1 /* 2 * net/sched/sch_qfq.c Quick Fair Queueing Scheduler. 3 * 4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * version 2 as published by the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/bitops.h> 14 #include <linux/errno.h> 15 #include <linux/netdevice.h> 16 #include <linux/pkt_sched.h> 17 #include <net/sch_generic.h> 18 #include <net/pkt_sched.h> 19 #include <net/pkt_cls.h> 20 21 22 /* Quick Fair Queueing 23 =================== 24 25 Sources: 26 27 Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 28 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 29 30 See also: 31 http://retis.sssup.it/~fabio/linux/qfq/ 32 */ 33 34 /* 35 36 Virtual time computations. 37 38 S, F and V are all computed in fixed point arithmetic with 39 FRAC_BITS decimal bits. 40 41 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 42 one bit per index. 43 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 44 45 The layout of the bits is as below: 46 47 [ MTU_SHIFT ][ FRAC_BITS ] 48 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 49 ^.__grp->index = 0 50 *.__grp->slot_shift 51 52 where MIN_SLOT_SHIFT is derived by difference from the others. 53 54 The max group index corresponds to Lmax/w_min, where 55 Lmax=1<<MTU_SHIFT, w_min = 1 . 56 From this, and knowing how many groups (MAX_INDEX) we want, 57 we can derive the shift corresponding to each group. 58 59 Because we often need to compute 60 F = S + len/w_i and V = V + len/wsum 61 instead of storing w_i store the value 62 inv_w = (1<<FRAC_BITS)/w_i 63 so we can do F = S + len * inv_w * wsum. 64 We use W_TOT in the formulas so we can easily move between 65 static and adaptive weight sum. 66 67 The per-scheduler-instance data contain all the data structures 68 for the scheduler: bitmaps and bucket lists. 69 70 */ 71 72 /* 73 * Maximum number of consecutive slots occupied by backlogged classes 74 * inside a group. 75 */ 76 #define QFQ_MAX_SLOTS 32 77 78 /* 79 * Shifts used for class<->group mapping. We allow class weights that are 80 * in the range [1, 2^MAX_WSHIFT], and we try to map each class i to the 81 * group with the smallest index that can support the L_i / r_i configured 82 * for the class. 83 * 84 * grp->index is the index of the group; and grp->slot_shift 85 * is the shift for the corresponding (scaled) sigma_i. 86 */ 87 #define QFQ_MAX_INDEX 19 88 #define QFQ_MAX_WSHIFT 16 89 90 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) 91 #define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT) 92 93 #define FRAC_BITS 30 /* fixed point arithmetic */ 94 #define ONE_FP (1UL << FRAC_BITS) 95 #define IWSUM (ONE_FP/QFQ_MAX_WSUM) 96 97 #define QFQ_MTU_SHIFT 11 98 #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX) 99 100 /* 101 * Possible group states. These values are used as indexes for the bitmaps 102 * array of struct qfq_queue. 103 */ 104 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 105 106 struct qfq_group; 107 108 struct qfq_class { 109 struct Qdisc_class_common common; 110 111 unsigned int refcnt; 112 unsigned int filter_cnt; 113 114 struct gnet_stats_basic_packed bstats; 115 struct gnet_stats_queue qstats; 116 struct gnet_stats_rate_est rate_est; 117 struct Qdisc *qdisc; 118 119 struct hlist_node next; /* Link for the slot list. */ 120 u64 S, F; /* flow timestamps (exact) */ 121 122 /* group we belong to. In principle we would need the index, 123 * which is log_2(lmax/weight), but we never reference it 124 * directly, only the group. 125 */ 126 struct qfq_group *grp; 127 128 /* these are copied from the flowset. */ 129 u32 inv_w; /* ONE_FP/weight */ 130 u32 lmax; /* Max packet size for this flow. */ 131 }; 132 133 struct qfq_group { 134 u64 S, F; /* group timestamps (approx). */ 135 unsigned int slot_shift; /* Slot shift. */ 136 unsigned int index; /* Group index. */ 137 unsigned int front; /* Index of the front slot. */ 138 unsigned long full_slots; /* non-empty slots */ 139 140 /* Array of RR lists of active classes. */ 141 struct hlist_head slots[QFQ_MAX_SLOTS]; 142 }; 143 144 struct qfq_sched { 145 struct tcf_proto *filter_list; 146 struct Qdisc_class_hash clhash; 147 148 u64 V; /* Precise virtual time. */ 149 u32 wsum; /* weight sum */ 150 151 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 152 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 153 }; 154 155 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 156 { 157 struct qfq_sched *q = qdisc_priv(sch); 158 struct Qdisc_class_common *clc; 159 160 clc = qdisc_class_find(&q->clhash, classid); 161 if (clc == NULL) 162 return NULL; 163 return container_of(clc, struct qfq_class, common); 164 } 165 166 static void qfq_purge_queue(struct qfq_class *cl) 167 { 168 unsigned int len = cl->qdisc->q.qlen; 169 170 qdisc_reset(cl->qdisc); 171 qdisc_tree_decrease_qlen(cl->qdisc, len); 172 } 173 174 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 175 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 }, 176 [TCA_QFQ_LMAX] = { .type = NLA_U32 }, 177 }; 178 179 /* 180 * Calculate a flow index, given its weight and maximum packet length. 181 * index = log_2(maxlen/weight) but we need to apply the scaling. 182 * This is used only once at flow creation. 183 */ 184 static int qfq_calc_index(u32 inv_w, unsigned int maxlen) 185 { 186 u64 slot_size = (u64)maxlen * inv_w; 187 unsigned long size_map; 188 int index = 0; 189 190 size_map = slot_size >> QFQ_MIN_SLOT_SHIFT; 191 if (!size_map) 192 goto out; 193 194 index = __fls(size_map) + 1; /* basically a log_2 */ 195 index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1))); 196 197 if (index < 0) 198 index = 0; 199 out: 200 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 201 (unsigned long) ONE_FP/inv_w, maxlen, index); 202 203 return index; 204 } 205 206 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 207 struct nlattr **tca, unsigned long *arg) 208 { 209 struct qfq_sched *q = qdisc_priv(sch); 210 struct qfq_class *cl = (struct qfq_class *)*arg; 211 struct nlattr *tb[TCA_QFQ_MAX + 1]; 212 u32 weight, lmax, inv_w; 213 int i, err; 214 int delta_w; 215 216 if (tca[TCA_OPTIONS] == NULL) { 217 pr_notice("qfq: no options\n"); 218 return -EINVAL; 219 } 220 221 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy); 222 if (err < 0) 223 return err; 224 225 if (tb[TCA_QFQ_WEIGHT]) { 226 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]); 227 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) { 228 pr_notice("qfq: invalid weight %u\n", weight); 229 return -EINVAL; 230 } 231 } else 232 weight = 1; 233 234 inv_w = ONE_FP / weight; 235 weight = ONE_FP / inv_w; 236 delta_w = weight - (cl ? ONE_FP / cl->inv_w : 0); 237 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 238 pr_notice("qfq: total weight out of range (%u + %u)\n", 239 delta_w, q->wsum); 240 return -EINVAL; 241 } 242 243 if (tb[TCA_QFQ_LMAX]) { 244 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 245 if (!lmax || lmax > (1UL << QFQ_MTU_SHIFT)) { 246 pr_notice("qfq: invalid max length %u\n", lmax); 247 return -EINVAL; 248 } 249 } else 250 lmax = 1UL << QFQ_MTU_SHIFT; 251 252 if (cl != NULL) { 253 if (tca[TCA_RATE]) { 254 err = gen_replace_estimator(&cl->bstats, &cl->rate_est, 255 qdisc_root_sleeping_lock(sch), 256 tca[TCA_RATE]); 257 if (err) 258 return err; 259 } 260 261 if (inv_w != cl->inv_w) { 262 sch_tree_lock(sch); 263 q->wsum += delta_w; 264 cl->inv_w = inv_w; 265 sch_tree_unlock(sch); 266 } 267 return 0; 268 } 269 270 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 271 if (cl == NULL) 272 return -ENOBUFS; 273 274 cl->refcnt = 1; 275 cl->common.classid = classid; 276 cl->lmax = lmax; 277 cl->inv_w = inv_w; 278 i = qfq_calc_index(cl->inv_w, cl->lmax); 279 280 cl->grp = &q->groups[i]; 281 282 cl->qdisc = qdisc_create_dflt(sch->dev_queue, 283 &pfifo_qdisc_ops, classid); 284 if (cl->qdisc == NULL) 285 cl->qdisc = &noop_qdisc; 286 287 if (tca[TCA_RATE]) { 288 err = gen_new_estimator(&cl->bstats, &cl->rate_est, 289 qdisc_root_sleeping_lock(sch), 290 tca[TCA_RATE]); 291 if (err) { 292 qdisc_destroy(cl->qdisc); 293 kfree(cl); 294 return err; 295 } 296 } 297 q->wsum += weight; 298 299 sch_tree_lock(sch); 300 qdisc_class_hash_insert(&q->clhash, &cl->common); 301 sch_tree_unlock(sch); 302 303 qdisc_class_hash_grow(sch, &q->clhash); 304 305 *arg = (unsigned long)cl; 306 return 0; 307 } 308 309 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 310 { 311 struct qfq_sched *q = qdisc_priv(sch); 312 313 if (cl->inv_w) { 314 q->wsum -= ONE_FP / cl->inv_w; 315 cl->inv_w = 0; 316 } 317 318 gen_kill_estimator(&cl->bstats, &cl->rate_est); 319 qdisc_destroy(cl->qdisc); 320 kfree(cl); 321 } 322 323 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg) 324 { 325 struct qfq_sched *q = qdisc_priv(sch); 326 struct qfq_class *cl = (struct qfq_class *)arg; 327 328 if (cl->filter_cnt > 0) 329 return -EBUSY; 330 331 sch_tree_lock(sch); 332 333 qfq_purge_queue(cl); 334 qdisc_class_hash_remove(&q->clhash, &cl->common); 335 336 BUG_ON(--cl->refcnt == 0); 337 /* 338 * This shouldn't happen: we "hold" one cops->get() when called 339 * from tc_ctl_tclass; the destroy method is done from cops->put(). 340 */ 341 342 sch_tree_unlock(sch); 343 return 0; 344 } 345 346 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid) 347 { 348 struct qfq_class *cl = qfq_find_class(sch, classid); 349 350 if (cl != NULL) 351 cl->refcnt++; 352 353 return (unsigned long)cl; 354 } 355 356 static void qfq_put_class(struct Qdisc *sch, unsigned long arg) 357 { 358 struct qfq_class *cl = (struct qfq_class *)arg; 359 360 if (--cl->refcnt == 0) 361 qfq_destroy_class(sch, cl); 362 } 363 364 static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl) 365 { 366 struct qfq_sched *q = qdisc_priv(sch); 367 368 if (cl) 369 return NULL; 370 371 return &q->filter_list; 372 } 373 374 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 375 u32 classid) 376 { 377 struct qfq_class *cl = qfq_find_class(sch, classid); 378 379 if (cl != NULL) 380 cl->filter_cnt++; 381 382 return (unsigned long)cl; 383 } 384 385 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 386 { 387 struct qfq_class *cl = (struct qfq_class *)arg; 388 389 cl->filter_cnt--; 390 } 391 392 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 393 struct Qdisc *new, struct Qdisc **old) 394 { 395 struct qfq_class *cl = (struct qfq_class *)arg; 396 397 if (new == NULL) { 398 new = qdisc_create_dflt(sch->dev_queue, 399 &pfifo_qdisc_ops, cl->common.classid); 400 if (new == NULL) 401 new = &noop_qdisc; 402 } 403 404 sch_tree_lock(sch); 405 qfq_purge_queue(cl); 406 *old = cl->qdisc; 407 cl->qdisc = new; 408 sch_tree_unlock(sch); 409 return 0; 410 } 411 412 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 413 { 414 struct qfq_class *cl = (struct qfq_class *)arg; 415 416 return cl->qdisc; 417 } 418 419 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 420 struct sk_buff *skb, struct tcmsg *tcm) 421 { 422 struct qfq_class *cl = (struct qfq_class *)arg; 423 struct nlattr *nest; 424 425 tcm->tcm_parent = TC_H_ROOT; 426 tcm->tcm_handle = cl->common.classid; 427 tcm->tcm_info = cl->qdisc->handle; 428 429 nest = nla_nest_start(skb, TCA_OPTIONS); 430 if (nest == NULL) 431 goto nla_put_failure; 432 NLA_PUT_U32(skb, TCA_QFQ_WEIGHT, ONE_FP/cl->inv_w); 433 NLA_PUT_U32(skb, TCA_QFQ_LMAX, cl->lmax); 434 return nla_nest_end(skb, nest); 435 436 nla_put_failure: 437 nla_nest_cancel(skb, nest); 438 return -EMSGSIZE; 439 } 440 441 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 442 struct gnet_dump *d) 443 { 444 struct qfq_class *cl = (struct qfq_class *)arg; 445 struct tc_qfq_stats xstats; 446 447 memset(&xstats, 0, sizeof(xstats)); 448 cl->qdisc->qstats.qlen = cl->qdisc->q.qlen; 449 450 xstats.weight = ONE_FP/cl->inv_w; 451 xstats.lmax = cl->lmax; 452 453 if (gnet_stats_copy_basic(d, &cl->bstats) < 0 || 454 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 || 455 gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0) 456 return -1; 457 458 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 459 } 460 461 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 462 { 463 struct qfq_sched *q = qdisc_priv(sch); 464 struct qfq_class *cl; 465 struct hlist_node *n; 466 unsigned int i; 467 468 if (arg->stop) 469 return; 470 471 for (i = 0; i < q->clhash.hashsize; i++) { 472 hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) { 473 if (arg->count < arg->skip) { 474 arg->count++; 475 continue; 476 } 477 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 478 arg->stop = 1; 479 return; 480 } 481 arg->count++; 482 } 483 } 484 } 485 486 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 487 int *qerr) 488 { 489 struct qfq_sched *q = qdisc_priv(sch); 490 struct qfq_class *cl; 491 struct tcf_result res; 492 int result; 493 494 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 495 pr_debug("qfq_classify: found %d\n", skb->priority); 496 cl = qfq_find_class(sch, skb->priority); 497 if (cl != NULL) 498 return cl; 499 } 500 501 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 502 result = tc_classify(skb, q->filter_list, &res); 503 if (result >= 0) { 504 #ifdef CONFIG_NET_CLS_ACT 505 switch (result) { 506 case TC_ACT_QUEUED: 507 case TC_ACT_STOLEN: 508 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 509 case TC_ACT_SHOT: 510 return NULL; 511 } 512 #endif 513 cl = (struct qfq_class *)res.class; 514 if (cl == NULL) 515 cl = qfq_find_class(sch, res.classid); 516 return cl; 517 } 518 519 return NULL; 520 } 521 522 /* Generic comparison function, handling wraparound. */ 523 static inline int qfq_gt(u64 a, u64 b) 524 { 525 return (s64)(a - b) > 0; 526 } 527 528 /* Round a precise timestamp to its slotted value. */ 529 static inline u64 qfq_round_down(u64 ts, unsigned int shift) 530 { 531 return ts & ~((1ULL << shift) - 1); 532 } 533 534 /* return the pointer to the group with lowest index in the bitmap */ 535 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 536 unsigned long bitmap) 537 { 538 int index = __ffs(bitmap); 539 return &q->groups[index]; 540 } 541 /* Calculate a mask to mimic what would be ffs_from(). */ 542 static inline unsigned long mask_from(unsigned long bitmap, int from) 543 { 544 return bitmap & ~((1UL << from) - 1); 545 } 546 547 /* 548 * The state computation relies on ER=0, IR=1, EB=2, IB=3 549 * First compute eligibility comparing grp->S, q->V, 550 * then check if someone is blocking us and possibly add EB 551 */ 552 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 553 { 554 /* if S > V we are not eligible */ 555 unsigned int state = qfq_gt(grp->S, q->V); 556 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 557 struct qfq_group *next; 558 559 if (mask) { 560 next = qfq_ffs(q, mask); 561 if (qfq_gt(grp->F, next->F)) 562 state |= EB; 563 } 564 565 return state; 566 } 567 568 569 /* 570 * In principle 571 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 572 * q->bitmaps[src] &= ~mask; 573 * but we should make sure that src != dst 574 */ 575 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 576 int src, int dst) 577 { 578 q->bitmaps[dst] |= q->bitmaps[src] & mask; 579 q->bitmaps[src] &= ~mask; 580 } 581 582 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 583 { 584 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 585 struct qfq_group *next; 586 587 if (mask) { 588 next = qfq_ffs(q, mask); 589 if (!qfq_gt(next->F, old_F)) 590 return; 591 } 592 593 mask = (1UL << index) - 1; 594 qfq_move_groups(q, mask, EB, ER); 595 qfq_move_groups(q, mask, IB, IR); 596 } 597 598 /* 599 * perhaps 600 * 601 old_V ^= q->V; 602 old_V >>= QFQ_MIN_SLOT_SHIFT; 603 if (old_V) { 604 ... 605 } 606 * 607 */ 608 static void qfq_make_eligible(struct qfq_sched *q, u64 old_V) 609 { 610 unsigned long vslot = q->V >> QFQ_MIN_SLOT_SHIFT; 611 unsigned long old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT; 612 613 if (vslot != old_vslot) { 614 unsigned long mask = (1UL << fls(vslot ^ old_vslot)) - 1; 615 qfq_move_groups(q, mask, IR, ER); 616 qfq_move_groups(q, mask, IB, EB); 617 } 618 } 619 620 621 /* 622 * XXX we should make sure that slot becomes less than 32. 623 * This is guaranteed by the input values. 624 * roundedS is always cl->S rounded on grp->slot_shift bits. 625 */ 626 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, 627 u64 roundedS) 628 { 629 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 630 unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS; 631 632 hlist_add_head(&cl->next, &grp->slots[i]); 633 __set_bit(slot, &grp->full_slots); 634 } 635 636 /* Maybe introduce hlist_first_entry?? */ 637 static struct qfq_class *qfq_slot_head(struct qfq_group *grp) 638 { 639 return hlist_entry(grp->slots[grp->front].first, 640 struct qfq_class, next); 641 } 642 643 /* 644 * remove the entry from the slot 645 */ 646 static void qfq_front_slot_remove(struct qfq_group *grp) 647 { 648 struct qfq_class *cl = qfq_slot_head(grp); 649 650 BUG_ON(!cl); 651 hlist_del(&cl->next); 652 if (hlist_empty(&grp->slots[grp->front])) 653 __clear_bit(0, &grp->full_slots); 654 } 655 656 /* 657 * Returns the first full queue in a group. As a side effect, 658 * adjust the bucket list so the first non-empty bucket is at 659 * position 0 in full_slots. 660 */ 661 static struct qfq_class *qfq_slot_scan(struct qfq_group *grp) 662 { 663 unsigned int i; 664 665 pr_debug("qfq slot_scan: grp %u full %#lx\n", 666 grp->index, grp->full_slots); 667 668 if (grp->full_slots == 0) 669 return NULL; 670 671 i = __ffs(grp->full_slots); /* zero based */ 672 if (i > 0) { 673 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 674 grp->full_slots >>= i; 675 } 676 677 return qfq_slot_head(grp); 678 } 679 680 /* 681 * adjust the bucket list. When the start time of a group decreases, 682 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 683 * move the objects. The mask of occupied slots must be shifted 684 * because we use ffs() to find the first non-empty slot. 685 * This covers decreases in the group's start time, but what about 686 * increases of the start time ? 687 * Here too we should make sure that i is less than 32 688 */ 689 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 690 { 691 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 692 693 grp->full_slots <<= i; 694 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 695 } 696 697 static void qfq_update_eligible(struct qfq_sched *q, u64 old_V) 698 { 699 struct qfq_group *grp; 700 unsigned long ineligible; 701 702 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 703 if (ineligible) { 704 if (!q->bitmaps[ER]) { 705 grp = qfq_ffs(q, ineligible); 706 if (qfq_gt(grp->S, q->V)) 707 q->V = grp->S; 708 } 709 qfq_make_eligible(q, old_V); 710 } 711 } 712 713 /* What is length of next packet in queue (0 if queue is empty) */ 714 static unsigned int qdisc_peek_len(struct Qdisc *sch) 715 { 716 struct sk_buff *skb; 717 718 skb = sch->ops->peek(sch); 719 return skb ? qdisc_pkt_len(skb) : 0; 720 } 721 722 /* 723 * Updates the class, returns true if also the group needs to be updated. 724 */ 725 static bool qfq_update_class(struct qfq_group *grp, struct qfq_class *cl) 726 { 727 unsigned int len = qdisc_peek_len(cl->qdisc); 728 729 cl->S = cl->F; 730 if (!len) 731 qfq_front_slot_remove(grp); /* queue is empty */ 732 else { 733 u64 roundedS; 734 735 cl->F = cl->S + (u64)len * cl->inv_w; 736 roundedS = qfq_round_down(cl->S, grp->slot_shift); 737 if (roundedS == grp->S) 738 return false; 739 740 qfq_front_slot_remove(grp); 741 qfq_slot_insert(grp, cl, roundedS); 742 } 743 744 return true; 745 } 746 747 static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 748 { 749 struct qfq_sched *q = qdisc_priv(sch); 750 struct qfq_group *grp; 751 struct qfq_class *cl; 752 struct sk_buff *skb; 753 unsigned int len; 754 u64 old_V; 755 756 if (!q->bitmaps[ER]) 757 return NULL; 758 759 grp = qfq_ffs(q, q->bitmaps[ER]); 760 761 cl = qfq_slot_head(grp); 762 skb = qdisc_dequeue_peeked(cl->qdisc); 763 if (!skb) { 764 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n"); 765 return NULL; 766 } 767 768 sch->q.qlen--; 769 qdisc_bstats_update(sch, skb); 770 771 old_V = q->V; 772 len = qdisc_pkt_len(skb); 773 q->V += (u64)len * IWSUM; 774 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 775 len, (unsigned long long) cl->F, (unsigned long long) q->V); 776 777 if (qfq_update_class(grp, cl)) { 778 u64 old_F = grp->F; 779 780 cl = qfq_slot_scan(grp); 781 if (!cl) 782 __clear_bit(grp->index, &q->bitmaps[ER]); 783 else { 784 u64 roundedS = qfq_round_down(cl->S, grp->slot_shift); 785 unsigned int s; 786 787 if (grp->S == roundedS) 788 goto skip_unblock; 789 grp->S = roundedS; 790 grp->F = roundedS + (2ULL << grp->slot_shift); 791 __clear_bit(grp->index, &q->bitmaps[ER]); 792 s = qfq_calc_state(q, grp); 793 __set_bit(grp->index, &q->bitmaps[s]); 794 } 795 796 qfq_unblock_groups(q, grp->index, old_F); 797 } 798 799 skip_unblock: 800 qfq_update_eligible(q, old_V); 801 802 return skb; 803 } 804 805 /* 806 * Assign a reasonable start time for a new flow k in group i. 807 * Admissible values for \hat(F) are multiples of \sigma_i 808 * no greater than V+\sigma_i . Larger values mean that 809 * we had a wraparound so we consider the timestamp to be stale. 810 * 811 * If F is not stale and F >= V then we set S = F. 812 * Otherwise we should assign S = V, but this may violate 813 * the ordering in ER. So, if we have groups in ER, set S to 814 * the F_j of the first group j which would be blocking us. 815 * We are guaranteed not to move S backward because 816 * otherwise our group i would still be blocked. 817 */ 818 static void qfq_update_start(struct qfq_sched *q, struct qfq_class *cl) 819 { 820 unsigned long mask; 821 u64 limit, roundedF; 822 int slot_shift = cl->grp->slot_shift; 823 824 roundedF = qfq_round_down(cl->F, slot_shift); 825 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 826 827 if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) { 828 /* timestamp was stale */ 829 mask = mask_from(q->bitmaps[ER], cl->grp->index); 830 if (mask) { 831 struct qfq_group *next = qfq_ffs(q, mask); 832 if (qfq_gt(roundedF, next->F)) { 833 cl->S = next->F; 834 return; 835 } 836 } 837 cl->S = q->V; 838 } else /* timestamp is not stale */ 839 cl->S = cl->F; 840 } 841 842 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch) 843 { 844 struct qfq_sched *q = qdisc_priv(sch); 845 struct qfq_group *grp; 846 struct qfq_class *cl; 847 int err; 848 u64 roundedS; 849 int s; 850 851 cl = qfq_classify(skb, sch, &err); 852 if (cl == NULL) { 853 if (err & __NET_XMIT_BYPASS) 854 sch->qstats.drops++; 855 kfree_skb(skb); 856 return err; 857 } 858 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 859 860 err = qdisc_enqueue(skb, cl->qdisc); 861 if (unlikely(err != NET_XMIT_SUCCESS)) { 862 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 863 if (net_xmit_drop_count(err)) { 864 cl->qstats.drops++; 865 sch->qstats.drops++; 866 } 867 return err; 868 } 869 870 bstats_update(&cl->bstats, skb); 871 ++sch->q.qlen; 872 873 /* If the new skb is not the head of queue, then done here. */ 874 if (cl->qdisc->q.qlen != 1) 875 return err; 876 877 /* If reach this point, queue q was idle */ 878 grp = cl->grp; 879 qfq_update_start(q, cl); 880 881 /* compute new finish time and rounded start. */ 882 cl->F = cl->S + (u64)qdisc_pkt_len(skb) * cl->inv_w; 883 roundedS = qfq_round_down(cl->S, grp->slot_shift); 884 885 /* 886 * insert cl in the correct bucket. 887 * If cl->S >= grp->S we don't need to adjust the 888 * bucket list and simply go to the insertion phase. 889 * Otherwise grp->S is decreasing, we must make room 890 * in the bucket list, and also recompute the group state. 891 * Finally, if there were no flows in this group and nobody 892 * was in ER make sure to adjust V. 893 */ 894 if (grp->full_slots) { 895 if (!qfq_gt(grp->S, cl->S)) 896 goto skip_update; 897 898 /* create a slot for this cl->S */ 899 qfq_slot_rotate(grp, roundedS); 900 /* group was surely ineligible, remove */ 901 __clear_bit(grp->index, &q->bitmaps[IR]); 902 __clear_bit(grp->index, &q->bitmaps[IB]); 903 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V)) 904 q->V = roundedS; 905 906 grp->S = roundedS; 907 grp->F = roundedS + (2ULL << grp->slot_shift); 908 s = qfq_calc_state(q, grp); 909 __set_bit(grp->index, &q->bitmaps[s]); 910 911 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 912 s, q->bitmaps[s], 913 (unsigned long long) cl->S, 914 (unsigned long long) cl->F, 915 (unsigned long long) q->V); 916 917 skip_update: 918 qfq_slot_insert(grp, cl, roundedS); 919 920 return err; 921 } 922 923 924 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 925 struct qfq_class *cl) 926 { 927 unsigned int i, offset; 928 u64 roundedS; 929 930 roundedS = qfq_round_down(cl->S, grp->slot_shift); 931 offset = (roundedS - grp->S) >> grp->slot_shift; 932 i = (grp->front + offset) % QFQ_MAX_SLOTS; 933 934 hlist_del(&cl->next); 935 if (hlist_empty(&grp->slots[i])) 936 __clear_bit(offset, &grp->full_slots); 937 } 938 939 /* 940 * called to forcibly destroy a queue. 941 * If the queue is not in the front bucket, or if it has 942 * other queues in the front bucket, we can simply remove 943 * the queue with no other side effects. 944 * Otherwise we must propagate the event up. 945 */ 946 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 947 { 948 struct qfq_group *grp = cl->grp; 949 unsigned long mask; 950 u64 roundedS; 951 int s; 952 953 cl->F = cl->S; 954 qfq_slot_remove(q, grp, cl); 955 956 if (!grp->full_slots) { 957 __clear_bit(grp->index, &q->bitmaps[IR]); 958 __clear_bit(grp->index, &q->bitmaps[EB]); 959 __clear_bit(grp->index, &q->bitmaps[IB]); 960 961 if (test_bit(grp->index, &q->bitmaps[ER]) && 962 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 963 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 964 if (mask) 965 mask = ~((1UL << __fls(mask)) - 1); 966 else 967 mask = ~0UL; 968 qfq_move_groups(q, mask, EB, ER); 969 qfq_move_groups(q, mask, IB, IR); 970 } 971 __clear_bit(grp->index, &q->bitmaps[ER]); 972 } else if (hlist_empty(&grp->slots[grp->front])) { 973 cl = qfq_slot_scan(grp); 974 roundedS = qfq_round_down(cl->S, grp->slot_shift); 975 if (grp->S != roundedS) { 976 __clear_bit(grp->index, &q->bitmaps[ER]); 977 __clear_bit(grp->index, &q->bitmaps[IR]); 978 __clear_bit(grp->index, &q->bitmaps[EB]); 979 __clear_bit(grp->index, &q->bitmaps[IB]); 980 grp->S = roundedS; 981 grp->F = roundedS + (2ULL << grp->slot_shift); 982 s = qfq_calc_state(q, grp); 983 __set_bit(grp->index, &q->bitmaps[s]); 984 } 985 } 986 987 qfq_update_eligible(q, q->V); 988 } 989 990 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 991 { 992 struct qfq_sched *q = qdisc_priv(sch); 993 struct qfq_class *cl = (struct qfq_class *)arg; 994 995 if (cl->qdisc->q.qlen == 0) 996 qfq_deactivate_class(q, cl); 997 } 998 999 static unsigned int qfq_drop(struct Qdisc *sch) 1000 { 1001 struct qfq_sched *q = qdisc_priv(sch); 1002 struct qfq_group *grp; 1003 unsigned int i, j, len; 1004 1005 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1006 grp = &q->groups[i]; 1007 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 1008 struct qfq_class *cl; 1009 struct hlist_node *n; 1010 1011 hlist_for_each_entry(cl, n, &grp->slots[j], next) { 1012 1013 if (!cl->qdisc->ops->drop) 1014 continue; 1015 1016 len = cl->qdisc->ops->drop(cl->qdisc); 1017 if (len > 0) { 1018 sch->q.qlen--; 1019 if (!cl->qdisc->q.qlen) 1020 qfq_deactivate_class(q, cl); 1021 1022 return len; 1023 } 1024 } 1025 } 1026 } 1027 1028 return 0; 1029 } 1030 1031 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt) 1032 { 1033 struct qfq_sched *q = qdisc_priv(sch); 1034 struct qfq_group *grp; 1035 int i, j, err; 1036 1037 err = qdisc_class_hash_init(&q->clhash); 1038 if (err < 0) 1039 return err; 1040 1041 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1042 grp = &q->groups[i]; 1043 grp->index = i; 1044 grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS 1045 - (QFQ_MAX_INDEX - i); 1046 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1047 INIT_HLIST_HEAD(&grp->slots[j]); 1048 } 1049 1050 return 0; 1051 } 1052 1053 static void qfq_reset_qdisc(struct Qdisc *sch) 1054 { 1055 struct qfq_sched *q = qdisc_priv(sch); 1056 struct qfq_group *grp; 1057 struct qfq_class *cl; 1058 struct hlist_node *n, *tmp; 1059 unsigned int i, j; 1060 1061 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1062 grp = &q->groups[i]; 1063 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 1064 hlist_for_each_entry_safe(cl, n, tmp, 1065 &grp->slots[j], next) { 1066 qfq_deactivate_class(q, cl); 1067 } 1068 } 1069 } 1070 1071 for (i = 0; i < q->clhash.hashsize; i++) { 1072 hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) 1073 qdisc_reset(cl->qdisc); 1074 } 1075 sch->q.qlen = 0; 1076 } 1077 1078 static void qfq_destroy_qdisc(struct Qdisc *sch) 1079 { 1080 struct qfq_sched *q = qdisc_priv(sch); 1081 struct qfq_class *cl; 1082 struct hlist_node *n, *next; 1083 unsigned int i; 1084 1085 tcf_destroy_chain(&q->filter_list); 1086 1087 for (i = 0; i < q->clhash.hashsize; i++) { 1088 hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i], 1089 common.hnode) { 1090 qfq_destroy_class(sch, cl); 1091 } 1092 } 1093 qdisc_class_hash_destroy(&q->clhash); 1094 } 1095 1096 static const struct Qdisc_class_ops qfq_class_ops = { 1097 .change = qfq_change_class, 1098 .delete = qfq_delete_class, 1099 .get = qfq_get_class, 1100 .put = qfq_put_class, 1101 .tcf_chain = qfq_tcf_chain, 1102 .bind_tcf = qfq_bind_tcf, 1103 .unbind_tcf = qfq_unbind_tcf, 1104 .graft = qfq_graft_class, 1105 .leaf = qfq_class_leaf, 1106 .qlen_notify = qfq_qlen_notify, 1107 .dump = qfq_dump_class, 1108 .dump_stats = qfq_dump_class_stats, 1109 .walk = qfq_walk, 1110 }; 1111 1112 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1113 .cl_ops = &qfq_class_ops, 1114 .id = "qfq", 1115 .priv_size = sizeof(struct qfq_sched), 1116 .enqueue = qfq_enqueue, 1117 .dequeue = qfq_dequeue, 1118 .peek = qdisc_peek_dequeued, 1119 .drop = qfq_drop, 1120 .init = qfq_init_qdisc, 1121 .reset = qfq_reset_qdisc, 1122 .destroy = qfq_destroy_qdisc, 1123 .owner = THIS_MODULE, 1124 }; 1125 1126 static int __init qfq_init(void) 1127 { 1128 return register_qdisc(&qfq_qdisc_ops); 1129 } 1130 1131 static void __exit qfq_exit(void) 1132 { 1133 unregister_qdisc(&qfq_qdisc_ops); 1134 } 1135 1136 module_init(qfq_init); 1137 module_exit(qfq_exit); 1138 MODULE_LICENSE("GPL"); 1139