xref: /openbmc/linux/net/sched/sch_qfq.c (revision ee89bd6b)
1 /*
2  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
3  *
4  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5  * Copyright (c) 2012 Paolo Valente.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21 
22 
23 /*  Quick Fair Queueing Plus
24     ========================
25 
26     Sources:
27 
28     [1] Paolo Valente,
29     "Reducing the Execution Time of Fair-Queueing Schedulers."
30     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31 
32     Sources for QFQ:
33 
34     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36 
37     See also:
38     http://retis.sssup.it/~fabio/linux/qfq/
39  */
40 
41 /*
42 
43   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44   classes. Each aggregate is timestamped with a virtual start time S
45   and a virtual finish time F, and scheduled according to its
46   timestamps. S and F are computed as a function of a system virtual
47   time function V. The classes within each aggregate are instead
48   scheduled with DRR.
49 
50   To speed up operations, QFQ+ divides also aggregates into a limited
51   number of groups. Which group a class belongs to depends on the
52   ratio between the maximum packet length for the class and the weight
53   of the class. Groups have their own S and F. In the end, QFQ+
54   schedules groups, then aggregates within groups, then classes within
55   aggregates. See [1] and [2] for a full description.
56 
57   Virtual time computations.
58 
59   S, F and V are all computed in fixed point arithmetic with
60   FRAC_BITS decimal bits.
61 
62   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 	one bit per index.
64   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65 
66   The layout of the bits is as below:
67 
68                    [ MTU_SHIFT ][      FRAC_BITS    ]
69                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
70 				 ^.__grp->index = 0
71 				 *.__grp->slot_shift
72 
73   where MIN_SLOT_SHIFT is derived by difference from the others.
74 
75   The max group index corresponds to Lmax/w_min, where
76   Lmax=1<<MTU_SHIFT, w_min = 1 .
77   From this, and knowing how many groups (MAX_INDEX) we want,
78   we can derive the shift corresponding to each group.
79 
80   Because we often need to compute
81 	F = S + len/w_i  and V = V + len/wsum
82   instead of storing w_i store the value
83 	inv_w = (1<<FRAC_BITS)/w_i
84   so we can do F = S + len * inv_w * wsum.
85   We use W_TOT in the formulas so we can easily move between
86   static and adaptive weight sum.
87 
88   The per-scheduler-instance data contain all the data structures
89   for the scheduler: bitmaps and bucket lists.
90 
91  */
92 
93 /*
94  * Maximum number of consecutive slots occupied by backlogged classes
95  * inside a group.
96  */
97 #define QFQ_MAX_SLOTS	32
98 
99 /*
100  * Shifts used for aggregate<->group mapping.  We allow class weights that are
101  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102  * group with the smallest index that can support the L_i / r_i configured
103  * for the classes in the aggregate.
104  *
105  * grp->index is the index of the group; and grp->slot_shift
106  * is the shift for the corresponding (scaled) sigma_i.
107  */
108 #define QFQ_MAX_INDEX		24
109 #define QFQ_MAX_WSHIFT		10
110 
111 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
113 
114 #define FRAC_BITS		30	/* fixed point arithmetic */
115 #define ONE_FP			(1UL << FRAC_BITS)
116 #define IWSUM			(ONE_FP/QFQ_MAX_WSUM)
117 
118 #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
119 #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
120 
121 #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
122 
123 /*
124  * Possible group states.  These values are used as indexes for the bitmaps
125  * array of struct qfq_queue.
126  */
127 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
128 
129 struct qfq_group;
130 
131 struct qfq_aggregate;
132 
133 struct qfq_class {
134 	struct Qdisc_class_common common;
135 
136 	unsigned int refcnt;
137 	unsigned int filter_cnt;
138 
139 	struct gnet_stats_basic_packed bstats;
140 	struct gnet_stats_queue qstats;
141 	struct gnet_stats_rate_est rate_est;
142 	struct Qdisc *qdisc;
143 	struct list_head alist;		/* Link for active-classes list. */
144 	struct qfq_aggregate *agg;	/* Parent aggregate. */
145 	int deficit;			/* DRR deficit counter. */
146 };
147 
148 struct qfq_aggregate {
149 	struct hlist_node next;	/* Link for the slot list. */
150 	u64 S, F;		/* flow timestamps (exact) */
151 
152 	/* group we belong to. In principle we would need the index,
153 	 * which is log_2(lmax/weight), but we never reference it
154 	 * directly, only the group.
155 	 */
156 	struct qfq_group *grp;
157 
158 	/* these are copied from the flowset. */
159 	u32	class_weight; /* Weight of each class in this aggregate. */
160 	/* Max pkt size for the classes in this aggregate, DRR quantum. */
161 	int	lmax;
162 
163 	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
164 	u32	budgetmax;  /* Max budget for this aggregate. */
165 	u32	initial_budget, budget;     /* Initial and current budget. */
166 
167 	int		  num_classes;	/* Number of classes in this aggr. */
168 	struct list_head  active;	/* DRR queue of active classes. */
169 
170 	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
171 };
172 
173 struct qfq_group {
174 	u64 S, F;			/* group timestamps (approx). */
175 	unsigned int slot_shift;	/* Slot shift. */
176 	unsigned int index;		/* Group index. */
177 	unsigned int front;		/* Index of the front slot. */
178 	unsigned long full_slots;	/* non-empty slots */
179 
180 	/* Array of RR lists of active aggregates. */
181 	struct hlist_head slots[QFQ_MAX_SLOTS];
182 };
183 
184 struct qfq_sched {
185 	struct tcf_proto *filter_list;
186 	struct Qdisc_class_hash clhash;
187 
188 	u64			oldV, V;	/* Precise virtual times. */
189 	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
190 	u32			num_active_agg; /* Num. of active aggregates */
191 	u32			wsum;		/* weight sum */
192 
193 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
194 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
195 	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
196 
197 	u32 max_agg_classes;		/* Max number of classes per aggr. */
198 	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
199 };
200 
201 /*
202  * Possible reasons why the timestamps of an aggregate are updated
203  * enqueue: the aggregate switches from idle to active and must scheduled
204  *	    for service
205  * requeue: the aggregate finishes its budget, so it stops being served and
206  *	    must be rescheduled for service
207  */
208 enum update_reason {enqueue, requeue};
209 
210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 {
212 	struct qfq_sched *q = qdisc_priv(sch);
213 	struct Qdisc_class_common *clc;
214 
215 	clc = qdisc_class_find(&q->clhash, classid);
216 	if (clc == NULL)
217 		return NULL;
218 	return container_of(clc, struct qfq_class, common);
219 }
220 
221 static void qfq_purge_queue(struct qfq_class *cl)
222 {
223 	unsigned int len = cl->qdisc->q.qlen;
224 
225 	qdisc_reset(cl->qdisc);
226 	qdisc_tree_decrease_qlen(cl->qdisc, len);
227 }
228 
229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 	[TCA_QFQ_LMAX] = { .type = NLA_U32 },
232 };
233 
234 /*
235  * Calculate a flow index, given its weight and maximum packet length.
236  * index = log_2(maxlen/weight) but we need to apply the scaling.
237  * This is used only once at flow creation.
238  */
239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
240 {
241 	u64 slot_size = (u64)maxlen * inv_w;
242 	unsigned long size_map;
243 	int index = 0;
244 
245 	size_map = slot_size >> min_slot_shift;
246 	if (!size_map)
247 		goto out;
248 
249 	index = __fls(size_map) + 1;	/* basically a log_2 */
250 	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
251 
252 	if (index < 0)
253 		index = 0;
254 out:
255 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
257 
258 	return index;
259 }
260 
261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 			     enum update_reason);
264 
265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 			 u32 lmax, u32 weight)
267 {
268 	INIT_LIST_HEAD(&agg->active);
269 	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270 
271 	agg->lmax = lmax;
272 	agg->class_weight = weight;
273 }
274 
275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 					  u32 lmax, u32 weight)
277 {
278 	struct qfq_aggregate *agg;
279 
280 	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281 		if (agg->lmax == lmax && agg->class_weight == weight)
282 			return agg;
283 
284 	return NULL;
285 }
286 
287 
288 /* Update aggregate as a function of the new number of classes. */
289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 			   int new_num_classes)
291 {
292 	u32 new_agg_weight;
293 
294 	if (new_num_classes == q->max_agg_classes)
295 		hlist_del_init(&agg->nonfull_next);
296 
297 	if (agg->num_classes > new_num_classes &&
298 	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300 
301 	/* The next assignment may let
302 	 * agg->initial_budget > agg->budgetmax
303 	 * hold, we will take it into account in charge_actual_service().
304 	 */
305 	agg->budgetmax = new_num_classes * agg->lmax;
306 	new_agg_weight = agg->class_weight * new_num_classes;
307 	agg->inv_w = ONE_FP/new_agg_weight;
308 
309 	if (agg->grp == NULL) {
310 		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311 				       q->min_slot_shift);
312 		agg->grp = &q->groups[i];
313 	}
314 
315 	q->wsum +=
316 		(int) agg->class_weight * (new_num_classes - agg->num_classes);
317 
318 	agg->num_classes = new_num_classes;
319 }
320 
321 /* Add class to aggregate. */
322 static void qfq_add_to_agg(struct qfq_sched *q,
323 			   struct qfq_aggregate *agg,
324 			   struct qfq_class *cl)
325 {
326 	cl->agg = agg;
327 
328 	qfq_update_agg(q, agg, agg->num_classes+1);
329 	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
330 		list_add_tail(&cl->alist, &agg->active);
331 		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
332 		    cl && q->in_serv_agg != agg) /* agg was inactive */
333 			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
334 	}
335 }
336 
337 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
338 
339 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
340 {
341 	if (!hlist_unhashed(&agg->nonfull_next))
342 		hlist_del_init(&agg->nonfull_next);
343 	if (q->in_serv_agg == agg)
344 		q->in_serv_agg = qfq_choose_next_agg(q);
345 	kfree(agg);
346 }
347 
348 /* Deschedule class from within its parent aggregate. */
349 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
350 {
351 	struct qfq_aggregate *agg = cl->agg;
352 
353 
354 	list_del(&cl->alist); /* remove from RR queue of the aggregate */
355 	if (list_empty(&agg->active)) /* agg is now inactive */
356 		qfq_deactivate_agg(q, agg);
357 }
358 
359 /* Remove class from its parent aggregate. */
360 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
361 {
362 	struct qfq_aggregate *agg = cl->agg;
363 
364 	cl->agg = NULL;
365 	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
366 		qfq_destroy_agg(q, agg);
367 		return;
368 	}
369 	qfq_update_agg(q, agg, agg->num_classes-1);
370 }
371 
372 /* Deschedule class and remove it from its parent aggregate. */
373 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
374 {
375 	if (cl->qdisc->q.qlen > 0) /* class is active */
376 		qfq_deactivate_class(q, cl);
377 
378 	qfq_rm_from_agg(q, cl);
379 }
380 
381 /* Move class to a new aggregate, matching the new class weight and/or lmax */
382 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
383 			   u32 lmax)
384 {
385 	struct qfq_sched *q = qdisc_priv(sch);
386 	struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
387 
388 	if (new_agg == NULL) { /* create new aggregate */
389 		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
390 		if (new_agg == NULL)
391 			return -ENOBUFS;
392 		qfq_init_agg(q, new_agg, lmax, weight);
393 	}
394 	qfq_deact_rm_from_agg(q, cl);
395 	qfq_add_to_agg(q, new_agg, cl);
396 
397 	return 0;
398 }
399 
400 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
401 			    struct nlattr **tca, unsigned long *arg)
402 {
403 	struct qfq_sched *q = qdisc_priv(sch);
404 	struct qfq_class *cl = (struct qfq_class *)*arg;
405 	bool existing = false;
406 	struct nlattr *tb[TCA_QFQ_MAX + 1];
407 	struct qfq_aggregate *new_agg = NULL;
408 	u32 weight, lmax, inv_w;
409 	int err;
410 	int delta_w;
411 
412 	if (tca[TCA_OPTIONS] == NULL) {
413 		pr_notice("qfq: no options\n");
414 		return -EINVAL;
415 	}
416 
417 	err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
418 	if (err < 0)
419 		return err;
420 
421 	if (tb[TCA_QFQ_WEIGHT]) {
422 		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
423 		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
424 			pr_notice("qfq: invalid weight %u\n", weight);
425 			return -EINVAL;
426 		}
427 	} else
428 		weight = 1;
429 
430 	if (tb[TCA_QFQ_LMAX]) {
431 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
432 		if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
433 			pr_notice("qfq: invalid max length %u\n", lmax);
434 			return -EINVAL;
435 		}
436 	} else
437 		lmax = psched_mtu(qdisc_dev(sch));
438 
439 	inv_w = ONE_FP / weight;
440 	weight = ONE_FP / inv_w;
441 
442 	if (cl != NULL &&
443 	    lmax == cl->agg->lmax &&
444 	    weight == cl->agg->class_weight)
445 		return 0; /* nothing to change */
446 
447 	delta_w = weight - (cl ? cl->agg->class_weight : 0);
448 
449 	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
450 		pr_notice("qfq: total weight out of range (%d + %u)\n",
451 			  delta_w, q->wsum);
452 		return -EINVAL;
453 	}
454 
455 	if (cl != NULL) { /* modify existing class */
456 		if (tca[TCA_RATE]) {
457 			err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
458 						    qdisc_root_sleeping_lock(sch),
459 						    tca[TCA_RATE]);
460 			if (err)
461 				return err;
462 		}
463 		existing = true;
464 		goto set_change_agg;
465 	}
466 
467 	/* create and init new class */
468 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
469 	if (cl == NULL)
470 		return -ENOBUFS;
471 
472 	cl->refcnt = 1;
473 	cl->common.classid = classid;
474 	cl->deficit = lmax;
475 
476 	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
477 				      &pfifo_qdisc_ops, classid);
478 	if (cl->qdisc == NULL)
479 		cl->qdisc = &noop_qdisc;
480 
481 	if (tca[TCA_RATE]) {
482 		err = gen_new_estimator(&cl->bstats, &cl->rate_est,
483 					qdisc_root_sleeping_lock(sch),
484 					tca[TCA_RATE]);
485 		if (err)
486 			goto destroy_class;
487 	}
488 
489 	sch_tree_lock(sch);
490 	qdisc_class_hash_insert(&q->clhash, &cl->common);
491 	sch_tree_unlock(sch);
492 
493 	qdisc_class_hash_grow(sch, &q->clhash);
494 
495 set_change_agg:
496 	sch_tree_lock(sch);
497 	new_agg = qfq_find_agg(q, lmax, weight);
498 	if (new_agg == NULL) { /* create new aggregate */
499 		sch_tree_unlock(sch);
500 		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
501 		if (new_agg == NULL) {
502 			err = -ENOBUFS;
503 			gen_kill_estimator(&cl->bstats, &cl->rate_est);
504 			goto destroy_class;
505 		}
506 		sch_tree_lock(sch);
507 		qfq_init_agg(q, new_agg, lmax, weight);
508 	}
509 	if (existing)
510 		qfq_deact_rm_from_agg(q, cl);
511 	qfq_add_to_agg(q, new_agg, cl);
512 	sch_tree_unlock(sch);
513 
514 	*arg = (unsigned long)cl;
515 	return 0;
516 
517 destroy_class:
518 	qdisc_destroy(cl->qdisc);
519 	kfree(cl);
520 	return err;
521 }
522 
523 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
524 {
525 	struct qfq_sched *q = qdisc_priv(sch);
526 
527 	qfq_rm_from_agg(q, cl);
528 	gen_kill_estimator(&cl->bstats, &cl->rate_est);
529 	qdisc_destroy(cl->qdisc);
530 	kfree(cl);
531 }
532 
533 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
534 {
535 	struct qfq_sched *q = qdisc_priv(sch);
536 	struct qfq_class *cl = (struct qfq_class *)arg;
537 
538 	if (cl->filter_cnt > 0)
539 		return -EBUSY;
540 
541 	sch_tree_lock(sch);
542 
543 	qfq_purge_queue(cl);
544 	qdisc_class_hash_remove(&q->clhash, &cl->common);
545 
546 	BUG_ON(--cl->refcnt == 0);
547 	/*
548 	 * This shouldn't happen: we "hold" one cops->get() when called
549 	 * from tc_ctl_tclass; the destroy method is done from cops->put().
550 	 */
551 
552 	sch_tree_unlock(sch);
553 	return 0;
554 }
555 
556 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
557 {
558 	struct qfq_class *cl = qfq_find_class(sch, classid);
559 
560 	if (cl != NULL)
561 		cl->refcnt++;
562 
563 	return (unsigned long)cl;
564 }
565 
566 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
567 {
568 	struct qfq_class *cl = (struct qfq_class *)arg;
569 
570 	if (--cl->refcnt == 0)
571 		qfq_destroy_class(sch, cl);
572 }
573 
574 static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl)
575 {
576 	struct qfq_sched *q = qdisc_priv(sch);
577 
578 	if (cl)
579 		return NULL;
580 
581 	return &q->filter_list;
582 }
583 
584 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
585 				  u32 classid)
586 {
587 	struct qfq_class *cl = qfq_find_class(sch, classid);
588 
589 	if (cl != NULL)
590 		cl->filter_cnt++;
591 
592 	return (unsigned long)cl;
593 }
594 
595 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
596 {
597 	struct qfq_class *cl = (struct qfq_class *)arg;
598 
599 	cl->filter_cnt--;
600 }
601 
602 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
603 			   struct Qdisc *new, struct Qdisc **old)
604 {
605 	struct qfq_class *cl = (struct qfq_class *)arg;
606 
607 	if (new == NULL) {
608 		new = qdisc_create_dflt(sch->dev_queue,
609 					&pfifo_qdisc_ops, cl->common.classid);
610 		if (new == NULL)
611 			new = &noop_qdisc;
612 	}
613 
614 	sch_tree_lock(sch);
615 	qfq_purge_queue(cl);
616 	*old = cl->qdisc;
617 	cl->qdisc = new;
618 	sch_tree_unlock(sch);
619 	return 0;
620 }
621 
622 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
623 {
624 	struct qfq_class *cl = (struct qfq_class *)arg;
625 
626 	return cl->qdisc;
627 }
628 
629 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
630 			  struct sk_buff *skb, struct tcmsg *tcm)
631 {
632 	struct qfq_class *cl = (struct qfq_class *)arg;
633 	struct nlattr *nest;
634 
635 	tcm->tcm_parent	= TC_H_ROOT;
636 	tcm->tcm_handle	= cl->common.classid;
637 	tcm->tcm_info	= cl->qdisc->handle;
638 
639 	nest = nla_nest_start(skb, TCA_OPTIONS);
640 	if (nest == NULL)
641 		goto nla_put_failure;
642 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
643 	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
644 		goto nla_put_failure;
645 	return nla_nest_end(skb, nest);
646 
647 nla_put_failure:
648 	nla_nest_cancel(skb, nest);
649 	return -EMSGSIZE;
650 }
651 
652 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
653 				struct gnet_dump *d)
654 {
655 	struct qfq_class *cl = (struct qfq_class *)arg;
656 	struct tc_qfq_stats xstats;
657 
658 	memset(&xstats, 0, sizeof(xstats));
659 	cl->qdisc->qstats.qlen = cl->qdisc->q.qlen;
660 
661 	xstats.weight = cl->agg->class_weight;
662 	xstats.lmax = cl->agg->lmax;
663 
664 	if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
665 	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
666 	    gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0)
667 		return -1;
668 
669 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
670 }
671 
672 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
673 {
674 	struct qfq_sched *q = qdisc_priv(sch);
675 	struct qfq_class *cl;
676 	unsigned int i;
677 
678 	if (arg->stop)
679 		return;
680 
681 	for (i = 0; i < q->clhash.hashsize; i++) {
682 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
683 			if (arg->count < arg->skip) {
684 				arg->count++;
685 				continue;
686 			}
687 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
688 				arg->stop = 1;
689 				return;
690 			}
691 			arg->count++;
692 		}
693 	}
694 }
695 
696 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
697 				      int *qerr)
698 {
699 	struct qfq_sched *q = qdisc_priv(sch);
700 	struct qfq_class *cl;
701 	struct tcf_result res;
702 	int result;
703 
704 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
705 		pr_debug("qfq_classify: found %d\n", skb->priority);
706 		cl = qfq_find_class(sch, skb->priority);
707 		if (cl != NULL)
708 			return cl;
709 	}
710 
711 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
712 	result = tc_classify(skb, q->filter_list, &res);
713 	if (result >= 0) {
714 #ifdef CONFIG_NET_CLS_ACT
715 		switch (result) {
716 		case TC_ACT_QUEUED:
717 		case TC_ACT_STOLEN:
718 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
719 		case TC_ACT_SHOT:
720 			return NULL;
721 		}
722 #endif
723 		cl = (struct qfq_class *)res.class;
724 		if (cl == NULL)
725 			cl = qfq_find_class(sch, res.classid);
726 		return cl;
727 	}
728 
729 	return NULL;
730 }
731 
732 /* Generic comparison function, handling wraparound. */
733 static inline int qfq_gt(u64 a, u64 b)
734 {
735 	return (s64)(a - b) > 0;
736 }
737 
738 /* Round a precise timestamp to its slotted value. */
739 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
740 {
741 	return ts & ~((1ULL << shift) - 1);
742 }
743 
744 /* return the pointer to the group with lowest index in the bitmap */
745 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
746 					unsigned long bitmap)
747 {
748 	int index = __ffs(bitmap);
749 	return &q->groups[index];
750 }
751 /* Calculate a mask to mimic what would be ffs_from(). */
752 static inline unsigned long mask_from(unsigned long bitmap, int from)
753 {
754 	return bitmap & ~((1UL << from) - 1);
755 }
756 
757 /*
758  * The state computation relies on ER=0, IR=1, EB=2, IB=3
759  * First compute eligibility comparing grp->S, q->V,
760  * then check if someone is blocking us and possibly add EB
761  */
762 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
763 {
764 	/* if S > V we are not eligible */
765 	unsigned int state = qfq_gt(grp->S, q->V);
766 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
767 	struct qfq_group *next;
768 
769 	if (mask) {
770 		next = qfq_ffs(q, mask);
771 		if (qfq_gt(grp->F, next->F))
772 			state |= EB;
773 	}
774 
775 	return state;
776 }
777 
778 
779 /*
780  * In principle
781  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
782  *	q->bitmaps[src] &= ~mask;
783  * but we should make sure that src != dst
784  */
785 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
786 				   int src, int dst)
787 {
788 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
789 	q->bitmaps[src] &= ~mask;
790 }
791 
792 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
793 {
794 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
795 	struct qfq_group *next;
796 
797 	if (mask) {
798 		next = qfq_ffs(q, mask);
799 		if (!qfq_gt(next->F, old_F))
800 			return;
801 	}
802 
803 	mask = (1UL << index) - 1;
804 	qfq_move_groups(q, mask, EB, ER);
805 	qfq_move_groups(q, mask, IB, IR);
806 }
807 
808 /*
809  * perhaps
810  *
811 	old_V ^= q->V;
812 	old_V >>= q->min_slot_shift;
813 	if (old_V) {
814 		...
815 	}
816  *
817  */
818 static void qfq_make_eligible(struct qfq_sched *q)
819 {
820 	unsigned long vslot = q->V >> q->min_slot_shift;
821 	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
822 
823 	if (vslot != old_vslot) {
824 		unsigned long mask = (1ULL << fls(vslot ^ old_vslot)) - 1;
825 		qfq_move_groups(q, mask, IR, ER);
826 		qfq_move_groups(q, mask, IB, EB);
827 	}
828 }
829 
830 
831 /*
832  * The index of the slot in which the aggregate is to be inserted must
833  * not be higher than QFQ_MAX_SLOTS-2. There is a '-2' and not a '-1'
834  * because the start time of the group may be moved backward by one
835  * slot after the aggregate has been inserted, and this would cause
836  * non-empty slots to be right-shifted by one position.
837  *
838  * If the weight and lmax (max_pkt_size) of the classes do not change,
839  * then QFQ+ does meet the above contraint according to the current
840  * values of its parameters. In fact, if the weight and lmax of the
841  * classes do not change, then, from the theory, QFQ+ guarantees that
842  * the slot index is never higher than
843  * 2 + QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
844  * (QFQ_MAX_WEIGHT/QFQ_MAX_WSUM) = 2 + 8 * 128 * (1 / 64) = 18
845  *
846  * When the weight of a class is increased or the lmax of the class is
847  * decreased, a new aggregate with smaller slot size than the original
848  * parent aggregate of the class may happen to be activated. The
849  * activation of this aggregate should be properly delayed to when the
850  * service of the class has finished in the ideal system tracked by
851  * QFQ+. If the activation of the aggregate is not delayed to this
852  * reference time instant, then this aggregate may be unjustly served
853  * before other aggregates waiting for service. This may cause the
854  * above bound to the slot index to be violated for some of these
855  * unlucky aggregates.
856  *
857  * Instead of delaying the activation of the new aggregate, which is
858  * quite complex, the following inaccurate but simple solution is used:
859  * if the slot index is higher than QFQ_MAX_SLOTS-2, then the
860  * timestamps of the aggregate are shifted backward so as to let the
861  * slot index become equal to QFQ_MAX_SLOTS-2.
862  */
863 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
864 			    u64 roundedS)
865 {
866 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
867 	unsigned int i; /* slot index in the bucket list */
868 
869 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
870 		u64 deltaS = roundedS - grp->S -
871 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
872 		agg->S -= deltaS;
873 		agg->F -= deltaS;
874 		slot = QFQ_MAX_SLOTS - 2;
875 	}
876 
877 	i = (grp->front + slot) % QFQ_MAX_SLOTS;
878 
879 	hlist_add_head(&agg->next, &grp->slots[i]);
880 	__set_bit(slot, &grp->full_slots);
881 }
882 
883 /* Maybe introduce hlist_first_entry?? */
884 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
885 {
886 	return hlist_entry(grp->slots[grp->front].first,
887 			   struct qfq_aggregate, next);
888 }
889 
890 /*
891  * remove the entry from the slot
892  */
893 static void qfq_front_slot_remove(struct qfq_group *grp)
894 {
895 	struct qfq_aggregate *agg = qfq_slot_head(grp);
896 
897 	BUG_ON(!agg);
898 	hlist_del(&agg->next);
899 	if (hlist_empty(&grp->slots[grp->front]))
900 		__clear_bit(0, &grp->full_slots);
901 }
902 
903 /*
904  * Returns the first aggregate in the first non-empty bucket of the
905  * group. As a side effect, adjusts the bucket list so the first
906  * non-empty bucket is at position 0 in full_slots.
907  */
908 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
909 {
910 	unsigned int i;
911 
912 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
913 		 grp->index, grp->full_slots);
914 
915 	if (grp->full_slots == 0)
916 		return NULL;
917 
918 	i = __ffs(grp->full_slots);  /* zero based */
919 	if (i > 0) {
920 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
921 		grp->full_slots >>= i;
922 	}
923 
924 	return qfq_slot_head(grp);
925 }
926 
927 /*
928  * adjust the bucket list. When the start time of a group decreases,
929  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
930  * move the objects. The mask of occupied slots must be shifted
931  * because we use ffs() to find the first non-empty slot.
932  * This covers decreases in the group's start time, but what about
933  * increases of the start time ?
934  * Here too we should make sure that i is less than 32
935  */
936 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
937 {
938 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
939 
940 	grp->full_slots <<= i;
941 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
942 }
943 
944 static void qfq_update_eligible(struct qfq_sched *q)
945 {
946 	struct qfq_group *grp;
947 	unsigned long ineligible;
948 
949 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
950 	if (ineligible) {
951 		if (!q->bitmaps[ER]) {
952 			grp = qfq_ffs(q, ineligible);
953 			if (qfq_gt(grp->S, q->V))
954 				q->V = grp->S;
955 		}
956 		qfq_make_eligible(q);
957 	}
958 }
959 
960 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
961 static void agg_dequeue(struct qfq_aggregate *agg,
962 			struct qfq_class *cl, unsigned int len)
963 {
964 	qdisc_dequeue_peeked(cl->qdisc);
965 
966 	cl->deficit -= (int) len;
967 
968 	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
969 		list_del(&cl->alist);
970 	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
971 		cl->deficit += agg->lmax;
972 		list_move_tail(&cl->alist, &agg->active);
973 	}
974 }
975 
976 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
977 					   struct qfq_class **cl,
978 					   unsigned int *len)
979 {
980 	struct sk_buff *skb;
981 
982 	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
983 	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
984 	if (skb == NULL)
985 		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
986 	else
987 		*len = qdisc_pkt_len(skb);
988 
989 	return skb;
990 }
991 
992 /* Update F according to the actual service received by the aggregate. */
993 static inline void charge_actual_service(struct qfq_aggregate *agg)
994 {
995 	/* Compute the service received by the aggregate, taking into
996 	 * account that, after decreasing the number of classes in
997 	 * agg, it may happen that
998 	 * agg->initial_budget - agg->budget > agg->bugdetmax
999 	 */
1000 	u32 service_received = min(agg->budgetmax,
1001 				   agg->initial_budget - agg->budget);
1002 
1003 	agg->F = agg->S + (u64)service_received * agg->inv_w;
1004 }
1005 
1006 static inline void qfq_update_agg_ts(struct qfq_sched *q,
1007 				     struct qfq_aggregate *agg,
1008 				     enum update_reason reason);
1009 
1010 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1011 
1012 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1013 {
1014 	struct qfq_sched *q = qdisc_priv(sch);
1015 	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1016 	struct qfq_class *cl;
1017 	struct sk_buff *skb = NULL;
1018 	/* next-packet len, 0 means no more active classes in in-service agg */
1019 	unsigned int len = 0;
1020 
1021 	if (in_serv_agg == NULL)
1022 		return NULL;
1023 
1024 	if (!list_empty(&in_serv_agg->active))
1025 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1026 
1027 	/*
1028 	 * If there are no active classes in the in-service aggregate,
1029 	 * or if the aggregate has not enough budget to serve its next
1030 	 * class, then choose the next aggregate to serve.
1031 	 */
1032 	if (len == 0 || in_serv_agg->budget < len) {
1033 		charge_actual_service(in_serv_agg);
1034 
1035 		/* recharge the budget of the aggregate */
1036 		in_serv_agg->initial_budget = in_serv_agg->budget =
1037 			in_serv_agg->budgetmax;
1038 
1039 		if (!list_empty(&in_serv_agg->active)) {
1040 			/*
1041 			 * Still active: reschedule for
1042 			 * service. Possible optimization: if no other
1043 			 * aggregate is active, then there is no point
1044 			 * in rescheduling this aggregate, and we can
1045 			 * just keep it as the in-service one. This
1046 			 * should be however a corner case, and to
1047 			 * handle it, we would need to maintain an
1048 			 * extra num_active_aggs field.
1049 			*/
1050 			qfq_update_agg_ts(q, in_serv_agg, requeue);
1051 			qfq_schedule_agg(q, in_serv_agg);
1052 		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1053 			q->in_serv_agg = NULL;
1054 			return NULL;
1055 		}
1056 
1057 		/*
1058 		 * If we get here, there are other aggregates queued:
1059 		 * choose the new aggregate to serve.
1060 		 */
1061 		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1062 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1063 	}
1064 	if (!skb)
1065 		return NULL;
1066 
1067 	sch->q.qlen--;
1068 	qdisc_bstats_update(sch, skb);
1069 
1070 	agg_dequeue(in_serv_agg, cl, len);
1071 	/* If lmax is lowered, through qfq_change_class, for a class
1072 	 * owning pending packets with larger size than the new value
1073 	 * of lmax, then the following condition may hold.
1074 	 */
1075 	if (unlikely(in_serv_agg->budget < len))
1076 		in_serv_agg->budget = 0;
1077 	else
1078 		in_serv_agg->budget -= len;
1079 
1080 	q->V += (u64)len * IWSUM;
1081 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1082 		 len, (unsigned long long) in_serv_agg->F,
1083 		 (unsigned long long) q->V);
1084 
1085 	return skb;
1086 }
1087 
1088 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1089 {
1090 	struct qfq_group *grp;
1091 	struct qfq_aggregate *agg, *new_front_agg;
1092 	u64 old_F;
1093 
1094 	qfq_update_eligible(q);
1095 	q->oldV = q->V;
1096 
1097 	if (!q->bitmaps[ER])
1098 		return NULL;
1099 
1100 	grp = qfq_ffs(q, q->bitmaps[ER]);
1101 	old_F = grp->F;
1102 
1103 	agg = qfq_slot_head(grp);
1104 
1105 	/* agg starts to be served, remove it from schedule */
1106 	qfq_front_slot_remove(grp);
1107 
1108 	new_front_agg = qfq_slot_scan(grp);
1109 
1110 	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1111 		__clear_bit(grp->index, &q->bitmaps[ER]);
1112 	else {
1113 		u64 roundedS = qfq_round_down(new_front_agg->S,
1114 					      grp->slot_shift);
1115 		unsigned int s;
1116 
1117 		if (grp->S == roundedS)
1118 			return agg;
1119 		grp->S = roundedS;
1120 		grp->F = roundedS + (2ULL << grp->slot_shift);
1121 		__clear_bit(grp->index, &q->bitmaps[ER]);
1122 		s = qfq_calc_state(q, grp);
1123 		__set_bit(grp->index, &q->bitmaps[s]);
1124 	}
1125 
1126 	qfq_unblock_groups(q, grp->index, old_F);
1127 
1128 	return agg;
1129 }
1130 
1131 /*
1132  * Assign a reasonable start time for a new aggregate in group i.
1133  * Admissible values for \hat(F) are multiples of \sigma_i
1134  * no greater than V+\sigma_i . Larger values mean that
1135  * we had a wraparound so we consider the timestamp to be stale.
1136  *
1137  * If F is not stale and F >= V then we set S = F.
1138  * Otherwise we should assign S = V, but this may violate
1139  * the ordering in EB (see [2]). So, if we have groups in ER,
1140  * set S to the F_j of the first group j which would be blocking us.
1141  * We are guaranteed not to move S backward because
1142  * otherwise our group i would still be blocked.
1143  */
1144 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1145 {
1146 	unsigned long mask;
1147 	u64 limit, roundedF;
1148 	int slot_shift = agg->grp->slot_shift;
1149 
1150 	roundedF = qfq_round_down(agg->F, slot_shift);
1151 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1152 
1153 	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1154 		/* timestamp was stale */
1155 		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1156 		if (mask) {
1157 			struct qfq_group *next = qfq_ffs(q, mask);
1158 			if (qfq_gt(roundedF, next->F)) {
1159 				if (qfq_gt(limit, next->F))
1160 					agg->S = next->F;
1161 				else /* preserve timestamp correctness */
1162 					agg->S = limit;
1163 				return;
1164 			}
1165 		}
1166 		agg->S = q->V;
1167 	} else  /* timestamp is not stale */
1168 		agg->S = agg->F;
1169 }
1170 
1171 /*
1172  * Update the timestamps of agg before scheduling/rescheduling it for
1173  * service.  In particular, assign to agg->F its maximum possible
1174  * value, i.e., the virtual finish time with which the aggregate
1175  * should be labeled if it used all its budget once in service.
1176  */
1177 static inline void
1178 qfq_update_agg_ts(struct qfq_sched *q,
1179 		    struct qfq_aggregate *agg, enum update_reason reason)
1180 {
1181 	if (reason != requeue)
1182 		qfq_update_start(q, agg);
1183 	else /* just charge agg for the service received */
1184 		agg->S = agg->F;
1185 
1186 	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1187 }
1188 
1189 static void qfq_schedule_agg(struct qfq_sched *, struct qfq_aggregate *);
1190 
1191 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1192 {
1193 	struct qfq_sched *q = qdisc_priv(sch);
1194 	struct qfq_class *cl;
1195 	struct qfq_aggregate *agg;
1196 	int err = 0;
1197 
1198 	cl = qfq_classify(skb, sch, &err);
1199 	if (cl == NULL) {
1200 		if (err & __NET_XMIT_BYPASS)
1201 			sch->qstats.drops++;
1202 		kfree_skb(skb);
1203 		return err;
1204 	}
1205 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1206 
1207 	if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1208 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1209 			 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1210 		err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1211 				     qdisc_pkt_len(skb));
1212 		if (err)
1213 			return err;
1214 	}
1215 
1216 	err = qdisc_enqueue(skb, cl->qdisc);
1217 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1218 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1219 		if (net_xmit_drop_count(err)) {
1220 			cl->qstats.drops++;
1221 			sch->qstats.drops++;
1222 		}
1223 		return err;
1224 	}
1225 
1226 	bstats_update(&cl->bstats, skb);
1227 	++sch->q.qlen;
1228 
1229 	agg = cl->agg;
1230 	/* if the queue was not empty, then done here */
1231 	if (cl->qdisc->q.qlen != 1) {
1232 		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1233 		    list_first_entry(&agg->active, struct qfq_class, alist)
1234 		    == cl && cl->deficit < qdisc_pkt_len(skb))
1235 			list_move_tail(&cl->alist, &agg->active);
1236 
1237 		return err;
1238 	}
1239 
1240 	/* schedule class for service within the aggregate */
1241 	cl->deficit = agg->lmax;
1242 	list_add_tail(&cl->alist, &agg->active);
1243 
1244 	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1245 	    q->in_serv_agg == agg)
1246 		return err; /* non-empty or in service, nothing else to do */
1247 
1248 	qfq_activate_agg(q, agg, enqueue);
1249 
1250 	return err;
1251 }
1252 
1253 /*
1254  * Schedule aggregate according to its timestamps.
1255  */
1256 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1257 {
1258 	struct qfq_group *grp = agg->grp;
1259 	u64 roundedS;
1260 	int s;
1261 
1262 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1263 
1264 	/*
1265 	 * Insert agg in the correct bucket.
1266 	 * If agg->S >= grp->S we don't need to adjust the
1267 	 * bucket list and simply go to the insertion phase.
1268 	 * Otherwise grp->S is decreasing, we must make room
1269 	 * in the bucket list, and also recompute the group state.
1270 	 * Finally, if there were no flows in this group and nobody
1271 	 * was in ER make sure to adjust V.
1272 	 */
1273 	if (grp->full_slots) {
1274 		if (!qfq_gt(grp->S, agg->S))
1275 			goto skip_update;
1276 
1277 		/* create a slot for this agg->S */
1278 		qfq_slot_rotate(grp, roundedS);
1279 		/* group was surely ineligible, remove */
1280 		__clear_bit(grp->index, &q->bitmaps[IR]);
1281 		__clear_bit(grp->index, &q->bitmaps[IB]);
1282 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1283 		   q->in_serv_agg == NULL)
1284 		q->V = roundedS;
1285 
1286 	grp->S = roundedS;
1287 	grp->F = roundedS + (2ULL << grp->slot_shift);
1288 	s = qfq_calc_state(q, grp);
1289 	__set_bit(grp->index, &q->bitmaps[s]);
1290 
1291 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1292 		 s, q->bitmaps[s],
1293 		 (unsigned long long) agg->S,
1294 		 (unsigned long long) agg->F,
1295 		 (unsigned long long) q->V);
1296 
1297 skip_update:
1298 	qfq_slot_insert(grp, agg, roundedS);
1299 }
1300 
1301 
1302 /* Update agg ts and schedule agg for service */
1303 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1304 			     enum update_reason reason)
1305 {
1306 	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1307 
1308 	qfq_update_agg_ts(q, agg, reason);
1309 	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1310 		q->in_serv_agg = agg; /* start serving this aggregate */
1311 		 /* update V: to be in service, agg must be eligible */
1312 		q->oldV = q->V = agg->S;
1313 	} else if (agg != q->in_serv_agg)
1314 		qfq_schedule_agg(q, agg);
1315 }
1316 
1317 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1318 			    struct qfq_aggregate *agg)
1319 {
1320 	unsigned int i, offset;
1321 	u64 roundedS;
1322 
1323 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1324 	offset = (roundedS - grp->S) >> grp->slot_shift;
1325 
1326 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1327 
1328 	hlist_del(&agg->next);
1329 	if (hlist_empty(&grp->slots[i]))
1330 		__clear_bit(offset, &grp->full_slots);
1331 }
1332 
1333 /*
1334  * Called to forcibly deschedule an aggregate.  If the aggregate is
1335  * not in the front bucket, or if the latter has other aggregates in
1336  * the front bucket, we can simply remove the aggregate with no other
1337  * side effects.
1338  * Otherwise we must propagate the event up.
1339  */
1340 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1341 {
1342 	struct qfq_group *grp = agg->grp;
1343 	unsigned long mask;
1344 	u64 roundedS;
1345 	int s;
1346 
1347 	if (agg == q->in_serv_agg) {
1348 		charge_actual_service(agg);
1349 		q->in_serv_agg = qfq_choose_next_agg(q);
1350 		return;
1351 	}
1352 
1353 	agg->F = agg->S;
1354 	qfq_slot_remove(q, grp, agg);
1355 
1356 	if (!grp->full_slots) {
1357 		__clear_bit(grp->index, &q->bitmaps[IR]);
1358 		__clear_bit(grp->index, &q->bitmaps[EB]);
1359 		__clear_bit(grp->index, &q->bitmaps[IB]);
1360 
1361 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1362 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1363 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1364 			if (mask)
1365 				mask = ~((1UL << __fls(mask)) - 1);
1366 			else
1367 				mask = ~0UL;
1368 			qfq_move_groups(q, mask, EB, ER);
1369 			qfq_move_groups(q, mask, IB, IR);
1370 		}
1371 		__clear_bit(grp->index, &q->bitmaps[ER]);
1372 	} else if (hlist_empty(&grp->slots[grp->front])) {
1373 		agg = qfq_slot_scan(grp);
1374 		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1375 		if (grp->S != roundedS) {
1376 			__clear_bit(grp->index, &q->bitmaps[ER]);
1377 			__clear_bit(grp->index, &q->bitmaps[IR]);
1378 			__clear_bit(grp->index, &q->bitmaps[EB]);
1379 			__clear_bit(grp->index, &q->bitmaps[IB]);
1380 			grp->S = roundedS;
1381 			grp->F = roundedS + (2ULL << grp->slot_shift);
1382 			s = qfq_calc_state(q, grp);
1383 			__set_bit(grp->index, &q->bitmaps[s]);
1384 		}
1385 	}
1386 }
1387 
1388 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1389 {
1390 	struct qfq_sched *q = qdisc_priv(sch);
1391 	struct qfq_class *cl = (struct qfq_class *)arg;
1392 
1393 	if (cl->qdisc->q.qlen == 0)
1394 		qfq_deactivate_class(q, cl);
1395 }
1396 
1397 static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1398 				       struct hlist_head *slot)
1399 {
1400 	struct qfq_aggregate *agg;
1401 	struct qfq_class *cl;
1402 	unsigned int len;
1403 
1404 	hlist_for_each_entry(agg, slot, next) {
1405 		list_for_each_entry(cl, &agg->active, alist) {
1406 
1407 			if (!cl->qdisc->ops->drop)
1408 				continue;
1409 
1410 			len = cl->qdisc->ops->drop(cl->qdisc);
1411 			if (len > 0) {
1412 				if (cl->qdisc->q.qlen == 0)
1413 					qfq_deactivate_class(q, cl);
1414 
1415 				return len;
1416 			}
1417 		}
1418 	}
1419 	return 0;
1420 }
1421 
1422 static unsigned int qfq_drop(struct Qdisc *sch)
1423 {
1424 	struct qfq_sched *q = qdisc_priv(sch);
1425 	struct qfq_group *grp;
1426 	unsigned int i, j, len;
1427 
1428 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1429 		grp = &q->groups[i];
1430 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1431 			len = qfq_drop_from_slot(q, &grp->slots[j]);
1432 			if (len > 0) {
1433 				sch->q.qlen--;
1434 				return len;
1435 			}
1436 		}
1437 
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1444 {
1445 	struct qfq_sched *q = qdisc_priv(sch);
1446 	struct qfq_group *grp;
1447 	int i, j, err;
1448 	u32 max_cl_shift, maxbudg_shift, max_classes;
1449 
1450 	err = qdisc_class_hash_init(&q->clhash);
1451 	if (err < 0)
1452 		return err;
1453 
1454 	if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1455 		max_classes = QFQ_MAX_AGG_CLASSES;
1456 	else
1457 		max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1458 	/* max_cl_shift = floor(log_2(max_classes)) */
1459 	max_cl_shift = __fls(max_classes);
1460 	q->max_agg_classes = 1<<max_cl_shift;
1461 
1462 	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1463 	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1464 	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1465 
1466 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1467 		grp = &q->groups[i];
1468 		grp->index = i;
1469 		grp->slot_shift = q->min_slot_shift + i;
1470 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1471 			INIT_HLIST_HEAD(&grp->slots[j]);
1472 	}
1473 
1474 	INIT_HLIST_HEAD(&q->nonfull_aggs);
1475 
1476 	return 0;
1477 }
1478 
1479 static void qfq_reset_qdisc(struct Qdisc *sch)
1480 {
1481 	struct qfq_sched *q = qdisc_priv(sch);
1482 	struct qfq_class *cl;
1483 	unsigned int i;
1484 
1485 	for (i = 0; i < q->clhash.hashsize; i++) {
1486 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1487 			if (cl->qdisc->q.qlen > 0)
1488 				qfq_deactivate_class(q, cl);
1489 
1490 			qdisc_reset(cl->qdisc);
1491 		}
1492 	}
1493 	sch->q.qlen = 0;
1494 }
1495 
1496 static void qfq_destroy_qdisc(struct Qdisc *sch)
1497 {
1498 	struct qfq_sched *q = qdisc_priv(sch);
1499 	struct qfq_class *cl;
1500 	struct hlist_node *next;
1501 	unsigned int i;
1502 
1503 	tcf_destroy_chain(&q->filter_list);
1504 
1505 	for (i = 0; i < q->clhash.hashsize; i++) {
1506 		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1507 					  common.hnode) {
1508 			qfq_destroy_class(sch, cl);
1509 		}
1510 	}
1511 	qdisc_class_hash_destroy(&q->clhash);
1512 }
1513 
1514 static const struct Qdisc_class_ops qfq_class_ops = {
1515 	.change		= qfq_change_class,
1516 	.delete		= qfq_delete_class,
1517 	.get		= qfq_get_class,
1518 	.put		= qfq_put_class,
1519 	.tcf_chain	= qfq_tcf_chain,
1520 	.bind_tcf	= qfq_bind_tcf,
1521 	.unbind_tcf	= qfq_unbind_tcf,
1522 	.graft		= qfq_graft_class,
1523 	.leaf		= qfq_class_leaf,
1524 	.qlen_notify	= qfq_qlen_notify,
1525 	.dump		= qfq_dump_class,
1526 	.dump_stats	= qfq_dump_class_stats,
1527 	.walk		= qfq_walk,
1528 };
1529 
1530 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1531 	.cl_ops		= &qfq_class_ops,
1532 	.id		= "qfq",
1533 	.priv_size	= sizeof(struct qfq_sched),
1534 	.enqueue	= qfq_enqueue,
1535 	.dequeue	= qfq_dequeue,
1536 	.peek		= qdisc_peek_dequeued,
1537 	.drop		= qfq_drop,
1538 	.init		= qfq_init_qdisc,
1539 	.reset		= qfq_reset_qdisc,
1540 	.destroy	= qfq_destroy_qdisc,
1541 	.owner		= THIS_MODULE,
1542 };
1543 
1544 static int __init qfq_init(void)
1545 {
1546 	return register_qdisc(&qfq_qdisc_ops);
1547 }
1548 
1549 static void __exit qfq_exit(void)
1550 {
1551 	unregister_qdisc(&qfq_qdisc_ops);
1552 }
1553 
1554 module_init(qfq_init);
1555 module_exit(qfq_exit);
1556 MODULE_LICENSE("GPL");
1557