xref: /openbmc/linux/net/sched/sch_qfq.c (revision b96fc2f3)
1 /*
2  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
3  *
4  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5  * Copyright (c) 2012 Paolo Valente.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21 
22 
23 /*  Quick Fair Queueing Plus
24     ========================
25 
26     Sources:
27 
28     [1] Paolo Valente,
29     "Reducing the Execution Time of Fair-Queueing Schedulers."
30     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31 
32     Sources for QFQ:
33 
34     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36 
37     See also:
38     http://retis.sssup.it/~fabio/linux/qfq/
39  */
40 
41 /*
42 
43   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44   classes. Each aggregate is timestamped with a virtual start time S
45   and a virtual finish time F, and scheduled according to its
46   timestamps. S and F are computed as a function of a system virtual
47   time function V. The classes within each aggregate are instead
48   scheduled with DRR.
49 
50   To speed up operations, QFQ+ divides also aggregates into a limited
51   number of groups. Which group a class belongs to depends on the
52   ratio between the maximum packet length for the class and the weight
53   of the class. Groups have their own S and F. In the end, QFQ+
54   schedules groups, then aggregates within groups, then classes within
55   aggregates. See [1] and [2] for a full description.
56 
57   Virtual time computations.
58 
59   S, F and V are all computed in fixed point arithmetic with
60   FRAC_BITS decimal bits.
61 
62   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 	one bit per index.
64   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65 
66   The layout of the bits is as below:
67 
68                    [ MTU_SHIFT ][      FRAC_BITS    ]
69                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
70 				 ^.__grp->index = 0
71 				 *.__grp->slot_shift
72 
73   where MIN_SLOT_SHIFT is derived by difference from the others.
74 
75   The max group index corresponds to Lmax/w_min, where
76   Lmax=1<<MTU_SHIFT, w_min = 1 .
77   From this, and knowing how many groups (MAX_INDEX) we want,
78   we can derive the shift corresponding to each group.
79 
80   Because we often need to compute
81 	F = S + len/w_i  and V = V + len/wsum
82   instead of storing w_i store the value
83 	inv_w = (1<<FRAC_BITS)/w_i
84   so we can do F = S + len * inv_w * wsum.
85   We use W_TOT in the formulas so we can easily move between
86   static and adaptive weight sum.
87 
88   The per-scheduler-instance data contain all the data structures
89   for the scheduler: bitmaps and bucket lists.
90 
91  */
92 
93 /*
94  * Maximum number of consecutive slots occupied by backlogged classes
95  * inside a group.
96  */
97 #define QFQ_MAX_SLOTS	32
98 
99 /*
100  * Shifts used for aggregate<->group mapping.  We allow class weights that are
101  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102  * group with the smallest index that can support the L_i / r_i configured
103  * for the classes in the aggregate.
104  *
105  * grp->index is the index of the group; and grp->slot_shift
106  * is the shift for the corresponding (scaled) sigma_i.
107  */
108 #define QFQ_MAX_INDEX		24
109 #define QFQ_MAX_WSHIFT		10
110 
111 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
113 
114 #define FRAC_BITS		30	/* fixed point arithmetic */
115 #define ONE_FP			(1UL << FRAC_BITS)
116 
117 #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
118 #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
119 
120 #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
121 
122 /*
123  * Possible group states.  These values are used as indexes for the bitmaps
124  * array of struct qfq_queue.
125  */
126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
127 
128 struct qfq_group;
129 
130 struct qfq_aggregate;
131 
132 struct qfq_class {
133 	struct Qdisc_class_common common;
134 
135 	unsigned int refcnt;
136 	unsigned int filter_cnt;
137 
138 	struct gnet_stats_basic_packed bstats;
139 	struct gnet_stats_queue qstats;
140 	struct gnet_stats_rate_est64 rate_est;
141 	struct Qdisc *qdisc;
142 	struct list_head alist;		/* Link for active-classes list. */
143 	struct qfq_aggregate *agg;	/* Parent aggregate. */
144 	int deficit;			/* DRR deficit counter. */
145 };
146 
147 struct qfq_aggregate {
148 	struct hlist_node next;	/* Link for the slot list. */
149 	u64 S, F;		/* flow timestamps (exact) */
150 
151 	/* group we belong to. In principle we would need the index,
152 	 * which is log_2(lmax/weight), but we never reference it
153 	 * directly, only the group.
154 	 */
155 	struct qfq_group *grp;
156 
157 	/* these are copied from the flowset. */
158 	u32	class_weight; /* Weight of each class in this aggregate. */
159 	/* Max pkt size for the classes in this aggregate, DRR quantum. */
160 	int	lmax;
161 
162 	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
163 	u32	budgetmax;  /* Max budget for this aggregate. */
164 	u32	initial_budget, budget;     /* Initial and current budget. */
165 
166 	int		  num_classes;	/* Number of classes in this aggr. */
167 	struct list_head  active;	/* DRR queue of active classes. */
168 
169 	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
170 };
171 
172 struct qfq_group {
173 	u64 S, F;			/* group timestamps (approx). */
174 	unsigned int slot_shift;	/* Slot shift. */
175 	unsigned int index;		/* Group index. */
176 	unsigned int front;		/* Index of the front slot. */
177 	unsigned long full_slots;	/* non-empty slots */
178 
179 	/* Array of RR lists of active aggregates. */
180 	struct hlist_head slots[QFQ_MAX_SLOTS];
181 };
182 
183 struct qfq_sched {
184 	struct tcf_proto __rcu *filter_list;
185 	struct Qdisc_class_hash clhash;
186 
187 	u64			oldV, V;	/* Precise virtual times. */
188 	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
189 	u32			wsum;		/* weight sum */
190 	u32			iwsum;		/* inverse weight sum */
191 
192 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
193 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
194 	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
195 
196 	u32 max_agg_classes;		/* Max number of classes per aggr. */
197 	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
198 };
199 
200 /*
201  * Possible reasons why the timestamps of an aggregate are updated
202  * enqueue: the aggregate switches from idle to active and must scheduled
203  *	    for service
204  * requeue: the aggregate finishes its budget, so it stops being served and
205  *	    must be rescheduled for service
206  */
207 enum update_reason {enqueue, requeue};
208 
209 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
210 {
211 	struct qfq_sched *q = qdisc_priv(sch);
212 	struct Qdisc_class_common *clc;
213 
214 	clc = qdisc_class_find(&q->clhash, classid);
215 	if (clc == NULL)
216 		return NULL;
217 	return container_of(clc, struct qfq_class, common);
218 }
219 
220 static void qfq_purge_queue(struct qfq_class *cl)
221 {
222 	unsigned int len = cl->qdisc->q.qlen;
223 
224 	qdisc_reset(cl->qdisc);
225 	qdisc_tree_decrease_qlen(cl->qdisc, len);
226 }
227 
228 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
229 	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
230 	[TCA_QFQ_LMAX] = { .type = NLA_U32 },
231 };
232 
233 /*
234  * Calculate a flow index, given its weight and maximum packet length.
235  * index = log_2(maxlen/weight) but we need to apply the scaling.
236  * This is used only once at flow creation.
237  */
238 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
239 {
240 	u64 slot_size = (u64)maxlen * inv_w;
241 	unsigned long size_map;
242 	int index = 0;
243 
244 	size_map = slot_size >> min_slot_shift;
245 	if (!size_map)
246 		goto out;
247 
248 	index = __fls(size_map) + 1;	/* basically a log_2 */
249 	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
250 
251 	if (index < 0)
252 		index = 0;
253 out:
254 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
255 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
256 
257 	return index;
258 }
259 
260 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
261 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
262 			     enum update_reason);
263 
264 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
265 			 u32 lmax, u32 weight)
266 {
267 	INIT_LIST_HEAD(&agg->active);
268 	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
269 
270 	agg->lmax = lmax;
271 	agg->class_weight = weight;
272 }
273 
274 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
275 					  u32 lmax, u32 weight)
276 {
277 	struct qfq_aggregate *agg;
278 
279 	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
280 		if (agg->lmax == lmax && agg->class_weight == weight)
281 			return agg;
282 
283 	return NULL;
284 }
285 
286 
287 /* Update aggregate as a function of the new number of classes. */
288 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
289 			   int new_num_classes)
290 {
291 	u32 new_agg_weight;
292 
293 	if (new_num_classes == q->max_agg_classes)
294 		hlist_del_init(&agg->nonfull_next);
295 
296 	if (agg->num_classes > new_num_classes &&
297 	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
298 		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
299 
300 	/* The next assignment may let
301 	 * agg->initial_budget > agg->budgetmax
302 	 * hold, we will take it into account in charge_actual_service().
303 	 */
304 	agg->budgetmax = new_num_classes * agg->lmax;
305 	new_agg_weight = agg->class_weight * new_num_classes;
306 	agg->inv_w = ONE_FP/new_agg_weight;
307 
308 	if (agg->grp == NULL) {
309 		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
310 				       q->min_slot_shift);
311 		agg->grp = &q->groups[i];
312 	}
313 
314 	q->wsum +=
315 		(int) agg->class_weight * (new_num_classes - agg->num_classes);
316 	q->iwsum = ONE_FP / q->wsum;
317 
318 	agg->num_classes = new_num_classes;
319 }
320 
321 /* Add class to aggregate. */
322 static void qfq_add_to_agg(struct qfq_sched *q,
323 			   struct qfq_aggregate *agg,
324 			   struct qfq_class *cl)
325 {
326 	cl->agg = agg;
327 
328 	qfq_update_agg(q, agg, agg->num_classes+1);
329 	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
330 		list_add_tail(&cl->alist, &agg->active);
331 		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
332 		    cl && q->in_serv_agg != agg) /* agg was inactive */
333 			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
334 	}
335 }
336 
337 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
338 
339 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
340 {
341 	hlist_del_init(&agg->nonfull_next);
342 	q->wsum -= agg->class_weight;
343 	if (q->wsum != 0)
344 		q->iwsum = ONE_FP / q->wsum;
345 
346 	if (q->in_serv_agg == agg)
347 		q->in_serv_agg = qfq_choose_next_agg(q);
348 	kfree(agg);
349 }
350 
351 /* Deschedule class from within its parent aggregate. */
352 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
353 {
354 	struct qfq_aggregate *agg = cl->agg;
355 
356 
357 	list_del(&cl->alist); /* remove from RR queue of the aggregate */
358 	if (list_empty(&agg->active)) /* agg is now inactive */
359 		qfq_deactivate_agg(q, agg);
360 }
361 
362 /* Remove class from its parent aggregate. */
363 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
364 {
365 	struct qfq_aggregate *agg = cl->agg;
366 
367 	cl->agg = NULL;
368 	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
369 		qfq_destroy_agg(q, agg);
370 		return;
371 	}
372 	qfq_update_agg(q, agg, agg->num_classes-1);
373 }
374 
375 /* Deschedule class and remove it from its parent aggregate. */
376 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
377 {
378 	if (cl->qdisc->q.qlen > 0) /* class is active */
379 		qfq_deactivate_class(q, cl);
380 
381 	qfq_rm_from_agg(q, cl);
382 }
383 
384 /* Move class to a new aggregate, matching the new class weight and/or lmax */
385 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
386 			   u32 lmax)
387 {
388 	struct qfq_sched *q = qdisc_priv(sch);
389 	struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
390 
391 	if (new_agg == NULL) { /* create new aggregate */
392 		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
393 		if (new_agg == NULL)
394 			return -ENOBUFS;
395 		qfq_init_agg(q, new_agg, lmax, weight);
396 	}
397 	qfq_deact_rm_from_agg(q, cl);
398 	qfq_add_to_agg(q, new_agg, cl);
399 
400 	return 0;
401 }
402 
403 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
404 			    struct nlattr **tca, unsigned long *arg)
405 {
406 	struct qfq_sched *q = qdisc_priv(sch);
407 	struct qfq_class *cl = (struct qfq_class *)*arg;
408 	bool existing = false;
409 	struct nlattr *tb[TCA_QFQ_MAX + 1];
410 	struct qfq_aggregate *new_agg = NULL;
411 	u32 weight, lmax, inv_w;
412 	int err;
413 	int delta_w;
414 
415 	if (tca[TCA_OPTIONS] == NULL) {
416 		pr_notice("qfq: no options\n");
417 		return -EINVAL;
418 	}
419 
420 	err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
421 	if (err < 0)
422 		return err;
423 
424 	if (tb[TCA_QFQ_WEIGHT]) {
425 		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
426 		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
427 			pr_notice("qfq: invalid weight %u\n", weight);
428 			return -EINVAL;
429 		}
430 	} else
431 		weight = 1;
432 
433 	if (tb[TCA_QFQ_LMAX]) {
434 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
435 		if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
436 			pr_notice("qfq: invalid max length %u\n", lmax);
437 			return -EINVAL;
438 		}
439 	} else
440 		lmax = psched_mtu(qdisc_dev(sch));
441 
442 	inv_w = ONE_FP / weight;
443 	weight = ONE_FP / inv_w;
444 
445 	if (cl != NULL &&
446 	    lmax == cl->agg->lmax &&
447 	    weight == cl->agg->class_weight)
448 		return 0; /* nothing to change */
449 
450 	delta_w = weight - (cl ? cl->agg->class_weight : 0);
451 
452 	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
453 		pr_notice("qfq: total weight out of range (%d + %u)\n",
454 			  delta_w, q->wsum);
455 		return -EINVAL;
456 	}
457 
458 	if (cl != NULL) { /* modify existing class */
459 		if (tca[TCA_RATE]) {
460 			err = gen_replace_estimator(&cl->bstats, NULL,
461 						    &cl->rate_est,
462 						    qdisc_root_sleeping_lock(sch),
463 						    tca[TCA_RATE]);
464 			if (err)
465 				return err;
466 		}
467 		existing = true;
468 		goto set_change_agg;
469 	}
470 
471 	/* create and init new class */
472 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
473 	if (cl == NULL)
474 		return -ENOBUFS;
475 
476 	cl->refcnt = 1;
477 	cl->common.classid = classid;
478 	cl->deficit = lmax;
479 
480 	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
481 				      &pfifo_qdisc_ops, classid);
482 	if (cl->qdisc == NULL)
483 		cl->qdisc = &noop_qdisc;
484 
485 	if (tca[TCA_RATE]) {
486 		err = gen_new_estimator(&cl->bstats, NULL,
487 					&cl->rate_est,
488 					qdisc_root_sleeping_lock(sch),
489 					tca[TCA_RATE]);
490 		if (err)
491 			goto destroy_class;
492 	}
493 
494 	sch_tree_lock(sch);
495 	qdisc_class_hash_insert(&q->clhash, &cl->common);
496 	sch_tree_unlock(sch);
497 
498 	qdisc_class_hash_grow(sch, &q->clhash);
499 
500 set_change_agg:
501 	sch_tree_lock(sch);
502 	new_agg = qfq_find_agg(q, lmax, weight);
503 	if (new_agg == NULL) { /* create new aggregate */
504 		sch_tree_unlock(sch);
505 		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
506 		if (new_agg == NULL) {
507 			err = -ENOBUFS;
508 			gen_kill_estimator(&cl->bstats, &cl->rate_est);
509 			goto destroy_class;
510 		}
511 		sch_tree_lock(sch);
512 		qfq_init_agg(q, new_agg, lmax, weight);
513 	}
514 	if (existing)
515 		qfq_deact_rm_from_agg(q, cl);
516 	qfq_add_to_agg(q, new_agg, cl);
517 	sch_tree_unlock(sch);
518 
519 	*arg = (unsigned long)cl;
520 	return 0;
521 
522 destroy_class:
523 	qdisc_destroy(cl->qdisc);
524 	kfree(cl);
525 	return err;
526 }
527 
528 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
529 {
530 	struct qfq_sched *q = qdisc_priv(sch);
531 
532 	qfq_rm_from_agg(q, cl);
533 	gen_kill_estimator(&cl->bstats, &cl->rate_est);
534 	qdisc_destroy(cl->qdisc);
535 	kfree(cl);
536 }
537 
538 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
539 {
540 	struct qfq_sched *q = qdisc_priv(sch);
541 	struct qfq_class *cl = (struct qfq_class *)arg;
542 
543 	if (cl->filter_cnt > 0)
544 		return -EBUSY;
545 
546 	sch_tree_lock(sch);
547 
548 	qfq_purge_queue(cl);
549 	qdisc_class_hash_remove(&q->clhash, &cl->common);
550 
551 	BUG_ON(--cl->refcnt == 0);
552 	/*
553 	 * This shouldn't happen: we "hold" one cops->get() when called
554 	 * from tc_ctl_tclass; the destroy method is done from cops->put().
555 	 */
556 
557 	sch_tree_unlock(sch);
558 	return 0;
559 }
560 
561 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
562 {
563 	struct qfq_class *cl = qfq_find_class(sch, classid);
564 
565 	if (cl != NULL)
566 		cl->refcnt++;
567 
568 	return (unsigned long)cl;
569 }
570 
571 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
572 {
573 	struct qfq_class *cl = (struct qfq_class *)arg;
574 
575 	if (--cl->refcnt == 0)
576 		qfq_destroy_class(sch, cl);
577 }
578 
579 static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch,
580 					      unsigned long cl)
581 {
582 	struct qfq_sched *q = qdisc_priv(sch);
583 
584 	if (cl)
585 		return NULL;
586 
587 	return &q->filter_list;
588 }
589 
590 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
591 				  u32 classid)
592 {
593 	struct qfq_class *cl = qfq_find_class(sch, classid);
594 
595 	if (cl != NULL)
596 		cl->filter_cnt++;
597 
598 	return (unsigned long)cl;
599 }
600 
601 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
602 {
603 	struct qfq_class *cl = (struct qfq_class *)arg;
604 
605 	cl->filter_cnt--;
606 }
607 
608 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
609 			   struct Qdisc *new, struct Qdisc **old)
610 {
611 	struct qfq_class *cl = (struct qfq_class *)arg;
612 
613 	if (new == NULL) {
614 		new = qdisc_create_dflt(sch->dev_queue,
615 					&pfifo_qdisc_ops, cl->common.classid);
616 		if (new == NULL)
617 			new = &noop_qdisc;
618 	}
619 
620 	sch_tree_lock(sch);
621 	qfq_purge_queue(cl);
622 	*old = cl->qdisc;
623 	cl->qdisc = new;
624 	sch_tree_unlock(sch);
625 	return 0;
626 }
627 
628 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
629 {
630 	struct qfq_class *cl = (struct qfq_class *)arg;
631 
632 	return cl->qdisc;
633 }
634 
635 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
636 			  struct sk_buff *skb, struct tcmsg *tcm)
637 {
638 	struct qfq_class *cl = (struct qfq_class *)arg;
639 	struct nlattr *nest;
640 
641 	tcm->tcm_parent	= TC_H_ROOT;
642 	tcm->tcm_handle	= cl->common.classid;
643 	tcm->tcm_info	= cl->qdisc->handle;
644 
645 	nest = nla_nest_start(skb, TCA_OPTIONS);
646 	if (nest == NULL)
647 		goto nla_put_failure;
648 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
649 	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
650 		goto nla_put_failure;
651 	return nla_nest_end(skb, nest);
652 
653 nla_put_failure:
654 	nla_nest_cancel(skb, nest);
655 	return -EMSGSIZE;
656 }
657 
658 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
659 				struct gnet_dump *d)
660 {
661 	struct qfq_class *cl = (struct qfq_class *)arg;
662 	struct tc_qfq_stats xstats;
663 
664 	memset(&xstats, 0, sizeof(xstats));
665 
666 	xstats.weight = cl->agg->class_weight;
667 	xstats.lmax = cl->agg->lmax;
668 
669 	if (gnet_stats_copy_basic(d, NULL, &cl->bstats) < 0 ||
670 	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
671 	    gnet_stats_copy_queue(d, NULL,
672 				  &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
673 		return -1;
674 
675 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
676 }
677 
678 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
679 {
680 	struct qfq_sched *q = qdisc_priv(sch);
681 	struct qfq_class *cl;
682 	unsigned int i;
683 
684 	if (arg->stop)
685 		return;
686 
687 	for (i = 0; i < q->clhash.hashsize; i++) {
688 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
689 			if (arg->count < arg->skip) {
690 				arg->count++;
691 				continue;
692 			}
693 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
694 				arg->stop = 1;
695 				return;
696 			}
697 			arg->count++;
698 		}
699 	}
700 }
701 
702 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
703 				      int *qerr)
704 {
705 	struct qfq_sched *q = qdisc_priv(sch);
706 	struct qfq_class *cl;
707 	struct tcf_result res;
708 	struct tcf_proto *fl;
709 	int result;
710 
711 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
712 		pr_debug("qfq_classify: found %d\n", skb->priority);
713 		cl = qfq_find_class(sch, skb->priority);
714 		if (cl != NULL)
715 			return cl;
716 	}
717 
718 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
719 	fl = rcu_dereference_bh(q->filter_list);
720 	result = tc_classify(skb, fl, &res, false);
721 	if (result >= 0) {
722 #ifdef CONFIG_NET_CLS_ACT
723 		switch (result) {
724 		case TC_ACT_QUEUED:
725 		case TC_ACT_STOLEN:
726 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
727 		case TC_ACT_SHOT:
728 			return NULL;
729 		}
730 #endif
731 		cl = (struct qfq_class *)res.class;
732 		if (cl == NULL)
733 			cl = qfq_find_class(sch, res.classid);
734 		return cl;
735 	}
736 
737 	return NULL;
738 }
739 
740 /* Generic comparison function, handling wraparound. */
741 static inline int qfq_gt(u64 a, u64 b)
742 {
743 	return (s64)(a - b) > 0;
744 }
745 
746 /* Round a precise timestamp to its slotted value. */
747 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
748 {
749 	return ts & ~((1ULL << shift) - 1);
750 }
751 
752 /* return the pointer to the group with lowest index in the bitmap */
753 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
754 					unsigned long bitmap)
755 {
756 	int index = __ffs(bitmap);
757 	return &q->groups[index];
758 }
759 /* Calculate a mask to mimic what would be ffs_from(). */
760 static inline unsigned long mask_from(unsigned long bitmap, int from)
761 {
762 	return bitmap & ~((1UL << from) - 1);
763 }
764 
765 /*
766  * The state computation relies on ER=0, IR=1, EB=2, IB=3
767  * First compute eligibility comparing grp->S, q->V,
768  * then check if someone is blocking us and possibly add EB
769  */
770 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
771 {
772 	/* if S > V we are not eligible */
773 	unsigned int state = qfq_gt(grp->S, q->V);
774 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
775 	struct qfq_group *next;
776 
777 	if (mask) {
778 		next = qfq_ffs(q, mask);
779 		if (qfq_gt(grp->F, next->F))
780 			state |= EB;
781 	}
782 
783 	return state;
784 }
785 
786 
787 /*
788  * In principle
789  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
790  *	q->bitmaps[src] &= ~mask;
791  * but we should make sure that src != dst
792  */
793 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
794 				   int src, int dst)
795 {
796 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
797 	q->bitmaps[src] &= ~mask;
798 }
799 
800 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
801 {
802 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
803 	struct qfq_group *next;
804 
805 	if (mask) {
806 		next = qfq_ffs(q, mask);
807 		if (!qfq_gt(next->F, old_F))
808 			return;
809 	}
810 
811 	mask = (1UL << index) - 1;
812 	qfq_move_groups(q, mask, EB, ER);
813 	qfq_move_groups(q, mask, IB, IR);
814 }
815 
816 /*
817  * perhaps
818  *
819 	old_V ^= q->V;
820 	old_V >>= q->min_slot_shift;
821 	if (old_V) {
822 		...
823 	}
824  *
825  */
826 static void qfq_make_eligible(struct qfq_sched *q)
827 {
828 	unsigned long vslot = q->V >> q->min_slot_shift;
829 	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
830 
831 	if (vslot != old_vslot) {
832 		unsigned long mask;
833 		int last_flip_pos = fls(vslot ^ old_vslot);
834 
835 		if (last_flip_pos > 31) /* higher than the number of groups */
836 			mask = ~0UL;    /* make all groups eligible */
837 		else
838 			mask = (1UL << last_flip_pos) - 1;
839 
840 		qfq_move_groups(q, mask, IR, ER);
841 		qfq_move_groups(q, mask, IB, EB);
842 	}
843 }
844 
845 /*
846  * The index of the slot in which the input aggregate agg is to be
847  * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
848  * and not a '-1' because the start time of the group may be moved
849  * backward by one slot after the aggregate has been inserted, and
850  * this would cause non-empty slots to be right-shifted by one
851  * position.
852  *
853  * QFQ+ fully satisfies this bound to the slot index if the parameters
854  * of the classes are not changed dynamically, and if QFQ+ never
855  * happens to postpone the service of agg unjustly, i.e., it never
856  * happens that the aggregate becomes backlogged and eligible, or just
857  * eligible, while an aggregate with a higher approximated finish time
858  * is being served. In particular, in this case QFQ+ guarantees that
859  * the timestamps of agg are low enough that the slot index is never
860  * higher than 2. Unfortunately, QFQ+ cannot provide the same
861  * guarantee if it happens to unjustly postpone the service of agg, or
862  * if the parameters of some class are changed.
863  *
864  * As for the first event, i.e., an out-of-order service, the
865  * upper bound to the slot index guaranteed by QFQ+ grows to
866  * 2 +
867  * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
868  * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
869  *
870  * The following function deals with this problem by backward-shifting
871  * the timestamps of agg, if needed, so as to guarantee that the slot
872  * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
873  * cause the service of other aggregates to be postponed, yet the
874  * worst-case guarantees of these aggregates are not violated.  In
875  * fact, in case of no out-of-order service, the timestamps of agg
876  * would have been even lower than they are after the backward shift,
877  * because QFQ+ would have guaranteed a maximum value equal to 2 for
878  * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
879  * service is postponed because of the backward-shift would have
880  * however waited for the service of agg before being served.
881  *
882  * The other event that may cause the slot index to be higher than 2
883  * for agg is a recent change of the parameters of some class. If the
884  * weight of a class is increased or the lmax (max_pkt_size) of the
885  * class is decreased, then a new aggregate with smaller slot size
886  * than the original parent aggregate of the class may happen to be
887  * activated. The activation of this aggregate should be properly
888  * delayed to when the service of the class has finished in the ideal
889  * system tracked by QFQ+. If the activation of the aggregate is not
890  * delayed to this reference time instant, then this aggregate may be
891  * unjustly served before other aggregates waiting for service. This
892  * may cause the above bound to the slot index to be violated for some
893  * of these unlucky aggregates.
894  *
895  * Instead of delaying the activation of the new aggregate, which is
896  * quite complex, the above-discussed capping of the slot index is
897  * used to handle also the consequences of a change of the parameters
898  * of a class.
899  */
900 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
901 			    u64 roundedS)
902 {
903 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
904 	unsigned int i; /* slot index in the bucket list */
905 
906 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
907 		u64 deltaS = roundedS - grp->S -
908 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
909 		agg->S -= deltaS;
910 		agg->F -= deltaS;
911 		slot = QFQ_MAX_SLOTS - 2;
912 	}
913 
914 	i = (grp->front + slot) % QFQ_MAX_SLOTS;
915 
916 	hlist_add_head(&agg->next, &grp->slots[i]);
917 	__set_bit(slot, &grp->full_slots);
918 }
919 
920 /* Maybe introduce hlist_first_entry?? */
921 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
922 {
923 	return hlist_entry(grp->slots[grp->front].first,
924 			   struct qfq_aggregate, next);
925 }
926 
927 /*
928  * remove the entry from the slot
929  */
930 static void qfq_front_slot_remove(struct qfq_group *grp)
931 {
932 	struct qfq_aggregate *agg = qfq_slot_head(grp);
933 
934 	BUG_ON(!agg);
935 	hlist_del(&agg->next);
936 	if (hlist_empty(&grp->slots[grp->front]))
937 		__clear_bit(0, &grp->full_slots);
938 }
939 
940 /*
941  * Returns the first aggregate in the first non-empty bucket of the
942  * group. As a side effect, adjusts the bucket list so the first
943  * non-empty bucket is at position 0 in full_slots.
944  */
945 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
946 {
947 	unsigned int i;
948 
949 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
950 		 grp->index, grp->full_slots);
951 
952 	if (grp->full_slots == 0)
953 		return NULL;
954 
955 	i = __ffs(grp->full_slots);  /* zero based */
956 	if (i > 0) {
957 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
958 		grp->full_slots >>= i;
959 	}
960 
961 	return qfq_slot_head(grp);
962 }
963 
964 /*
965  * adjust the bucket list. When the start time of a group decreases,
966  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
967  * move the objects. The mask of occupied slots must be shifted
968  * because we use ffs() to find the first non-empty slot.
969  * This covers decreases in the group's start time, but what about
970  * increases of the start time ?
971  * Here too we should make sure that i is less than 32
972  */
973 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
974 {
975 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
976 
977 	grp->full_slots <<= i;
978 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
979 }
980 
981 static void qfq_update_eligible(struct qfq_sched *q)
982 {
983 	struct qfq_group *grp;
984 	unsigned long ineligible;
985 
986 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
987 	if (ineligible) {
988 		if (!q->bitmaps[ER]) {
989 			grp = qfq_ffs(q, ineligible);
990 			if (qfq_gt(grp->S, q->V))
991 				q->V = grp->S;
992 		}
993 		qfq_make_eligible(q);
994 	}
995 }
996 
997 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
998 static void agg_dequeue(struct qfq_aggregate *agg,
999 			struct qfq_class *cl, unsigned int len)
1000 {
1001 	qdisc_dequeue_peeked(cl->qdisc);
1002 
1003 	cl->deficit -= (int) len;
1004 
1005 	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1006 		list_del(&cl->alist);
1007 	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
1008 		cl->deficit += agg->lmax;
1009 		list_move_tail(&cl->alist, &agg->active);
1010 	}
1011 }
1012 
1013 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1014 					   struct qfq_class **cl,
1015 					   unsigned int *len)
1016 {
1017 	struct sk_buff *skb;
1018 
1019 	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
1020 	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1021 	if (skb == NULL)
1022 		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1023 	else
1024 		*len = qdisc_pkt_len(skb);
1025 
1026 	return skb;
1027 }
1028 
1029 /* Update F according to the actual service received by the aggregate. */
1030 static inline void charge_actual_service(struct qfq_aggregate *agg)
1031 {
1032 	/* Compute the service received by the aggregate, taking into
1033 	 * account that, after decreasing the number of classes in
1034 	 * agg, it may happen that
1035 	 * agg->initial_budget - agg->budget > agg->bugdetmax
1036 	 */
1037 	u32 service_received = min(agg->budgetmax,
1038 				   agg->initial_budget - agg->budget);
1039 
1040 	agg->F = agg->S + (u64)service_received * agg->inv_w;
1041 }
1042 
1043 /* Assign a reasonable start time for a new aggregate in group i.
1044  * Admissible values for \hat(F) are multiples of \sigma_i
1045  * no greater than V+\sigma_i . Larger values mean that
1046  * we had a wraparound so we consider the timestamp to be stale.
1047  *
1048  * If F is not stale and F >= V then we set S = F.
1049  * Otherwise we should assign S = V, but this may violate
1050  * the ordering in EB (see [2]). So, if we have groups in ER,
1051  * set S to the F_j of the first group j which would be blocking us.
1052  * We are guaranteed not to move S backward because
1053  * otherwise our group i would still be blocked.
1054  */
1055 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1056 {
1057 	unsigned long mask;
1058 	u64 limit, roundedF;
1059 	int slot_shift = agg->grp->slot_shift;
1060 
1061 	roundedF = qfq_round_down(agg->F, slot_shift);
1062 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1063 
1064 	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1065 		/* timestamp was stale */
1066 		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1067 		if (mask) {
1068 			struct qfq_group *next = qfq_ffs(q, mask);
1069 			if (qfq_gt(roundedF, next->F)) {
1070 				if (qfq_gt(limit, next->F))
1071 					agg->S = next->F;
1072 				else /* preserve timestamp correctness */
1073 					agg->S = limit;
1074 				return;
1075 			}
1076 		}
1077 		agg->S = q->V;
1078 	} else  /* timestamp is not stale */
1079 		agg->S = agg->F;
1080 }
1081 
1082 /* Update the timestamps of agg before scheduling/rescheduling it for
1083  * service.  In particular, assign to agg->F its maximum possible
1084  * value, i.e., the virtual finish time with which the aggregate
1085  * should be labeled if it used all its budget once in service.
1086  */
1087 static inline void
1088 qfq_update_agg_ts(struct qfq_sched *q,
1089 		    struct qfq_aggregate *agg, enum update_reason reason)
1090 {
1091 	if (reason != requeue)
1092 		qfq_update_start(q, agg);
1093 	else /* just charge agg for the service received */
1094 		agg->S = agg->F;
1095 
1096 	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1097 }
1098 
1099 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1100 
1101 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1102 {
1103 	struct qfq_sched *q = qdisc_priv(sch);
1104 	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1105 	struct qfq_class *cl;
1106 	struct sk_buff *skb = NULL;
1107 	/* next-packet len, 0 means no more active classes in in-service agg */
1108 	unsigned int len = 0;
1109 
1110 	if (in_serv_agg == NULL)
1111 		return NULL;
1112 
1113 	if (!list_empty(&in_serv_agg->active))
1114 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1115 
1116 	/*
1117 	 * If there are no active classes in the in-service aggregate,
1118 	 * or if the aggregate has not enough budget to serve its next
1119 	 * class, then choose the next aggregate to serve.
1120 	 */
1121 	if (len == 0 || in_serv_agg->budget < len) {
1122 		charge_actual_service(in_serv_agg);
1123 
1124 		/* recharge the budget of the aggregate */
1125 		in_serv_agg->initial_budget = in_serv_agg->budget =
1126 			in_serv_agg->budgetmax;
1127 
1128 		if (!list_empty(&in_serv_agg->active)) {
1129 			/*
1130 			 * Still active: reschedule for
1131 			 * service. Possible optimization: if no other
1132 			 * aggregate is active, then there is no point
1133 			 * in rescheduling this aggregate, and we can
1134 			 * just keep it as the in-service one. This
1135 			 * should be however a corner case, and to
1136 			 * handle it, we would need to maintain an
1137 			 * extra num_active_aggs field.
1138 			*/
1139 			qfq_update_agg_ts(q, in_serv_agg, requeue);
1140 			qfq_schedule_agg(q, in_serv_agg);
1141 		} else if (sch->q.qlen == 0) { /* no aggregate to serve */
1142 			q->in_serv_agg = NULL;
1143 			return NULL;
1144 		}
1145 
1146 		/*
1147 		 * If we get here, there are other aggregates queued:
1148 		 * choose the new aggregate to serve.
1149 		 */
1150 		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1151 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1152 	}
1153 	if (!skb)
1154 		return NULL;
1155 
1156 	sch->q.qlen--;
1157 	qdisc_bstats_update(sch, skb);
1158 
1159 	agg_dequeue(in_serv_agg, cl, len);
1160 	/* If lmax is lowered, through qfq_change_class, for a class
1161 	 * owning pending packets with larger size than the new value
1162 	 * of lmax, then the following condition may hold.
1163 	 */
1164 	if (unlikely(in_serv_agg->budget < len))
1165 		in_serv_agg->budget = 0;
1166 	else
1167 		in_serv_agg->budget -= len;
1168 
1169 	q->V += (u64)len * q->iwsum;
1170 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1171 		 len, (unsigned long long) in_serv_agg->F,
1172 		 (unsigned long long) q->V);
1173 
1174 	return skb;
1175 }
1176 
1177 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1178 {
1179 	struct qfq_group *grp;
1180 	struct qfq_aggregate *agg, *new_front_agg;
1181 	u64 old_F;
1182 
1183 	qfq_update_eligible(q);
1184 	q->oldV = q->V;
1185 
1186 	if (!q->bitmaps[ER])
1187 		return NULL;
1188 
1189 	grp = qfq_ffs(q, q->bitmaps[ER]);
1190 	old_F = grp->F;
1191 
1192 	agg = qfq_slot_head(grp);
1193 
1194 	/* agg starts to be served, remove it from schedule */
1195 	qfq_front_slot_remove(grp);
1196 
1197 	new_front_agg = qfq_slot_scan(grp);
1198 
1199 	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1200 		__clear_bit(grp->index, &q->bitmaps[ER]);
1201 	else {
1202 		u64 roundedS = qfq_round_down(new_front_agg->S,
1203 					      grp->slot_shift);
1204 		unsigned int s;
1205 
1206 		if (grp->S == roundedS)
1207 			return agg;
1208 		grp->S = roundedS;
1209 		grp->F = roundedS + (2ULL << grp->slot_shift);
1210 		__clear_bit(grp->index, &q->bitmaps[ER]);
1211 		s = qfq_calc_state(q, grp);
1212 		__set_bit(grp->index, &q->bitmaps[s]);
1213 	}
1214 
1215 	qfq_unblock_groups(q, grp->index, old_F);
1216 
1217 	return agg;
1218 }
1219 
1220 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1221 {
1222 	struct qfq_sched *q = qdisc_priv(sch);
1223 	struct qfq_class *cl;
1224 	struct qfq_aggregate *agg;
1225 	int err = 0;
1226 
1227 	cl = qfq_classify(skb, sch, &err);
1228 	if (cl == NULL) {
1229 		if (err & __NET_XMIT_BYPASS)
1230 			qdisc_qstats_drop(sch);
1231 		kfree_skb(skb);
1232 		return err;
1233 	}
1234 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1235 
1236 	if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1237 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1238 			 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1239 		err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1240 				     qdisc_pkt_len(skb));
1241 		if (err)
1242 			return err;
1243 	}
1244 
1245 	err = qdisc_enqueue(skb, cl->qdisc);
1246 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1247 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1248 		if (net_xmit_drop_count(err)) {
1249 			cl->qstats.drops++;
1250 			qdisc_qstats_drop(sch);
1251 		}
1252 		return err;
1253 	}
1254 
1255 	bstats_update(&cl->bstats, skb);
1256 	++sch->q.qlen;
1257 
1258 	agg = cl->agg;
1259 	/* if the queue was not empty, then done here */
1260 	if (cl->qdisc->q.qlen != 1) {
1261 		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1262 		    list_first_entry(&agg->active, struct qfq_class, alist)
1263 		    == cl && cl->deficit < qdisc_pkt_len(skb))
1264 			list_move_tail(&cl->alist, &agg->active);
1265 
1266 		return err;
1267 	}
1268 
1269 	/* schedule class for service within the aggregate */
1270 	cl->deficit = agg->lmax;
1271 	list_add_tail(&cl->alist, &agg->active);
1272 
1273 	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1274 	    q->in_serv_agg == agg)
1275 		return err; /* non-empty or in service, nothing else to do */
1276 
1277 	qfq_activate_agg(q, agg, enqueue);
1278 
1279 	return err;
1280 }
1281 
1282 /*
1283  * Schedule aggregate according to its timestamps.
1284  */
1285 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1286 {
1287 	struct qfq_group *grp = agg->grp;
1288 	u64 roundedS;
1289 	int s;
1290 
1291 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1292 
1293 	/*
1294 	 * Insert agg in the correct bucket.
1295 	 * If agg->S >= grp->S we don't need to adjust the
1296 	 * bucket list and simply go to the insertion phase.
1297 	 * Otherwise grp->S is decreasing, we must make room
1298 	 * in the bucket list, and also recompute the group state.
1299 	 * Finally, if there were no flows in this group and nobody
1300 	 * was in ER make sure to adjust V.
1301 	 */
1302 	if (grp->full_slots) {
1303 		if (!qfq_gt(grp->S, agg->S))
1304 			goto skip_update;
1305 
1306 		/* create a slot for this agg->S */
1307 		qfq_slot_rotate(grp, roundedS);
1308 		/* group was surely ineligible, remove */
1309 		__clear_bit(grp->index, &q->bitmaps[IR]);
1310 		__clear_bit(grp->index, &q->bitmaps[IB]);
1311 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1312 		   q->in_serv_agg == NULL)
1313 		q->V = roundedS;
1314 
1315 	grp->S = roundedS;
1316 	grp->F = roundedS + (2ULL << grp->slot_shift);
1317 	s = qfq_calc_state(q, grp);
1318 	__set_bit(grp->index, &q->bitmaps[s]);
1319 
1320 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1321 		 s, q->bitmaps[s],
1322 		 (unsigned long long) agg->S,
1323 		 (unsigned long long) agg->F,
1324 		 (unsigned long long) q->V);
1325 
1326 skip_update:
1327 	qfq_slot_insert(grp, agg, roundedS);
1328 }
1329 
1330 
1331 /* Update agg ts and schedule agg for service */
1332 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1333 			     enum update_reason reason)
1334 {
1335 	agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1336 
1337 	qfq_update_agg_ts(q, agg, reason);
1338 	if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1339 		q->in_serv_agg = agg; /* start serving this aggregate */
1340 		 /* update V: to be in service, agg must be eligible */
1341 		q->oldV = q->V = agg->S;
1342 	} else if (agg != q->in_serv_agg)
1343 		qfq_schedule_agg(q, agg);
1344 }
1345 
1346 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1347 			    struct qfq_aggregate *agg)
1348 {
1349 	unsigned int i, offset;
1350 	u64 roundedS;
1351 
1352 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1353 	offset = (roundedS - grp->S) >> grp->slot_shift;
1354 
1355 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1356 
1357 	hlist_del(&agg->next);
1358 	if (hlist_empty(&grp->slots[i]))
1359 		__clear_bit(offset, &grp->full_slots);
1360 }
1361 
1362 /*
1363  * Called to forcibly deschedule an aggregate.  If the aggregate is
1364  * not in the front bucket, or if the latter has other aggregates in
1365  * the front bucket, we can simply remove the aggregate with no other
1366  * side effects.
1367  * Otherwise we must propagate the event up.
1368  */
1369 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1370 {
1371 	struct qfq_group *grp = agg->grp;
1372 	unsigned long mask;
1373 	u64 roundedS;
1374 	int s;
1375 
1376 	if (agg == q->in_serv_agg) {
1377 		charge_actual_service(agg);
1378 		q->in_serv_agg = qfq_choose_next_agg(q);
1379 		return;
1380 	}
1381 
1382 	agg->F = agg->S;
1383 	qfq_slot_remove(q, grp, agg);
1384 
1385 	if (!grp->full_slots) {
1386 		__clear_bit(grp->index, &q->bitmaps[IR]);
1387 		__clear_bit(grp->index, &q->bitmaps[EB]);
1388 		__clear_bit(grp->index, &q->bitmaps[IB]);
1389 
1390 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1391 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1392 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1393 			if (mask)
1394 				mask = ~((1UL << __fls(mask)) - 1);
1395 			else
1396 				mask = ~0UL;
1397 			qfq_move_groups(q, mask, EB, ER);
1398 			qfq_move_groups(q, mask, IB, IR);
1399 		}
1400 		__clear_bit(grp->index, &q->bitmaps[ER]);
1401 	} else if (hlist_empty(&grp->slots[grp->front])) {
1402 		agg = qfq_slot_scan(grp);
1403 		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1404 		if (grp->S != roundedS) {
1405 			__clear_bit(grp->index, &q->bitmaps[ER]);
1406 			__clear_bit(grp->index, &q->bitmaps[IR]);
1407 			__clear_bit(grp->index, &q->bitmaps[EB]);
1408 			__clear_bit(grp->index, &q->bitmaps[IB]);
1409 			grp->S = roundedS;
1410 			grp->F = roundedS + (2ULL << grp->slot_shift);
1411 			s = qfq_calc_state(q, grp);
1412 			__set_bit(grp->index, &q->bitmaps[s]);
1413 		}
1414 	}
1415 }
1416 
1417 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1418 {
1419 	struct qfq_sched *q = qdisc_priv(sch);
1420 	struct qfq_class *cl = (struct qfq_class *)arg;
1421 
1422 	if (cl->qdisc->q.qlen == 0)
1423 		qfq_deactivate_class(q, cl);
1424 }
1425 
1426 static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1427 				       struct hlist_head *slot)
1428 {
1429 	struct qfq_aggregate *agg;
1430 	struct qfq_class *cl;
1431 	unsigned int len;
1432 
1433 	hlist_for_each_entry(agg, slot, next) {
1434 		list_for_each_entry(cl, &agg->active, alist) {
1435 
1436 			if (!cl->qdisc->ops->drop)
1437 				continue;
1438 
1439 			len = cl->qdisc->ops->drop(cl->qdisc);
1440 			if (len > 0) {
1441 				if (cl->qdisc->q.qlen == 0)
1442 					qfq_deactivate_class(q, cl);
1443 
1444 				return len;
1445 			}
1446 		}
1447 	}
1448 	return 0;
1449 }
1450 
1451 static unsigned int qfq_drop(struct Qdisc *sch)
1452 {
1453 	struct qfq_sched *q = qdisc_priv(sch);
1454 	struct qfq_group *grp;
1455 	unsigned int i, j, len;
1456 
1457 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1458 		grp = &q->groups[i];
1459 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1460 			len = qfq_drop_from_slot(q, &grp->slots[j]);
1461 			if (len > 0) {
1462 				sch->q.qlen--;
1463 				return len;
1464 			}
1465 		}
1466 
1467 	}
1468 
1469 	return 0;
1470 }
1471 
1472 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1473 {
1474 	struct qfq_sched *q = qdisc_priv(sch);
1475 	struct qfq_group *grp;
1476 	int i, j, err;
1477 	u32 max_cl_shift, maxbudg_shift, max_classes;
1478 
1479 	err = qdisc_class_hash_init(&q->clhash);
1480 	if (err < 0)
1481 		return err;
1482 
1483 	if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1484 		max_classes = QFQ_MAX_AGG_CLASSES;
1485 	else
1486 		max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1487 	/* max_cl_shift = floor(log_2(max_classes)) */
1488 	max_cl_shift = __fls(max_classes);
1489 	q->max_agg_classes = 1<<max_cl_shift;
1490 
1491 	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1492 	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1493 	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1494 
1495 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1496 		grp = &q->groups[i];
1497 		grp->index = i;
1498 		grp->slot_shift = q->min_slot_shift + i;
1499 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1500 			INIT_HLIST_HEAD(&grp->slots[j]);
1501 	}
1502 
1503 	INIT_HLIST_HEAD(&q->nonfull_aggs);
1504 
1505 	return 0;
1506 }
1507 
1508 static void qfq_reset_qdisc(struct Qdisc *sch)
1509 {
1510 	struct qfq_sched *q = qdisc_priv(sch);
1511 	struct qfq_class *cl;
1512 	unsigned int i;
1513 
1514 	for (i = 0; i < q->clhash.hashsize; i++) {
1515 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1516 			if (cl->qdisc->q.qlen > 0)
1517 				qfq_deactivate_class(q, cl);
1518 
1519 			qdisc_reset(cl->qdisc);
1520 		}
1521 	}
1522 	sch->q.qlen = 0;
1523 }
1524 
1525 static void qfq_destroy_qdisc(struct Qdisc *sch)
1526 {
1527 	struct qfq_sched *q = qdisc_priv(sch);
1528 	struct qfq_class *cl;
1529 	struct hlist_node *next;
1530 	unsigned int i;
1531 
1532 	tcf_destroy_chain(&q->filter_list);
1533 
1534 	for (i = 0; i < q->clhash.hashsize; i++) {
1535 		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1536 					  common.hnode) {
1537 			qfq_destroy_class(sch, cl);
1538 		}
1539 	}
1540 	qdisc_class_hash_destroy(&q->clhash);
1541 }
1542 
1543 static const struct Qdisc_class_ops qfq_class_ops = {
1544 	.change		= qfq_change_class,
1545 	.delete		= qfq_delete_class,
1546 	.get		= qfq_get_class,
1547 	.put		= qfq_put_class,
1548 	.tcf_chain	= qfq_tcf_chain,
1549 	.bind_tcf	= qfq_bind_tcf,
1550 	.unbind_tcf	= qfq_unbind_tcf,
1551 	.graft		= qfq_graft_class,
1552 	.leaf		= qfq_class_leaf,
1553 	.qlen_notify	= qfq_qlen_notify,
1554 	.dump		= qfq_dump_class,
1555 	.dump_stats	= qfq_dump_class_stats,
1556 	.walk		= qfq_walk,
1557 };
1558 
1559 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1560 	.cl_ops		= &qfq_class_ops,
1561 	.id		= "qfq",
1562 	.priv_size	= sizeof(struct qfq_sched),
1563 	.enqueue	= qfq_enqueue,
1564 	.dequeue	= qfq_dequeue,
1565 	.peek		= qdisc_peek_dequeued,
1566 	.drop		= qfq_drop,
1567 	.init		= qfq_init_qdisc,
1568 	.reset		= qfq_reset_qdisc,
1569 	.destroy	= qfq_destroy_qdisc,
1570 	.owner		= THIS_MODULE,
1571 };
1572 
1573 static int __init qfq_init(void)
1574 {
1575 	return register_qdisc(&qfq_qdisc_ops);
1576 }
1577 
1578 static void __exit qfq_exit(void)
1579 {
1580 	unregister_qdisc(&qfq_qdisc_ops);
1581 }
1582 
1583 module_init(qfq_init);
1584 module_exit(qfq_exit);
1585 MODULE_LICENSE("GPL");
1586