xref: /openbmc/linux/net/sched/sch_qfq.c (revision e23feb16)
1 /*
2  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
3  *
4  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5  * Copyright (c) 2012 Paolo Valente.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21 
22 
23 /*  Quick Fair Queueing Plus
24     ========================
25 
26     Sources:
27 
28     [1] Paolo Valente,
29     "Reducing the Execution Time of Fair-Queueing Schedulers."
30     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31 
32     Sources for QFQ:
33 
34     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36 
37     See also:
38     http://retis.sssup.it/~fabio/linux/qfq/
39  */
40 
41 /*
42 
43   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44   classes. Each aggregate is timestamped with a virtual start time S
45   and a virtual finish time F, and scheduled according to its
46   timestamps. S and F are computed as a function of a system virtual
47   time function V. The classes within each aggregate are instead
48   scheduled with DRR.
49 
50   To speed up operations, QFQ+ divides also aggregates into a limited
51   number of groups. Which group a class belongs to depends on the
52   ratio between the maximum packet length for the class and the weight
53   of the class. Groups have their own S and F. In the end, QFQ+
54   schedules groups, then aggregates within groups, then classes within
55   aggregates. See [1] and [2] for a full description.
56 
57   Virtual time computations.
58 
59   S, F and V are all computed in fixed point arithmetic with
60   FRAC_BITS decimal bits.
61 
62   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 	one bit per index.
64   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65 
66   The layout of the bits is as below:
67 
68                    [ MTU_SHIFT ][      FRAC_BITS    ]
69                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
70 				 ^.__grp->index = 0
71 				 *.__grp->slot_shift
72 
73   where MIN_SLOT_SHIFT is derived by difference from the others.
74 
75   The max group index corresponds to Lmax/w_min, where
76   Lmax=1<<MTU_SHIFT, w_min = 1 .
77   From this, and knowing how many groups (MAX_INDEX) we want,
78   we can derive the shift corresponding to each group.
79 
80   Because we often need to compute
81 	F = S + len/w_i  and V = V + len/wsum
82   instead of storing w_i store the value
83 	inv_w = (1<<FRAC_BITS)/w_i
84   so we can do F = S + len * inv_w * wsum.
85   We use W_TOT in the formulas so we can easily move between
86   static and adaptive weight sum.
87 
88   The per-scheduler-instance data contain all the data structures
89   for the scheduler: bitmaps and bucket lists.
90 
91  */
92 
93 /*
94  * Maximum number of consecutive slots occupied by backlogged classes
95  * inside a group.
96  */
97 #define QFQ_MAX_SLOTS	32
98 
99 /*
100  * Shifts used for aggregate<->group mapping.  We allow class weights that are
101  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102  * group with the smallest index that can support the L_i / r_i configured
103  * for the classes in the aggregate.
104  *
105  * grp->index is the index of the group; and grp->slot_shift
106  * is the shift for the corresponding (scaled) sigma_i.
107  */
108 #define QFQ_MAX_INDEX		24
109 #define QFQ_MAX_WSHIFT		10
110 
111 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
113 
114 #define FRAC_BITS		30	/* fixed point arithmetic */
115 #define ONE_FP			(1UL << FRAC_BITS)
116 
117 #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
118 #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
119 
120 #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
121 
122 /*
123  * Possible group states.  These values are used as indexes for the bitmaps
124  * array of struct qfq_queue.
125  */
126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
127 
128 struct qfq_group;
129 
130 struct qfq_aggregate;
131 
132 struct qfq_class {
133 	struct Qdisc_class_common common;
134 
135 	unsigned int refcnt;
136 	unsigned int filter_cnt;
137 
138 	struct gnet_stats_basic_packed bstats;
139 	struct gnet_stats_queue qstats;
140 	struct gnet_stats_rate_est64 rate_est;
141 	struct Qdisc *qdisc;
142 	struct list_head alist;		/* Link for active-classes list. */
143 	struct qfq_aggregate *agg;	/* Parent aggregate. */
144 	int deficit;			/* DRR deficit counter. */
145 };
146 
147 struct qfq_aggregate {
148 	struct hlist_node next;	/* Link for the slot list. */
149 	u64 S, F;		/* flow timestamps (exact) */
150 
151 	/* group we belong to. In principle we would need the index,
152 	 * which is log_2(lmax/weight), but we never reference it
153 	 * directly, only the group.
154 	 */
155 	struct qfq_group *grp;
156 
157 	/* these are copied from the flowset. */
158 	u32	class_weight; /* Weight of each class in this aggregate. */
159 	/* Max pkt size for the classes in this aggregate, DRR quantum. */
160 	int	lmax;
161 
162 	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
163 	u32	budgetmax;  /* Max budget for this aggregate. */
164 	u32	initial_budget, budget;     /* Initial and current budget. */
165 
166 	int		  num_classes;	/* Number of classes in this aggr. */
167 	struct list_head  active;	/* DRR queue of active classes. */
168 
169 	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
170 };
171 
172 struct qfq_group {
173 	u64 S, F;			/* group timestamps (approx). */
174 	unsigned int slot_shift;	/* Slot shift. */
175 	unsigned int index;		/* Group index. */
176 	unsigned int front;		/* Index of the front slot. */
177 	unsigned long full_slots;	/* non-empty slots */
178 
179 	/* Array of RR lists of active aggregates. */
180 	struct hlist_head slots[QFQ_MAX_SLOTS];
181 };
182 
183 struct qfq_sched {
184 	struct tcf_proto *filter_list;
185 	struct Qdisc_class_hash clhash;
186 
187 	u64			oldV, V;	/* Precise virtual times. */
188 	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
189 	u32			num_active_agg; /* Num. of active aggregates */
190 	u32			wsum;		/* weight sum */
191 	u32			iwsum;		/* inverse weight sum */
192 
193 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
194 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
195 	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
196 
197 	u32 max_agg_classes;		/* Max number of classes per aggr. */
198 	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
199 };
200 
201 /*
202  * Possible reasons why the timestamps of an aggregate are updated
203  * enqueue: the aggregate switches from idle to active and must scheduled
204  *	    for service
205  * requeue: the aggregate finishes its budget, so it stops being served and
206  *	    must be rescheduled for service
207  */
208 enum update_reason {enqueue, requeue};
209 
210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 {
212 	struct qfq_sched *q = qdisc_priv(sch);
213 	struct Qdisc_class_common *clc;
214 
215 	clc = qdisc_class_find(&q->clhash, classid);
216 	if (clc == NULL)
217 		return NULL;
218 	return container_of(clc, struct qfq_class, common);
219 }
220 
221 static void qfq_purge_queue(struct qfq_class *cl)
222 {
223 	unsigned int len = cl->qdisc->q.qlen;
224 
225 	qdisc_reset(cl->qdisc);
226 	qdisc_tree_decrease_qlen(cl->qdisc, len);
227 }
228 
229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 	[TCA_QFQ_LMAX] = { .type = NLA_U32 },
232 };
233 
234 /*
235  * Calculate a flow index, given its weight and maximum packet length.
236  * index = log_2(maxlen/weight) but we need to apply the scaling.
237  * This is used only once at flow creation.
238  */
239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
240 {
241 	u64 slot_size = (u64)maxlen * inv_w;
242 	unsigned long size_map;
243 	int index = 0;
244 
245 	size_map = slot_size >> min_slot_shift;
246 	if (!size_map)
247 		goto out;
248 
249 	index = __fls(size_map) + 1;	/* basically a log_2 */
250 	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
251 
252 	if (index < 0)
253 		index = 0;
254 out:
255 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
257 
258 	return index;
259 }
260 
261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 			     enum update_reason);
264 
265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 			 u32 lmax, u32 weight)
267 {
268 	INIT_LIST_HEAD(&agg->active);
269 	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270 
271 	agg->lmax = lmax;
272 	agg->class_weight = weight;
273 }
274 
275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 					  u32 lmax, u32 weight)
277 {
278 	struct qfq_aggregate *agg;
279 
280 	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281 		if (agg->lmax == lmax && agg->class_weight == weight)
282 			return agg;
283 
284 	return NULL;
285 }
286 
287 
288 /* Update aggregate as a function of the new number of classes. */
289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 			   int new_num_classes)
291 {
292 	u32 new_agg_weight;
293 
294 	if (new_num_classes == q->max_agg_classes)
295 		hlist_del_init(&agg->nonfull_next);
296 
297 	if (agg->num_classes > new_num_classes &&
298 	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300 
301 	/* The next assignment may let
302 	 * agg->initial_budget > agg->budgetmax
303 	 * hold, we will take it into account in charge_actual_service().
304 	 */
305 	agg->budgetmax = new_num_classes * agg->lmax;
306 	new_agg_weight = agg->class_weight * new_num_classes;
307 	agg->inv_w = ONE_FP/new_agg_weight;
308 
309 	if (agg->grp == NULL) {
310 		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311 				       q->min_slot_shift);
312 		agg->grp = &q->groups[i];
313 	}
314 
315 	q->wsum +=
316 		(int) agg->class_weight * (new_num_classes - agg->num_classes);
317 	q->iwsum = ONE_FP / q->wsum;
318 
319 	agg->num_classes = new_num_classes;
320 }
321 
322 /* Add class to aggregate. */
323 static void qfq_add_to_agg(struct qfq_sched *q,
324 			   struct qfq_aggregate *agg,
325 			   struct qfq_class *cl)
326 {
327 	cl->agg = agg;
328 
329 	qfq_update_agg(q, agg, agg->num_classes+1);
330 	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
331 		list_add_tail(&cl->alist, &agg->active);
332 		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
333 		    cl && q->in_serv_agg != agg) /* agg was inactive */
334 			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
335 	}
336 }
337 
338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
339 
340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
341 {
342 	if (!hlist_unhashed(&agg->nonfull_next))
343 		hlist_del_init(&agg->nonfull_next);
344 	q->wsum -= agg->class_weight;
345 	if (q->wsum != 0)
346 		q->iwsum = ONE_FP / q->wsum;
347 
348 	if (q->in_serv_agg == agg)
349 		q->in_serv_agg = qfq_choose_next_agg(q);
350 	kfree(agg);
351 }
352 
353 /* Deschedule class from within its parent aggregate. */
354 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
355 {
356 	struct qfq_aggregate *agg = cl->agg;
357 
358 
359 	list_del(&cl->alist); /* remove from RR queue of the aggregate */
360 	if (list_empty(&agg->active)) /* agg is now inactive */
361 		qfq_deactivate_agg(q, agg);
362 }
363 
364 /* Remove class from its parent aggregate. */
365 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
366 {
367 	struct qfq_aggregate *agg = cl->agg;
368 
369 	cl->agg = NULL;
370 	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
371 		qfq_destroy_agg(q, agg);
372 		return;
373 	}
374 	qfq_update_agg(q, agg, agg->num_classes-1);
375 }
376 
377 /* Deschedule class and remove it from its parent aggregate. */
378 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
379 {
380 	if (cl->qdisc->q.qlen > 0) /* class is active */
381 		qfq_deactivate_class(q, cl);
382 
383 	qfq_rm_from_agg(q, cl);
384 }
385 
386 /* Move class to a new aggregate, matching the new class weight and/or lmax */
387 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
388 			   u32 lmax)
389 {
390 	struct qfq_sched *q = qdisc_priv(sch);
391 	struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
392 
393 	if (new_agg == NULL) { /* create new aggregate */
394 		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
395 		if (new_agg == NULL)
396 			return -ENOBUFS;
397 		qfq_init_agg(q, new_agg, lmax, weight);
398 	}
399 	qfq_deact_rm_from_agg(q, cl);
400 	qfq_add_to_agg(q, new_agg, cl);
401 
402 	return 0;
403 }
404 
405 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
406 			    struct nlattr **tca, unsigned long *arg)
407 {
408 	struct qfq_sched *q = qdisc_priv(sch);
409 	struct qfq_class *cl = (struct qfq_class *)*arg;
410 	bool existing = false;
411 	struct nlattr *tb[TCA_QFQ_MAX + 1];
412 	struct qfq_aggregate *new_agg = NULL;
413 	u32 weight, lmax, inv_w;
414 	int err;
415 	int delta_w;
416 
417 	if (tca[TCA_OPTIONS] == NULL) {
418 		pr_notice("qfq: no options\n");
419 		return -EINVAL;
420 	}
421 
422 	err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
423 	if (err < 0)
424 		return err;
425 
426 	if (tb[TCA_QFQ_WEIGHT]) {
427 		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
428 		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
429 			pr_notice("qfq: invalid weight %u\n", weight);
430 			return -EINVAL;
431 		}
432 	} else
433 		weight = 1;
434 
435 	if (tb[TCA_QFQ_LMAX]) {
436 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
437 		if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
438 			pr_notice("qfq: invalid max length %u\n", lmax);
439 			return -EINVAL;
440 		}
441 	} else
442 		lmax = psched_mtu(qdisc_dev(sch));
443 
444 	inv_w = ONE_FP / weight;
445 	weight = ONE_FP / inv_w;
446 
447 	if (cl != NULL &&
448 	    lmax == cl->agg->lmax &&
449 	    weight == cl->agg->class_weight)
450 		return 0; /* nothing to change */
451 
452 	delta_w = weight - (cl ? cl->agg->class_weight : 0);
453 
454 	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
455 		pr_notice("qfq: total weight out of range (%d + %u)\n",
456 			  delta_w, q->wsum);
457 		return -EINVAL;
458 	}
459 
460 	if (cl != NULL) { /* modify existing class */
461 		if (tca[TCA_RATE]) {
462 			err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
463 						    qdisc_root_sleeping_lock(sch),
464 						    tca[TCA_RATE]);
465 			if (err)
466 				return err;
467 		}
468 		existing = true;
469 		goto set_change_agg;
470 	}
471 
472 	/* create and init new class */
473 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
474 	if (cl == NULL)
475 		return -ENOBUFS;
476 
477 	cl->refcnt = 1;
478 	cl->common.classid = classid;
479 	cl->deficit = lmax;
480 
481 	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
482 				      &pfifo_qdisc_ops, classid);
483 	if (cl->qdisc == NULL)
484 		cl->qdisc = &noop_qdisc;
485 
486 	if (tca[TCA_RATE]) {
487 		err = gen_new_estimator(&cl->bstats, &cl->rate_est,
488 					qdisc_root_sleeping_lock(sch),
489 					tca[TCA_RATE]);
490 		if (err)
491 			goto destroy_class;
492 	}
493 
494 	sch_tree_lock(sch);
495 	qdisc_class_hash_insert(&q->clhash, &cl->common);
496 	sch_tree_unlock(sch);
497 
498 	qdisc_class_hash_grow(sch, &q->clhash);
499 
500 set_change_agg:
501 	sch_tree_lock(sch);
502 	new_agg = qfq_find_agg(q, lmax, weight);
503 	if (new_agg == NULL) { /* create new aggregate */
504 		sch_tree_unlock(sch);
505 		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
506 		if (new_agg == NULL) {
507 			err = -ENOBUFS;
508 			gen_kill_estimator(&cl->bstats, &cl->rate_est);
509 			goto destroy_class;
510 		}
511 		sch_tree_lock(sch);
512 		qfq_init_agg(q, new_agg, lmax, weight);
513 	}
514 	if (existing)
515 		qfq_deact_rm_from_agg(q, cl);
516 	qfq_add_to_agg(q, new_agg, cl);
517 	sch_tree_unlock(sch);
518 
519 	*arg = (unsigned long)cl;
520 	return 0;
521 
522 destroy_class:
523 	qdisc_destroy(cl->qdisc);
524 	kfree(cl);
525 	return err;
526 }
527 
528 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
529 {
530 	struct qfq_sched *q = qdisc_priv(sch);
531 
532 	qfq_rm_from_agg(q, cl);
533 	gen_kill_estimator(&cl->bstats, &cl->rate_est);
534 	qdisc_destroy(cl->qdisc);
535 	kfree(cl);
536 }
537 
538 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
539 {
540 	struct qfq_sched *q = qdisc_priv(sch);
541 	struct qfq_class *cl = (struct qfq_class *)arg;
542 
543 	if (cl->filter_cnt > 0)
544 		return -EBUSY;
545 
546 	sch_tree_lock(sch);
547 
548 	qfq_purge_queue(cl);
549 	qdisc_class_hash_remove(&q->clhash, &cl->common);
550 
551 	BUG_ON(--cl->refcnt == 0);
552 	/*
553 	 * This shouldn't happen: we "hold" one cops->get() when called
554 	 * from tc_ctl_tclass; the destroy method is done from cops->put().
555 	 */
556 
557 	sch_tree_unlock(sch);
558 	return 0;
559 }
560 
561 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
562 {
563 	struct qfq_class *cl = qfq_find_class(sch, classid);
564 
565 	if (cl != NULL)
566 		cl->refcnt++;
567 
568 	return (unsigned long)cl;
569 }
570 
571 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
572 {
573 	struct qfq_class *cl = (struct qfq_class *)arg;
574 
575 	if (--cl->refcnt == 0)
576 		qfq_destroy_class(sch, cl);
577 }
578 
579 static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl)
580 {
581 	struct qfq_sched *q = qdisc_priv(sch);
582 
583 	if (cl)
584 		return NULL;
585 
586 	return &q->filter_list;
587 }
588 
589 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
590 				  u32 classid)
591 {
592 	struct qfq_class *cl = qfq_find_class(sch, classid);
593 
594 	if (cl != NULL)
595 		cl->filter_cnt++;
596 
597 	return (unsigned long)cl;
598 }
599 
600 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
601 {
602 	struct qfq_class *cl = (struct qfq_class *)arg;
603 
604 	cl->filter_cnt--;
605 }
606 
607 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
608 			   struct Qdisc *new, struct Qdisc **old)
609 {
610 	struct qfq_class *cl = (struct qfq_class *)arg;
611 
612 	if (new == NULL) {
613 		new = qdisc_create_dflt(sch->dev_queue,
614 					&pfifo_qdisc_ops, cl->common.classid);
615 		if (new == NULL)
616 			new = &noop_qdisc;
617 	}
618 
619 	sch_tree_lock(sch);
620 	qfq_purge_queue(cl);
621 	*old = cl->qdisc;
622 	cl->qdisc = new;
623 	sch_tree_unlock(sch);
624 	return 0;
625 }
626 
627 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
628 {
629 	struct qfq_class *cl = (struct qfq_class *)arg;
630 
631 	return cl->qdisc;
632 }
633 
634 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
635 			  struct sk_buff *skb, struct tcmsg *tcm)
636 {
637 	struct qfq_class *cl = (struct qfq_class *)arg;
638 	struct nlattr *nest;
639 
640 	tcm->tcm_parent	= TC_H_ROOT;
641 	tcm->tcm_handle	= cl->common.classid;
642 	tcm->tcm_info	= cl->qdisc->handle;
643 
644 	nest = nla_nest_start(skb, TCA_OPTIONS);
645 	if (nest == NULL)
646 		goto nla_put_failure;
647 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
648 	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
649 		goto nla_put_failure;
650 	return nla_nest_end(skb, nest);
651 
652 nla_put_failure:
653 	nla_nest_cancel(skb, nest);
654 	return -EMSGSIZE;
655 }
656 
657 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
658 				struct gnet_dump *d)
659 {
660 	struct qfq_class *cl = (struct qfq_class *)arg;
661 	struct tc_qfq_stats xstats;
662 
663 	memset(&xstats, 0, sizeof(xstats));
664 	cl->qdisc->qstats.qlen = cl->qdisc->q.qlen;
665 
666 	xstats.weight = cl->agg->class_weight;
667 	xstats.lmax = cl->agg->lmax;
668 
669 	if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
670 	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
671 	    gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0)
672 		return -1;
673 
674 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
675 }
676 
677 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
678 {
679 	struct qfq_sched *q = qdisc_priv(sch);
680 	struct qfq_class *cl;
681 	unsigned int i;
682 
683 	if (arg->stop)
684 		return;
685 
686 	for (i = 0; i < q->clhash.hashsize; i++) {
687 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
688 			if (arg->count < arg->skip) {
689 				arg->count++;
690 				continue;
691 			}
692 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
693 				arg->stop = 1;
694 				return;
695 			}
696 			arg->count++;
697 		}
698 	}
699 }
700 
701 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
702 				      int *qerr)
703 {
704 	struct qfq_sched *q = qdisc_priv(sch);
705 	struct qfq_class *cl;
706 	struct tcf_result res;
707 	int result;
708 
709 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
710 		pr_debug("qfq_classify: found %d\n", skb->priority);
711 		cl = qfq_find_class(sch, skb->priority);
712 		if (cl != NULL)
713 			return cl;
714 	}
715 
716 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
717 	result = tc_classify(skb, q->filter_list, &res);
718 	if (result >= 0) {
719 #ifdef CONFIG_NET_CLS_ACT
720 		switch (result) {
721 		case TC_ACT_QUEUED:
722 		case TC_ACT_STOLEN:
723 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
724 		case TC_ACT_SHOT:
725 			return NULL;
726 		}
727 #endif
728 		cl = (struct qfq_class *)res.class;
729 		if (cl == NULL)
730 			cl = qfq_find_class(sch, res.classid);
731 		return cl;
732 	}
733 
734 	return NULL;
735 }
736 
737 /* Generic comparison function, handling wraparound. */
738 static inline int qfq_gt(u64 a, u64 b)
739 {
740 	return (s64)(a - b) > 0;
741 }
742 
743 /* Round a precise timestamp to its slotted value. */
744 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
745 {
746 	return ts & ~((1ULL << shift) - 1);
747 }
748 
749 /* return the pointer to the group with lowest index in the bitmap */
750 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
751 					unsigned long bitmap)
752 {
753 	int index = __ffs(bitmap);
754 	return &q->groups[index];
755 }
756 /* Calculate a mask to mimic what would be ffs_from(). */
757 static inline unsigned long mask_from(unsigned long bitmap, int from)
758 {
759 	return bitmap & ~((1UL << from) - 1);
760 }
761 
762 /*
763  * The state computation relies on ER=0, IR=1, EB=2, IB=3
764  * First compute eligibility comparing grp->S, q->V,
765  * then check if someone is blocking us and possibly add EB
766  */
767 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
768 {
769 	/* if S > V we are not eligible */
770 	unsigned int state = qfq_gt(grp->S, q->V);
771 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
772 	struct qfq_group *next;
773 
774 	if (mask) {
775 		next = qfq_ffs(q, mask);
776 		if (qfq_gt(grp->F, next->F))
777 			state |= EB;
778 	}
779 
780 	return state;
781 }
782 
783 
784 /*
785  * In principle
786  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
787  *	q->bitmaps[src] &= ~mask;
788  * but we should make sure that src != dst
789  */
790 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
791 				   int src, int dst)
792 {
793 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
794 	q->bitmaps[src] &= ~mask;
795 }
796 
797 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
798 {
799 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
800 	struct qfq_group *next;
801 
802 	if (mask) {
803 		next = qfq_ffs(q, mask);
804 		if (!qfq_gt(next->F, old_F))
805 			return;
806 	}
807 
808 	mask = (1UL << index) - 1;
809 	qfq_move_groups(q, mask, EB, ER);
810 	qfq_move_groups(q, mask, IB, IR);
811 }
812 
813 /*
814  * perhaps
815  *
816 	old_V ^= q->V;
817 	old_V >>= q->min_slot_shift;
818 	if (old_V) {
819 		...
820 	}
821  *
822  */
823 static void qfq_make_eligible(struct qfq_sched *q)
824 {
825 	unsigned long vslot = q->V >> q->min_slot_shift;
826 	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
827 
828 	if (vslot != old_vslot) {
829 		unsigned long mask;
830 		int last_flip_pos = fls(vslot ^ old_vslot);
831 
832 		if (last_flip_pos > 31) /* higher than the number of groups */
833 			mask = ~0UL;    /* make all groups eligible */
834 		else
835 			mask = (1UL << last_flip_pos) - 1;
836 
837 		qfq_move_groups(q, mask, IR, ER);
838 		qfq_move_groups(q, mask, IB, EB);
839 	}
840 }
841 
842 /*
843  * The index of the slot in which the input aggregate agg is to be
844  * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
845  * and not a '-1' because the start time of the group may be moved
846  * backward by one slot after the aggregate has been inserted, and
847  * this would cause non-empty slots to be right-shifted by one
848  * position.
849  *
850  * QFQ+ fully satisfies this bound to the slot index if the parameters
851  * of the classes are not changed dynamically, and if QFQ+ never
852  * happens to postpone the service of agg unjustly, i.e., it never
853  * happens that the aggregate becomes backlogged and eligible, or just
854  * eligible, while an aggregate with a higher approximated finish time
855  * is being served. In particular, in this case QFQ+ guarantees that
856  * the timestamps of agg are low enough that the slot index is never
857  * higher than 2. Unfortunately, QFQ+ cannot provide the same
858  * guarantee if it happens to unjustly postpone the service of agg, or
859  * if the parameters of some class are changed.
860  *
861  * As for the first event, i.e., an out-of-order service, the
862  * upper bound to the slot index guaranteed by QFQ+ grows to
863  * 2 +
864  * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
865  * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
866  *
867  * The following function deals with this problem by backward-shifting
868  * the timestamps of agg, if needed, so as to guarantee that the slot
869  * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
870  * cause the service of other aggregates to be postponed, yet the
871  * worst-case guarantees of these aggregates are not violated.  In
872  * fact, in case of no out-of-order service, the timestamps of agg
873  * would have been even lower than they are after the backward shift,
874  * because QFQ+ would have guaranteed a maximum value equal to 2 for
875  * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
876  * service is postponed because of the backward-shift would have
877  * however waited for the service of agg before being served.
878  *
879  * The other event that may cause the slot index to be higher than 2
880  * for agg is a recent change of the parameters of some class. If the
881  * weight of a class is increased or the lmax (max_pkt_size) of the
882  * class is decreased, then a new aggregate with smaller slot size
883  * than the original parent aggregate of the class may happen to be
884  * activated. The activation of this aggregate should be properly
885  * delayed to when the service of the class has finished in the ideal
886  * system tracked by QFQ+. If the activation of the aggregate is not
887  * delayed to this reference time instant, then this aggregate may be
888  * unjustly served before other aggregates waiting for service. This
889  * may cause the above bound to the slot index to be violated for some
890  * of these unlucky aggregates.
891  *
892  * Instead of delaying the activation of the new aggregate, which is
893  * quite complex, the above-discussed capping of the slot index is
894  * used to handle also the consequences of a change of the parameters
895  * of a class.
896  */
897 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
898 			    u64 roundedS)
899 {
900 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
901 	unsigned int i; /* slot index in the bucket list */
902 
903 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
904 		u64 deltaS = roundedS - grp->S -
905 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
906 		agg->S -= deltaS;
907 		agg->F -= deltaS;
908 		slot = QFQ_MAX_SLOTS - 2;
909 	}
910 
911 	i = (grp->front + slot) % QFQ_MAX_SLOTS;
912 
913 	hlist_add_head(&agg->next, &grp->slots[i]);
914 	__set_bit(slot, &grp->full_slots);
915 }
916 
917 /* Maybe introduce hlist_first_entry?? */
918 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
919 {
920 	return hlist_entry(grp->slots[grp->front].first,
921 			   struct qfq_aggregate, next);
922 }
923 
924 /*
925  * remove the entry from the slot
926  */
927 static void qfq_front_slot_remove(struct qfq_group *grp)
928 {
929 	struct qfq_aggregate *agg = qfq_slot_head(grp);
930 
931 	BUG_ON(!agg);
932 	hlist_del(&agg->next);
933 	if (hlist_empty(&grp->slots[grp->front]))
934 		__clear_bit(0, &grp->full_slots);
935 }
936 
937 /*
938  * Returns the first aggregate in the first non-empty bucket of the
939  * group. As a side effect, adjusts the bucket list so the first
940  * non-empty bucket is at position 0 in full_slots.
941  */
942 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
943 {
944 	unsigned int i;
945 
946 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
947 		 grp->index, grp->full_slots);
948 
949 	if (grp->full_slots == 0)
950 		return NULL;
951 
952 	i = __ffs(grp->full_slots);  /* zero based */
953 	if (i > 0) {
954 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
955 		grp->full_slots >>= i;
956 	}
957 
958 	return qfq_slot_head(grp);
959 }
960 
961 /*
962  * adjust the bucket list. When the start time of a group decreases,
963  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
964  * move the objects. The mask of occupied slots must be shifted
965  * because we use ffs() to find the first non-empty slot.
966  * This covers decreases in the group's start time, but what about
967  * increases of the start time ?
968  * Here too we should make sure that i is less than 32
969  */
970 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
971 {
972 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
973 
974 	grp->full_slots <<= i;
975 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
976 }
977 
978 static void qfq_update_eligible(struct qfq_sched *q)
979 {
980 	struct qfq_group *grp;
981 	unsigned long ineligible;
982 
983 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
984 	if (ineligible) {
985 		if (!q->bitmaps[ER]) {
986 			grp = qfq_ffs(q, ineligible);
987 			if (qfq_gt(grp->S, q->V))
988 				q->V = grp->S;
989 		}
990 		qfq_make_eligible(q);
991 	}
992 }
993 
994 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
995 static void agg_dequeue(struct qfq_aggregate *agg,
996 			struct qfq_class *cl, unsigned int len)
997 {
998 	qdisc_dequeue_peeked(cl->qdisc);
999 
1000 	cl->deficit -= (int) len;
1001 
1002 	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1003 		list_del(&cl->alist);
1004 	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
1005 		cl->deficit += agg->lmax;
1006 		list_move_tail(&cl->alist, &agg->active);
1007 	}
1008 }
1009 
1010 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1011 					   struct qfq_class **cl,
1012 					   unsigned int *len)
1013 {
1014 	struct sk_buff *skb;
1015 
1016 	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
1017 	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1018 	if (skb == NULL)
1019 		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1020 	else
1021 		*len = qdisc_pkt_len(skb);
1022 
1023 	return skb;
1024 }
1025 
1026 /* Update F according to the actual service received by the aggregate. */
1027 static inline void charge_actual_service(struct qfq_aggregate *agg)
1028 {
1029 	/* Compute the service received by the aggregate, taking into
1030 	 * account that, after decreasing the number of classes in
1031 	 * agg, it may happen that
1032 	 * agg->initial_budget - agg->budget > agg->bugdetmax
1033 	 */
1034 	u32 service_received = min(agg->budgetmax,
1035 				   agg->initial_budget - agg->budget);
1036 
1037 	agg->F = agg->S + (u64)service_received * agg->inv_w;
1038 }
1039 
1040 /* Assign a reasonable start time for a new aggregate in group i.
1041  * Admissible values for \hat(F) are multiples of \sigma_i
1042  * no greater than V+\sigma_i . Larger values mean that
1043  * we had a wraparound so we consider the timestamp to be stale.
1044  *
1045  * If F is not stale and F >= V then we set S = F.
1046  * Otherwise we should assign S = V, but this may violate
1047  * the ordering in EB (see [2]). So, if we have groups in ER,
1048  * set S to the F_j of the first group j which would be blocking us.
1049  * We are guaranteed not to move S backward because
1050  * otherwise our group i would still be blocked.
1051  */
1052 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1053 {
1054 	unsigned long mask;
1055 	u64 limit, roundedF;
1056 	int slot_shift = agg->grp->slot_shift;
1057 
1058 	roundedF = qfq_round_down(agg->F, slot_shift);
1059 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1060 
1061 	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1062 		/* timestamp was stale */
1063 		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1064 		if (mask) {
1065 			struct qfq_group *next = qfq_ffs(q, mask);
1066 			if (qfq_gt(roundedF, next->F)) {
1067 				if (qfq_gt(limit, next->F))
1068 					agg->S = next->F;
1069 				else /* preserve timestamp correctness */
1070 					agg->S = limit;
1071 				return;
1072 			}
1073 		}
1074 		agg->S = q->V;
1075 	} else  /* timestamp is not stale */
1076 		agg->S = agg->F;
1077 }
1078 
1079 /* Update the timestamps of agg before scheduling/rescheduling it for
1080  * service.  In particular, assign to agg->F its maximum possible
1081  * value, i.e., the virtual finish time with which the aggregate
1082  * should be labeled if it used all its budget once in service.
1083  */
1084 static inline void
1085 qfq_update_agg_ts(struct qfq_sched *q,
1086 		    struct qfq_aggregate *agg, enum update_reason reason)
1087 {
1088 	if (reason != requeue)
1089 		qfq_update_start(q, agg);
1090 	else /* just charge agg for the service received */
1091 		agg->S = agg->F;
1092 
1093 	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1094 }
1095 
1096 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1097 
1098 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1099 {
1100 	struct qfq_sched *q = qdisc_priv(sch);
1101 	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1102 	struct qfq_class *cl;
1103 	struct sk_buff *skb = NULL;
1104 	/* next-packet len, 0 means no more active classes in in-service agg */
1105 	unsigned int len = 0;
1106 
1107 	if (in_serv_agg == NULL)
1108 		return NULL;
1109 
1110 	if (!list_empty(&in_serv_agg->active))
1111 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1112 
1113 	/*
1114 	 * If there are no active classes in the in-service aggregate,
1115 	 * or if the aggregate has not enough budget to serve its next
1116 	 * class, then choose the next aggregate to serve.
1117 	 */
1118 	if (len == 0 || in_serv_agg->budget < len) {
1119 		charge_actual_service(in_serv_agg);
1120 
1121 		/* recharge the budget of the aggregate */
1122 		in_serv_agg->initial_budget = in_serv_agg->budget =
1123 			in_serv_agg->budgetmax;
1124 
1125 		if (!list_empty(&in_serv_agg->active)) {
1126 			/*
1127 			 * Still active: reschedule for
1128 			 * service. Possible optimization: if no other
1129 			 * aggregate is active, then there is no point
1130 			 * in rescheduling this aggregate, and we can
1131 			 * just keep it as the in-service one. This
1132 			 * should be however a corner case, and to
1133 			 * handle it, we would need to maintain an
1134 			 * extra num_active_aggs field.
1135 			*/
1136 			qfq_update_agg_ts(q, in_serv_agg, requeue);
1137 			qfq_schedule_agg(q, in_serv_agg);
1138 		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1139 			q->in_serv_agg = NULL;
1140 			return NULL;
1141 		}
1142 
1143 		/*
1144 		 * If we get here, there are other aggregates queued:
1145 		 * choose the new aggregate to serve.
1146 		 */
1147 		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1148 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1149 	}
1150 	if (!skb)
1151 		return NULL;
1152 
1153 	sch->q.qlen--;
1154 	qdisc_bstats_update(sch, skb);
1155 
1156 	agg_dequeue(in_serv_agg, cl, len);
1157 	/* If lmax is lowered, through qfq_change_class, for a class
1158 	 * owning pending packets with larger size than the new value
1159 	 * of lmax, then the following condition may hold.
1160 	 */
1161 	if (unlikely(in_serv_agg->budget < len))
1162 		in_serv_agg->budget = 0;
1163 	else
1164 		in_serv_agg->budget -= len;
1165 
1166 	q->V += (u64)len * q->iwsum;
1167 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1168 		 len, (unsigned long long) in_serv_agg->F,
1169 		 (unsigned long long) q->V);
1170 
1171 	return skb;
1172 }
1173 
1174 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1175 {
1176 	struct qfq_group *grp;
1177 	struct qfq_aggregate *agg, *new_front_agg;
1178 	u64 old_F;
1179 
1180 	qfq_update_eligible(q);
1181 	q->oldV = q->V;
1182 
1183 	if (!q->bitmaps[ER])
1184 		return NULL;
1185 
1186 	grp = qfq_ffs(q, q->bitmaps[ER]);
1187 	old_F = grp->F;
1188 
1189 	agg = qfq_slot_head(grp);
1190 
1191 	/* agg starts to be served, remove it from schedule */
1192 	qfq_front_slot_remove(grp);
1193 
1194 	new_front_agg = qfq_slot_scan(grp);
1195 
1196 	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1197 		__clear_bit(grp->index, &q->bitmaps[ER]);
1198 	else {
1199 		u64 roundedS = qfq_round_down(new_front_agg->S,
1200 					      grp->slot_shift);
1201 		unsigned int s;
1202 
1203 		if (grp->S == roundedS)
1204 			return agg;
1205 		grp->S = roundedS;
1206 		grp->F = roundedS + (2ULL << grp->slot_shift);
1207 		__clear_bit(grp->index, &q->bitmaps[ER]);
1208 		s = qfq_calc_state(q, grp);
1209 		__set_bit(grp->index, &q->bitmaps[s]);
1210 	}
1211 
1212 	qfq_unblock_groups(q, grp->index, old_F);
1213 
1214 	return agg;
1215 }
1216 
1217 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1218 {
1219 	struct qfq_sched *q = qdisc_priv(sch);
1220 	struct qfq_class *cl;
1221 	struct qfq_aggregate *agg;
1222 	int err = 0;
1223 
1224 	cl = qfq_classify(skb, sch, &err);
1225 	if (cl == NULL) {
1226 		if (err & __NET_XMIT_BYPASS)
1227 			sch->qstats.drops++;
1228 		kfree_skb(skb);
1229 		return err;
1230 	}
1231 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1232 
1233 	if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1234 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1235 			 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1236 		err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1237 				     qdisc_pkt_len(skb));
1238 		if (err)
1239 			return err;
1240 	}
1241 
1242 	err = qdisc_enqueue(skb, cl->qdisc);
1243 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1244 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1245 		if (net_xmit_drop_count(err)) {
1246 			cl->qstats.drops++;
1247 			sch->qstats.drops++;
1248 		}
1249 		return err;
1250 	}
1251 
1252 	bstats_update(&cl->bstats, skb);
1253 	++sch->q.qlen;
1254 
1255 	agg = cl->agg;
1256 	/* if the queue was not empty, then done here */
1257 	if (cl->qdisc->q.qlen != 1) {
1258 		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1259 		    list_first_entry(&agg->active, struct qfq_class, alist)
1260 		    == cl && cl->deficit < qdisc_pkt_len(skb))
1261 			list_move_tail(&cl->alist, &agg->active);
1262 
1263 		return err;
1264 	}
1265 
1266 	/* schedule class for service within the aggregate */
1267 	cl->deficit = agg->lmax;
1268 	list_add_tail(&cl->alist, &agg->active);
1269 
1270 	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1271 	    q->in_serv_agg == agg)
1272 		return err; /* non-empty or in service, nothing else to do */
1273 
1274 	qfq_activate_agg(q, agg, enqueue);
1275 
1276 	return err;
1277 }
1278 
1279 /*
1280  * Schedule aggregate according to its timestamps.
1281  */
1282 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1283 {
1284 	struct qfq_group *grp = agg->grp;
1285 	u64 roundedS;
1286 	int s;
1287 
1288 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1289 
1290 	/*
1291 	 * Insert agg in the correct bucket.
1292 	 * If agg->S >= grp->S we don't need to adjust the
1293 	 * bucket list and simply go to the insertion phase.
1294 	 * Otherwise grp->S is decreasing, we must make room
1295 	 * in the bucket list, and also recompute the group state.
1296 	 * Finally, if there were no flows in this group and nobody
1297 	 * was in ER make sure to adjust V.
1298 	 */
1299 	if (grp->full_slots) {
1300 		if (!qfq_gt(grp->S, agg->S))
1301 			goto skip_update;
1302 
1303 		/* create a slot for this agg->S */
1304 		qfq_slot_rotate(grp, roundedS);
1305 		/* group was surely ineligible, remove */
1306 		__clear_bit(grp->index, &q->bitmaps[IR]);
1307 		__clear_bit(grp->index, &q->bitmaps[IB]);
1308 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1309 		   q->in_serv_agg == NULL)
1310 		q->V = roundedS;
1311 
1312 	grp->S = roundedS;
1313 	grp->F = roundedS + (2ULL << grp->slot_shift);
1314 	s = qfq_calc_state(q, grp);
1315 	__set_bit(grp->index, &q->bitmaps[s]);
1316 
1317 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1318 		 s, q->bitmaps[s],
1319 		 (unsigned long long) agg->S,
1320 		 (unsigned long long) agg->F,
1321 		 (unsigned long long) q->V);
1322 
1323 skip_update:
1324 	qfq_slot_insert(grp, agg, roundedS);
1325 }
1326 
1327 
1328 /* Update agg ts and schedule agg for service */
1329 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1330 			     enum update_reason reason)
1331 {
1332 	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1333 
1334 	qfq_update_agg_ts(q, agg, reason);
1335 	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1336 		q->in_serv_agg = agg; /* start serving this aggregate */
1337 		 /* update V: to be in service, agg must be eligible */
1338 		q->oldV = q->V = agg->S;
1339 	} else if (agg != q->in_serv_agg)
1340 		qfq_schedule_agg(q, agg);
1341 }
1342 
1343 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1344 			    struct qfq_aggregate *agg)
1345 {
1346 	unsigned int i, offset;
1347 	u64 roundedS;
1348 
1349 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1350 	offset = (roundedS - grp->S) >> grp->slot_shift;
1351 
1352 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1353 
1354 	hlist_del(&agg->next);
1355 	if (hlist_empty(&grp->slots[i]))
1356 		__clear_bit(offset, &grp->full_slots);
1357 }
1358 
1359 /*
1360  * Called to forcibly deschedule an aggregate.  If the aggregate is
1361  * not in the front bucket, or if the latter has other aggregates in
1362  * the front bucket, we can simply remove the aggregate with no other
1363  * side effects.
1364  * Otherwise we must propagate the event up.
1365  */
1366 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1367 {
1368 	struct qfq_group *grp = agg->grp;
1369 	unsigned long mask;
1370 	u64 roundedS;
1371 	int s;
1372 
1373 	if (agg == q->in_serv_agg) {
1374 		charge_actual_service(agg);
1375 		q->in_serv_agg = qfq_choose_next_agg(q);
1376 		return;
1377 	}
1378 
1379 	agg->F = agg->S;
1380 	qfq_slot_remove(q, grp, agg);
1381 
1382 	if (!grp->full_slots) {
1383 		__clear_bit(grp->index, &q->bitmaps[IR]);
1384 		__clear_bit(grp->index, &q->bitmaps[EB]);
1385 		__clear_bit(grp->index, &q->bitmaps[IB]);
1386 
1387 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1388 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1389 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1390 			if (mask)
1391 				mask = ~((1UL << __fls(mask)) - 1);
1392 			else
1393 				mask = ~0UL;
1394 			qfq_move_groups(q, mask, EB, ER);
1395 			qfq_move_groups(q, mask, IB, IR);
1396 		}
1397 		__clear_bit(grp->index, &q->bitmaps[ER]);
1398 	} else if (hlist_empty(&grp->slots[grp->front])) {
1399 		agg = qfq_slot_scan(grp);
1400 		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1401 		if (grp->S != roundedS) {
1402 			__clear_bit(grp->index, &q->bitmaps[ER]);
1403 			__clear_bit(grp->index, &q->bitmaps[IR]);
1404 			__clear_bit(grp->index, &q->bitmaps[EB]);
1405 			__clear_bit(grp->index, &q->bitmaps[IB]);
1406 			grp->S = roundedS;
1407 			grp->F = roundedS + (2ULL << grp->slot_shift);
1408 			s = qfq_calc_state(q, grp);
1409 			__set_bit(grp->index, &q->bitmaps[s]);
1410 		}
1411 	}
1412 }
1413 
1414 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1415 {
1416 	struct qfq_sched *q = qdisc_priv(sch);
1417 	struct qfq_class *cl = (struct qfq_class *)arg;
1418 
1419 	if (cl->qdisc->q.qlen == 0)
1420 		qfq_deactivate_class(q, cl);
1421 }
1422 
1423 static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1424 				       struct hlist_head *slot)
1425 {
1426 	struct qfq_aggregate *agg;
1427 	struct qfq_class *cl;
1428 	unsigned int len;
1429 
1430 	hlist_for_each_entry(agg, slot, next) {
1431 		list_for_each_entry(cl, &agg->active, alist) {
1432 
1433 			if (!cl->qdisc->ops->drop)
1434 				continue;
1435 
1436 			len = cl->qdisc->ops->drop(cl->qdisc);
1437 			if (len > 0) {
1438 				if (cl->qdisc->q.qlen == 0)
1439 					qfq_deactivate_class(q, cl);
1440 
1441 				return len;
1442 			}
1443 		}
1444 	}
1445 	return 0;
1446 }
1447 
1448 static unsigned int qfq_drop(struct Qdisc *sch)
1449 {
1450 	struct qfq_sched *q = qdisc_priv(sch);
1451 	struct qfq_group *grp;
1452 	unsigned int i, j, len;
1453 
1454 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1455 		grp = &q->groups[i];
1456 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1457 			len = qfq_drop_from_slot(q, &grp->slots[j]);
1458 			if (len > 0) {
1459 				sch->q.qlen--;
1460 				return len;
1461 			}
1462 		}
1463 
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1470 {
1471 	struct qfq_sched *q = qdisc_priv(sch);
1472 	struct qfq_group *grp;
1473 	int i, j, err;
1474 	u32 max_cl_shift, maxbudg_shift, max_classes;
1475 
1476 	err = qdisc_class_hash_init(&q->clhash);
1477 	if (err < 0)
1478 		return err;
1479 
1480 	if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1481 		max_classes = QFQ_MAX_AGG_CLASSES;
1482 	else
1483 		max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1484 	/* max_cl_shift = floor(log_2(max_classes)) */
1485 	max_cl_shift = __fls(max_classes);
1486 	q->max_agg_classes = 1<<max_cl_shift;
1487 
1488 	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1489 	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1490 	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1491 
1492 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1493 		grp = &q->groups[i];
1494 		grp->index = i;
1495 		grp->slot_shift = q->min_slot_shift + i;
1496 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1497 			INIT_HLIST_HEAD(&grp->slots[j]);
1498 	}
1499 
1500 	INIT_HLIST_HEAD(&q->nonfull_aggs);
1501 
1502 	return 0;
1503 }
1504 
1505 static void qfq_reset_qdisc(struct Qdisc *sch)
1506 {
1507 	struct qfq_sched *q = qdisc_priv(sch);
1508 	struct qfq_class *cl;
1509 	unsigned int i;
1510 
1511 	for (i = 0; i < q->clhash.hashsize; i++) {
1512 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1513 			if (cl->qdisc->q.qlen > 0)
1514 				qfq_deactivate_class(q, cl);
1515 
1516 			qdisc_reset(cl->qdisc);
1517 		}
1518 	}
1519 	sch->q.qlen = 0;
1520 }
1521 
1522 static void qfq_destroy_qdisc(struct Qdisc *sch)
1523 {
1524 	struct qfq_sched *q = qdisc_priv(sch);
1525 	struct qfq_class *cl;
1526 	struct hlist_node *next;
1527 	unsigned int i;
1528 
1529 	tcf_destroy_chain(&q->filter_list);
1530 
1531 	for (i = 0; i < q->clhash.hashsize; i++) {
1532 		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1533 					  common.hnode) {
1534 			qfq_destroy_class(sch, cl);
1535 		}
1536 	}
1537 	qdisc_class_hash_destroy(&q->clhash);
1538 }
1539 
1540 static const struct Qdisc_class_ops qfq_class_ops = {
1541 	.change		= qfq_change_class,
1542 	.delete		= qfq_delete_class,
1543 	.get		= qfq_get_class,
1544 	.put		= qfq_put_class,
1545 	.tcf_chain	= qfq_tcf_chain,
1546 	.bind_tcf	= qfq_bind_tcf,
1547 	.unbind_tcf	= qfq_unbind_tcf,
1548 	.graft		= qfq_graft_class,
1549 	.leaf		= qfq_class_leaf,
1550 	.qlen_notify	= qfq_qlen_notify,
1551 	.dump		= qfq_dump_class,
1552 	.dump_stats	= qfq_dump_class_stats,
1553 	.walk		= qfq_walk,
1554 };
1555 
1556 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1557 	.cl_ops		= &qfq_class_ops,
1558 	.id		= "qfq",
1559 	.priv_size	= sizeof(struct qfq_sched),
1560 	.enqueue	= qfq_enqueue,
1561 	.dequeue	= qfq_dequeue,
1562 	.peek		= qdisc_peek_dequeued,
1563 	.drop		= qfq_drop,
1564 	.init		= qfq_init_qdisc,
1565 	.reset		= qfq_reset_qdisc,
1566 	.destroy	= qfq_destroy_qdisc,
1567 	.owner		= THIS_MODULE,
1568 };
1569 
1570 static int __init qfq_init(void)
1571 {
1572 	return register_qdisc(&qfq_qdisc_ops);
1573 }
1574 
1575 static void __exit qfq_exit(void)
1576 {
1577 	unregister_qdisc(&qfq_qdisc_ops);
1578 }
1579 
1580 module_init(qfq_init);
1581 module_exit(qfq_exit);
1582 MODULE_LICENSE("GPL");
1583