 q->V += (u64)len * q->iwsum; 1174 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 1175 len, (unsigned long long) in_serv_agg->F, 1176 (unsigned long long) q->V); 1177 1178 return skb; 1179 } 1180 1181 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q) 1182 { 1183 struct qfq_group *grp; 1184 struct qfq_aggregate *agg, *new_front_agg; 1185 u64 old_F; 1186 1187 qfq_update_eligible(q); 1188 q->oldV = q->V; 1189 1190 if (!q->bitmaps[ER]) 1191 return NULL; 1192 1193 grp = qfq_ffs(q, q->bitmaps[ER]); 1194 old_F = grp->F; 1195 1196 agg = qfq_slot_head(grp); 1197 1198 /* agg starts to be served, remove it from schedule */ 1199 qfq_front_slot_remove(grp); 1200 1201 new_front_agg = qfq_slot_scan(grp); 1202 1203 if (new_front_agg == NULL) /* group is now inactive, remove from ER */ 1204 __clear_bit(grp->index, &q->bitmaps[ER]); 1205 else { 1206 u64 roundedS = qfq_round_down(new_front_agg->S, 1207 grp->slot_shift); 1208 unsigned int s; 1209 1210 if (grp->S == roundedS) 1211 return agg; 1212 grp->S = roundedS; 1213 grp->F = roundedS + (2ULL << grp->slot_shift); 1214 __clear_bit(grp->index, &q->bitmaps[ER]); 1215 s = qfq_calc_state(q, grp); 1216 __set_bit(grp->index, &q->bitmaps[s]); 1217 } 1218 1219 qfq_unblock_groups(q, grp->index, old_F); 1220 1221 return agg; 1222 } 1223 1224 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, 1225 struct sk_buff **to_free) 1226 { 1227 struct qfq_sched *q = qdisc_priv(sch); 1228 struct qfq_class *cl; 1229 struct qfq_aggregate *agg; 1230 int err = 0; 1231 1232 cl = qfq_classify(skb, sch, &err); 1233 if (cl == NULL) { 1234 if (err & __NET_XMIT_BYPASS) 1235 qdisc_qstats_drop(sch); 1236 kfree_skb(skb); 1237 return err; 1238 } 1239 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 1240 1241 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) { 1242 pr_debug("qfq: increasing maxpkt from %u to %u for class %u", 1243 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid); 1244 err = qfq_change_agg(sch, cl, cl->agg->class_weight, 1245 qdisc_pkt_len(skb)); 1246 if (err) { 1247 cl->qstats.drops++; 1248 return qdisc_drop(skb, sch, to_free); 1249 } 1250 } 1251 1252 err = qdisc_enqueue(skb, cl->qdisc, to_free); 1253 if (unlikely(err != NET_XMIT_SUCCESS)) { 1254 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 1255 if (net_xmit_drop_count(err)) { 1256 cl->qstats.drops++; 1257 qdisc_qstats_drop(sch); 1258 } 1259 return err; 1260 } 1261 1262 bstats_update(&cl->bstats, skb); 1263 qdisc_qstats_backlog_inc(sch, skb); 1264 ++sch->q.qlen; 1265 1266 agg = cl->agg; 1267 /* if the queue was not empty, then done here */ 1268 if (cl->qdisc->q.qlen != 1) { 1269 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) && 1270 list_first_entry(&agg->active, struct qfq_class, alist) 1271 == cl && cl->deficit < qdisc_pkt_len(skb)) 1272 list_move_tail(&cl->alist, &agg->active); 1273 1274 return err; 1275 } 1276 1277 /* schedule class for service within the aggregate */ 1278 cl->deficit = agg->lmax; 1279 list_add_tail(&cl->alist, &agg->active); 1280 1281 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl || 1282 q->in_serv_agg == agg) 1283 return err; /* non-empty or in service, nothing else to do */ 1284 1285 qfq_activate_agg(q, agg, enqueue); 1286 1287 return err; 1288 } 1289 1290 /* 1291 * Schedule aggregate according to its timestamps. 1292 */ 1293 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1294 { 1295 struct qfq_group *grp = agg->grp; 1296 u64 roundedS; 1297 int s; 1298 1299 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1300 1301 /* 1302 * Insert agg in the correct bucket. 1303 * If agg->S >= grp->S we don't need to adjust the 1304 * bucket list and simply go to the insertion phase. 1305 * Otherwise grp->S is decreasing, we must make room 1306 * in the bucket list, and also recompute the group state. 1307 * Finally, if there were no flows in this group and nobody 1308 * was in ER make sure to adjust V. 1309 */ 1310 if (grp->full_slots) { 1311 if (!qfq_gt(grp->S, agg->S)) 1312 goto skip_update; 1313 1314 /* create a slot for this agg->S */ 1315 qfq_slot_rotate(grp, roundedS); 1316 /* group was surely ineligible, remove */ 1317 __clear_bit(grp->index, &q->bitmaps[IR]); 1318 __clear_bit(grp->index, &q->bitmaps[IB]); 1319 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) && 1320 q->in_serv_agg == NULL) 1321 q->V = roundedS; 1322 1323 grp->S = roundedS; 1324 grp->F = roundedS + (2ULL << grp->slot_shift); 1325 s = qfq_calc_state(q, grp); 1326 __set_bit(grp->index, &q->bitmaps[s]); 1327 1328 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 1329 s, q->bitmaps[s], 1330 (unsigned long long) agg->S, 1331 (unsigned long long) agg->F, 1332 (unsigned long long) q->V); 1333 1334 skip_update: 1335 qfq_slot_insert(grp, agg, roundedS); 1336 } 1337 1338 1339 /* Update agg ts and schedule agg for service */ 1340 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 1341 enum update_reason reason) 1342 { 1343 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */ 1344 1345 qfq_update_agg_ts(q, agg, reason); 1346 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */ 1347 q->in_serv_agg = agg; /* start serving this aggregate */ 1348 /* update V: to be in service, agg must be eligible */ 1349 q->oldV = q->V = agg->S; 1350 } else if (agg != q->in_serv_agg) 1351 qfq_schedule_agg(q, agg); 1352 } 1353 1354 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 1355 struct qfq_aggregate *agg) 1356 { 1357 unsigned int i, offset; 1358 u64 roundedS; 1359 1360 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1361 offset = (roundedS - grp->S) >> grp->slot_shift; 1362 1363 i = (grp->front + offset) % QFQ_MAX_SLOTS; 1364 1365 hlist_del(&agg->next); 1366 if (hlist_empty(&grp->slots[i])) 1367 __clear_bit(offset, &grp->full_slots); 1368 } 1369 1370 /* 1371 * Called to forcibly deschedule an aggregate. If the aggregate is 1372 * not in the front bucket, or if the latter has other aggregates in 1373 * the front bucket, we can simply remove the aggregate with no other 1374 * side effects. 1375 * Otherwise we must propagate the event up. 1376 */ 1377 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1378 { 1379 struct qfq_group *grp = agg->grp; 1380 unsigned long mask; 1381 u64 roundedS; 1382 int s; 1383 1384 if (agg == q->in_serv_agg) { 1385 charge_actual_service(agg); 1386 q->in_serv_agg = qfq_choose_next_agg(q); 1387 return; 1388 } 1389 1390 agg->F = agg->S; 1391 qfq_slot_remove(q, grp, agg); 1392 1393 if (!grp->full_slots) { 1394 __clear_bit(grp->index, &q->bitmaps[IR]); 1395 __clear_bit(grp->index, &q->bitmaps[EB]); 1396 __clear_bit(grp->index, &q->bitmaps[IB]); 1397 1398 if (test_bit(grp->index, &q->bitmaps[ER]) && 1399 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 1400 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 1401 if (mask) 1402 mask = ~((1UL << __fls(mask)) - 1); 1403 else 1404 mask = ~0UL; 1405 qfq_move_groups(q, mask, EB, ER); 1406 qfq_move_groups(q, mask, IB, IR); 1407 } 1408 __clear_bit(grp->index, &q->bitmaps[ER]); 1409 } else if (hlist_empty(&grp->slots[grp->front])) { 1410 agg = qfq_slot_scan(grp); 1411 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1412 if (grp->S != roundedS) { 1413 __clear_bit(grp->index, &q->bitmaps[ER]); 1414 __clear_bit(grp->index, &q->bitmaps[IR]); 1415 __clear_bit(grp->index, &q->bitmaps[EB]); 1416 __clear_bit(grp->index, &q->bitmaps[IB]); 1417 grp->S = roundedS; 1418 grp->F = roundedS + (2ULL << grp->slot_shift); 1419 s = qfq_calc_state(q, grp); 1420 __set_bit(grp->index, &q->bitmaps[s]); 1421 } 1422 } 1423 } 1424 1425 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 1426 { 1427 struct qfq_sched *q = qdisc_priv(sch); 1428 struct qfq_class *cl = (struct qfq_class *)arg; 1429 1430 if (cl->qdisc->q.qlen == 0) 1431 qfq_deactivate_class(q, cl); 1432 } 1433 1434 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt) 1435 { 1436 struct qfq_sched *q = qdisc_priv(sch); 1437 struct qfq_group *grp; 1438 int i, j, err; 1439 u32 max_cl_shift, maxbudg_shift, max_classes; 1440 1441 err = qdisc_class_hash_init(&q->clhash); 1442 if (err < 0) 1443 return err; 1444 1445 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES) 1446 max_classes = QFQ_MAX_AGG_CLASSES; 1447 else 1448 max_classes = qdisc_dev(sch)->tx_queue_len + 1; 1449 /* max_cl_shift = floor(log_2(max_classes)) */ 1450 max_cl_shift = __fls(max_classes); 1451 q->max_agg_classes = 1<<max_cl_shift; 1452 1453 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */ 1454 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift; 1455 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX; 1456 1457 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1458 grp = &q->groups[i]; 1459 grp->index = i; 1460 grp->slot_shift = q->min_slot_shift + i; 1461 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1462 INIT_HLIST_HEAD(&grp->slots[j]); 1463 } 1464 1465 INIT_HLIST_HEAD(&q->nonfull_aggs); 1466 1467 return 0; 1468 } 1469 1470 static void qfq_reset_qdisc(struct Qdisc *sch) 1471 { 1472 struct qfq_sched *q = qdisc_priv(sch); 1473 struct qfq_class *cl; 1474 unsigned int i; 1475 1476 for (i = 0; i < q->clhash.hashsize; i++) { 1477 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 1478 if (cl->qdisc->q.qlen > 0) 1479 qfq_deactivate_class(q, cl); 1480 1481 qdisc_reset(cl->qdisc); 1482 } 1483 } 1484 sch->qstats.backlog = 0; 1485 sch->q.qlen = 0; 1486 } 1487 1488 static void qfq_destroy_qdisc(struct Qdisc *sch) 1489 { 1490 struct qfq_sched *q = qdisc_priv(sch); 1491 struct qfq_class *cl; 1492 struct hlist_node *next; 1493 unsigned int i; 1494 1495 tcf_destroy_chain(&q->filter_list); 1496 1497 for (i = 0; i < q->clhash.hashsize; i++) { 1498 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1499 common.hnode) { 1500 qfq_destroy_class(sch, cl); 1501 } 1502 } 1503 qdisc_class_hash_destroy(&q->clhash); 1504 } 1505 1506 static const struct Qdisc_class_ops qfq_class_ops = { 1507 .change = qfq_change_class, 1508 .delete = qfq_delete_class, 1509 .get = qfq_get_class, 1510 .put = qfq_put_class, 1511 .tcf_chain = qfq_tcf_chain, 1512 .bind_tcf = qfq_bind_tcf, 1513 .unbind_tcf = qfq_unbind_tcf, 1514 .graft = qfq_graft_class, 1515 .leaf = qfq_class_leaf, 1516 .qlen_notify = qfq_qlen_notify, 1517 .dump = qfq_dump_class, 1518 .dump_stats = qfq_dump_class_stats, 1519 .walk = qfq_walk, 1520 }; 1521 1522 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1523 .cl_ops = &qfq_class_ops, 1524 .id = "qfq", 1525 .priv_size = sizeof(struct qfq_sched), 1526 .enqueue = qfq_enqueue, 1527 .dequeue = qfq_dequeue, 1528 .peek = qdisc_peek_dequeued, 1529 .init = qfq_init_qdisc, 1530 .reset = qfq_reset_qdisc, 1531 .destroy = qfq_destroy_qdisc, 1532 .owner = THIS_MODULE, 1533 }; 1534 1535 static int __init qfq_init(void) 1536 { 1537 return register_qdisc(&qfq_qdisc_ops); 1538 } 1539 1540 static void __exit qfq_exit(void) 1541 { 1542 unregister_qdisc(&qfq_qdisc_ops); 1543 } 1544 1545 module_init(qfq_init); 1546 module_exit(qfq_exit); 1547 MODULE_LICENSE("GPL"); 1548