xref: /openbmc/linux/net/sched/sch_qfq.c (revision 840ef8b7)
1 /*
2  * net/sched/sch_qfq.c         Quick Fair Queueing Plus Scheduler.
3  *
4  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5  * Copyright (c) 2012 Paolo Valente.
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * version 2 as published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21 
22 
23 /*  Quick Fair Queueing Plus
24     ========================
25 
26     Sources:
27 
28     [1] Paolo Valente,
29     "Reducing the Execution Time of Fair-Queueing Schedulers."
30     http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31 
32     Sources for QFQ:
33 
34     [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36 
37     See also:
38     http://retis.sssup.it/~fabio/linux/qfq/
39  */
40 
41 /*
42 
43   QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44   classes. Each aggregate is timestamped with a virtual start time S
45   and a virtual finish time F, and scheduled according to its
46   timestamps. S and F are computed as a function of a system virtual
47   time function V. The classes within each aggregate are instead
48   scheduled with DRR.
49 
50   To speed up operations, QFQ+ divides also aggregates into a limited
51   number of groups. Which group a class belongs to depends on the
52   ratio between the maximum packet length for the class and the weight
53   of the class. Groups have their own S and F. In the end, QFQ+
54   schedules groups, then aggregates within groups, then classes within
55   aggregates. See [1] and [2] for a full description.
56 
57   Virtual time computations.
58 
59   S, F and V are all computed in fixed point arithmetic with
60   FRAC_BITS decimal bits.
61 
62   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 	one bit per index.
64   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65 
66   The layout of the bits is as below:
67 
68                    [ MTU_SHIFT ][      FRAC_BITS    ]
69                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
70 				 ^.__grp->index = 0
71 				 *.__grp->slot_shift
72 
73   where MIN_SLOT_SHIFT is derived by difference from the others.
74 
75   The max group index corresponds to Lmax/w_min, where
76   Lmax=1<<MTU_SHIFT, w_min = 1 .
77   From this, and knowing how many groups (MAX_INDEX) we want,
78   we can derive the shift corresponding to each group.
79 
80   Because we often need to compute
81 	F = S + len/w_i  and V = V + len/wsum
82   instead of storing w_i store the value
83 	inv_w = (1<<FRAC_BITS)/w_i
84   so we can do F = S + len * inv_w * wsum.
85   We use W_TOT in the formulas so we can easily move between
86   static and adaptive weight sum.
87 
88   The per-scheduler-instance data contain all the data structures
89   for the scheduler: bitmaps and bucket lists.
90 
91  */
92 
93 /*
94  * Maximum number of consecutive slots occupied by backlogged classes
95  * inside a group.
96  */
97 #define QFQ_MAX_SLOTS	32
98 
99 /*
100  * Shifts used for aggregate<->group mapping.  We allow class weights that are
101  * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102  * group with the smallest index that can support the L_i / r_i configured
103  * for the classes in the aggregate.
104  *
105  * grp->index is the index of the group; and grp->slot_shift
106  * is the shift for the corresponding (scaled) sigma_i.
107  */
108 #define QFQ_MAX_INDEX		24
109 #define QFQ_MAX_WSHIFT		10
110 
111 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM		(64*QFQ_MAX_WEIGHT)
113 
114 #define FRAC_BITS		30	/* fixed point arithmetic */
115 #define ONE_FP			(1UL << FRAC_BITS)
116 #define IWSUM			(ONE_FP/QFQ_MAX_WSUM)
117 
118 #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
119 #define QFQ_MIN_LMAX		512	/* see qfq_slot_insert */
120 
121 #define QFQ_MAX_AGG_CLASSES	8 /* max num classes per aggregate allowed */
122 
123 /*
124  * Possible group states.  These values are used as indexes for the bitmaps
125  * array of struct qfq_queue.
126  */
127 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
128 
129 struct qfq_group;
130 
131 struct qfq_aggregate;
132 
133 struct qfq_class {
134 	struct Qdisc_class_common common;
135 
136 	unsigned int refcnt;
137 	unsigned int filter_cnt;
138 
139 	struct gnet_stats_basic_packed bstats;
140 	struct gnet_stats_queue qstats;
141 	struct gnet_stats_rate_est rate_est;
142 	struct Qdisc *qdisc;
143 	struct list_head alist;		/* Link for active-classes list. */
144 	struct qfq_aggregate *agg;	/* Parent aggregate. */
145 	int deficit;			/* DRR deficit counter. */
146 };
147 
148 struct qfq_aggregate {
149 	struct hlist_node next;	/* Link for the slot list. */
150 	u64 S, F;		/* flow timestamps (exact) */
151 
152 	/* group we belong to. In principle we would need the index,
153 	 * which is log_2(lmax/weight), but we never reference it
154 	 * directly, only the group.
155 	 */
156 	struct qfq_group *grp;
157 
158 	/* these are copied from the flowset. */
159 	u32	class_weight; /* Weight of each class in this aggregate. */
160 	/* Max pkt size for the classes in this aggregate, DRR quantum. */
161 	int	lmax;
162 
163 	u32	inv_w;	    /* ONE_FP/(sum of weights of classes in aggr.). */
164 	u32	budgetmax;  /* Max budget for this aggregate. */
165 	u32	initial_budget, budget;     /* Initial and current budget. */
166 
167 	int		  num_classes;	/* Number of classes in this aggr. */
168 	struct list_head  active;	/* DRR queue of active classes. */
169 
170 	struct hlist_node nonfull_next;	/* See nonfull_aggs in qfq_sched. */
171 };
172 
173 struct qfq_group {
174 	u64 S, F;			/* group timestamps (approx). */
175 	unsigned int slot_shift;	/* Slot shift. */
176 	unsigned int index;		/* Group index. */
177 	unsigned int front;		/* Index of the front slot. */
178 	unsigned long full_slots;	/* non-empty slots */
179 
180 	/* Array of RR lists of active aggregates. */
181 	struct hlist_head slots[QFQ_MAX_SLOTS];
182 };
183 
184 struct qfq_sched {
185 	struct tcf_proto *filter_list;
186 	struct Qdisc_class_hash clhash;
187 
188 	u64			oldV, V;	/* Precise virtual times. */
189 	struct qfq_aggregate	*in_serv_agg;   /* Aggregate being served. */
190 	u32			num_active_agg; /* Num. of active aggregates */
191 	u32			wsum;		/* weight sum */
192 
193 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
194 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
195 	u32 min_slot_shift;	/* Index of the group-0 bit in the bitmaps. */
196 
197 	u32 max_agg_classes;		/* Max number of classes per aggr. */
198 	struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
199 };
200 
201 /*
202  * Possible reasons why the timestamps of an aggregate are updated
203  * enqueue: the aggregate switches from idle to active and must scheduled
204  *	    for service
205  * requeue: the aggregate finishes its budget, so it stops being served and
206  *	    must be rescheduled for service
207  */
208 enum update_reason {enqueue, requeue};
209 
210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 {
212 	struct qfq_sched *q = qdisc_priv(sch);
213 	struct Qdisc_class_common *clc;
214 
215 	clc = qdisc_class_find(&q->clhash, classid);
216 	if (clc == NULL)
217 		return NULL;
218 	return container_of(clc, struct qfq_class, common);
219 }
220 
221 static void qfq_purge_queue(struct qfq_class *cl)
222 {
223 	unsigned int len = cl->qdisc->q.qlen;
224 
225 	qdisc_reset(cl->qdisc);
226 	qdisc_tree_decrease_qlen(cl->qdisc, len);
227 }
228 
229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 	[TCA_QFQ_LMAX] = { .type = NLA_U32 },
232 };
233 
234 /*
235  * Calculate a flow index, given its weight and maximum packet length.
236  * index = log_2(maxlen/weight) but we need to apply the scaling.
237  * This is used only once at flow creation.
238  */
239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
240 {
241 	u64 slot_size = (u64)maxlen * inv_w;
242 	unsigned long size_map;
243 	int index = 0;
244 
245 	size_map = slot_size >> min_slot_shift;
246 	if (!size_map)
247 		goto out;
248 
249 	index = __fls(size_map) + 1;	/* basically a log_2 */
250 	index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
251 
252 	if (index < 0)
253 		index = 0;
254 out:
255 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
257 
258 	return index;
259 }
260 
261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 			     enum update_reason);
264 
265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 			 u32 lmax, u32 weight)
267 {
268 	INIT_LIST_HEAD(&agg->active);
269 	hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270 
271 	agg->lmax = lmax;
272 	agg->class_weight = weight;
273 }
274 
275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 					  u32 lmax, u32 weight)
277 {
278 	struct qfq_aggregate *agg;
279 
280 	hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281 		if (agg->lmax == lmax && agg->class_weight == weight)
282 			return agg;
283 
284 	return NULL;
285 }
286 
287 
288 /* Update aggregate as a function of the new number of classes. */
289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 			   int new_num_classes)
291 {
292 	u32 new_agg_weight;
293 
294 	if (new_num_classes == q->max_agg_classes)
295 		hlist_del_init(&agg->nonfull_next);
296 
297 	if (agg->num_classes > new_num_classes &&
298 	    new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 		hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300 
301 	agg->budgetmax = new_num_classes * agg->lmax;
302 	new_agg_weight = agg->class_weight * new_num_classes;
303 	agg->inv_w = ONE_FP/new_agg_weight;
304 
305 	if (agg->grp == NULL) {
306 		int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
307 				       q->min_slot_shift);
308 		agg->grp = &q->groups[i];
309 	}
310 
311 	q->wsum +=
312 		(int) agg->class_weight * (new_num_classes - agg->num_classes);
313 
314 	agg->num_classes = new_num_classes;
315 }
316 
317 /* Add class to aggregate. */
318 static void qfq_add_to_agg(struct qfq_sched *q,
319 			   struct qfq_aggregate *agg,
320 			   struct qfq_class *cl)
321 {
322 	cl->agg = agg;
323 
324 	qfq_update_agg(q, agg, agg->num_classes+1);
325 	if (cl->qdisc->q.qlen > 0) { /* adding an active class */
326 		list_add_tail(&cl->alist, &agg->active);
327 		if (list_first_entry(&agg->active, struct qfq_class, alist) ==
328 		    cl && q->in_serv_agg != agg) /* agg was inactive */
329 			qfq_activate_agg(q, agg, enqueue); /* schedule agg */
330 	}
331 }
332 
333 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
334 
335 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
336 {
337 	if (!hlist_unhashed(&agg->nonfull_next))
338 		hlist_del_init(&agg->nonfull_next);
339 	if (q->in_serv_agg == agg)
340 		q->in_serv_agg = qfq_choose_next_agg(q);
341 	kfree(agg);
342 }
343 
344 /* Deschedule class from within its parent aggregate. */
345 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
346 {
347 	struct qfq_aggregate *agg = cl->agg;
348 
349 
350 	list_del(&cl->alist); /* remove from RR queue of the aggregate */
351 	if (list_empty(&agg->active)) /* agg is now inactive */
352 		qfq_deactivate_agg(q, agg);
353 }
354 
355 /* Remove class from its parent aggregate. */
356 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
357 {
358 	struct qfq_aggregate *agg = cl->agg;
359 
360 	cl->agg = NULL;
361 	if (agg->num_classes == 1) { /* agg being emptied, destroy it */
362 		qfq_destroy_agg(q, agg);
363 		return;
364 	}
365 	qfq_update_agg(q, agg, agg->num_classes-1);
366 }
367 
368 /* Deschedule class and remove it from its parent aggregate. */
369 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
370 {
371 	if (cl->qdisc->q.qlen > 0) /* class is active */
372 		qfq_deactivate_class(q, cl);
373 
374 	qfq_rm_from_agg(q, cl);
375 }
376 
377 /* Move class to a new aggregate, matching the new class weight and/or lmax */
378 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
379 			   u32 lmax)
380 {
381 	struct qfq_sched *q = qdisc_priv(sch);
382 	struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
383 
384 	if (new_agg == NULL) { /* create new aggregate */
385 		new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
386 		if (new_agg == NULL)
387 			return -ENOBUFS;
388 		qfq_init_agg(q, new_agg, lmax, weight);
389 	}
390 	qfq_deact_rm_from_agg(q, cl);
391 	qfq_add_to_agg(q, new_agg, cl);
392 
393 	return 0;
394 }
395 
396 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
397 			    struct nlattr **tca, unsigned long *arg)
398 {
399 	struct qfq_sched *q = qdisc_priv(sch);
400 	struct qfq_class *cl = (struct qfq_class *)*arg;
401 	bool existing = false;
402 	struct nlattr *tb[TCA_QFQ_MAX + 1];
403 	struct qfq_aggregate *new_agg = NULL;
404 	u32 weight, lmax, inv_w;
405 	int err;
406 	int delta_w;
407 
408 	if (tca[TCA_OPTIONS] == NULL) {
409 		pr_notice("qfq: no options\n");
410 		return -EINVAL;
411 	}
412 
413 	err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
414 	if (err < 0)
415 		return err;
416 
417 	if (tb[TCA_QFQ_WEIGHT]) {
418 		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
419 		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
420 			pr_notice("qfq: invalid weight %u\n", weight);
421 			return -EINVAL;
422 		}
423 	} else
424 		weight = 1;
425 
426 	if (tb[TCA_QFQ_LMAX]) {
427 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
428 		if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
429 			pr_notice("qfq: invalid max length %u\n", lmax);
430 			return -EINVAL;
431 		}
432 	} else
433 		lmax = psched_mtu(qdisc_dev(sch));
434 
435 	inv_w = ONE_FP / weight;
436 	weight = ONE_FP / inv_w;
437 
438 	if (cl != NULL &&
439 	    lmax == cl->agg->lmax &&
440 	    weight == cl->agg->class_weight)
441 		return 0; /* nothing to change */
442 
443 	delta_w = weight - (cl ? cl->agg->class_weight : 0);
444 
445 	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
446 		pr_notice("qfq: total weight out of range (%d + %u)\n",
447 			  delta_w, q->wsum);
448 		return -EINVAL;
449 	}
450 
451 	if (cl != NULL) { /* modify existing class */
452 		if (tca[TCA_RATE]) {
453 			err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
454 						    qdisc_root_sleeping_lock(sch),
455 						    tca[TCA_RATE]);
456 			if (err)
457 				return err;
458 		}
459 		existing = true;
460 		goto set_change_agg;
461 	}
462 
463 	/* create and init new class */
464 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
465 	if (cl == NULL)
466 		return -ENOBUFS;
467 
468 	cl->refcnt = 1;
469 	cl->common.classid = classid;
470 	cl->deficit = lmax;
471 
472 	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
473 				      &pfifo_qdisc_ops, classid);
474 	if (cl->qdisc == NULL)
475 		cl->qdisc = &noop_qdisc;
476 
477 	if (tca[TCA_RATE]) {
478 		err = gen_new_estimator(&cl->bstats, &cl->rate_est,
479 					qdisc_root_sleeping_lock(sch),
480 					tca[TCA_RATE]);
481 		if (err)
482 			goto destroy_class;
483 	}
484 
485 	sch_tree_lock(sch);
486 	qdisc_class_hash_insert(&q->clhash, &cl->common);
487 	sch_tree_unlock(sch);
488 
489 	qdisc_class_hash_grow(sch, &q->clhash);
490 
491 set_change_agg:
492 	sch_tree_lock(sch);
493 	new_agg = qfq_find_agg(q, lmax, weight);
494 	if (new_agg == NULL) { /* create new aggregate */
495 		sch_tree_unlock(sch);
496 		new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
497 		if (new_agg == NULL) {
498 			err = -ENOBUFS;
499 			gen_kill_estimator(&cl->bstats, &cl->rate_est);
500 			goto destroy_class;
501 		}
502 		sch_tree_lock(sch);
503 		qfq_init_agg(q, new_agg, lmax, weight);
504 	}
505 	if (existing)
506 		qfq_deact_rm_from_agg(q, cl);
507 	qfq_add_to_agg(q, new_agg, cl);
508 	sch_tree_unlock(sch);
509 
510 	*arg = (unsigned long)cl;
511 	return 0;
512 
513 destroy_class:
514 	qdisc_destroy(cl->qdisc);
515 	kfree(cl);
516 	return err;
517 }
518 
519 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
520 {
521 	struct qfq_sched *q = qdisc_priv(sch);
522 
523 	qfq_rm_from_agg(q, cl);
524 	gen_kill_estimator(&cl->bstats, &cl->rate_est);
525 	qdisc_destroy(cl->qdisc);
526 	kfree(cl);
527 }
528 
529 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
530 {
531 	struct qfq_sched *q = qdisc_priv(sch);
532 	struct qfq_class *cl = (struct qfq_class *)arg;
533 
534 	if (cl->filter_cnt > 0)
535 		return -EBUSY;
536 
537 	sch_tree_lock(sch);
538 
539 	qfq_purge_queue(cl);
540 	qdisc_class_hash_remove(&q->clhash, &cl->common);
541 
542 	BUG_ON(--cl->refcnt == 0);
543 	/*
544 	 * This shouldn't happen: we "hold" one cops->get() when called
545 	 * from tc_ctl_tclass; the destroy method is done from cops->put().
546 	 */
547 
548 	sch_tree_unlock(sch);
549 	return 0;
550 }
551 
552 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
553 {
554 	struct qfq_class *cl = qfq_find_class(sch, classid);
555 
556 	if (cl != NULL)
557 		cl->refcnt++;
558 
559 	return (unsigned long)cl;
560 }
561 
562 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
563 {
564 	struct qfq_class *cl = (struct qfq_class *)arg;
565 
566 	if (--cl->refcnt == 0)
567 		qfq_destroy_class(sch, cl);
568 }
569 
570 static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl)
571 {
572 	struct qfq_sched *q = qdisc_priv(sch);
573 
574 	if (cl)
575 		return NULL;
576 
577 	return &q->filter_list;
578 }
579 
580 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
581 				  u32 classid)
582 {
583 	struct qfq_class *cl = qfq_find_class(sch, classid);
584 
585 	if (cl != NULL)
586 		cl->filter_cnt++;
587 
588 	return (unsigned long)cl;
589 }
590 
591 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
592 {
593 	struct qfq_class *cl = (struct qfq_class *)arg;
594 
595 	cl->filter_cnt--;
596 }
597 
598 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
599 			   struct Qdisc *new, struct Qdisc **old)
600 {
601 	struct qfq_class *cl = (struct qfq_class *)arg;
602 
603 	if (new == NULL) {
604 		new = qdisc_create_dflt(sch->dev_queue,
605 					&pfifo_qdisc_ops, cl->common.classid);
606 		if (new == NULL)
607 			new = &noop_qdisc;
608 	}
609 
610 	sch_tree_lock(sch);
611 	qfq_purge_queue(cl);
612 	*old = cl->qdisc;
613 	cl->qdisc = new;
614 	sch_tree_unlock(sch);
615 	return 0;
616 }
617 
618 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
619 {
620 	struct qfq_class *cl = (struct qfq_class *)arg;
621 
622 	return cl->qdisc;
623 }
624 
625 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
626 			  struct sk_buff *skb, struct tcmsg *tcm)
627 {
628 	struct qfq_class *cl = (struct qfq_class *)arg;
629 	struct nlattr *nest;
630 
631 	tcm->tcm_parent	= TC_H_ROOT;
632 	tcm->tcm_handle	= cl->common.classid;
633 	tcm->tcm_info	= cl->qdisc->handle;
634 
635 	nest = nla_nest_start(skb, TCA_OPTIONS);
636 	if (nest == NULL)
637 		goto nla_put_failure;
638 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
639 	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
640 		goto nla_put_failure;
641 	return nla_nest_end(skb, nest);
642 
643 nla_put_failure:
644 	nla_nest_cancel(skb, nest);
645 	return -EMSGSIZE;
646 }
647 
648 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
649 				struct gnet_dump *d)
650 {
651 	struct qfq_class *cl = (struct qfq_class *)arg;
652 	struct tc_qfq_stats xstats;
653 
654 	memset(&xstats, 0, sizeof(xstats));
655 	cl->qdisc->qstats.qlen = cl->qdisc->q.qlen;
656 
657 	xstats.weight = cl->agg->class_weight;
658 	xstats.lmax = cl->agg->lmax;
659 
660 	if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
661 	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
662 	    gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0)
663 		return -1;
664 
665 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
666 }
667 
668 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
669 {
670 	struct qfq_sched *q = qdisc_priv(sch);
671 	struct qfq_class *cl;
672 	unsigned int i;
673 
674 	if (arg->stop)
675 		return;
676 
677 	for (i = 0; i < q->clhash.hashsize; i++) {
678 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
679 			if (arg->count < arg->skip) {
680 				arg->count++;
681 				continue;
682 			}
683 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
684 				arg->stop = 1;
685 				return;
686 			}
687 			arg->count++;
688 		}
689 	}
690 }
691 
692 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
693 				      int *qerr)
694 {
695 	struct qfq_sched *q = qdisc_priv(sch);
696 	struct qfq_class *cl;
697 	struct tcf_result res;
698 	int result;
699 
700 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
701 		pr_debug("qfq_classify: found %d\n", skb->priority);
702 		cl = qfq_find_class(sch, skb->priority);
703 		if (cl != NULL)
704 			return cl;
705 	}
706 
707 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
708 	result = tc_classify(skb, q->filter_list, &res);
709 	if (result >= 0) {
710 #ifdef CONFIG_NET_CLS_ACT
711 		switch (result) {
712 		case TC_ACT_QUEUED:
713 		case TC_ACT_STOLEN:
714 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
715 		case TC_ACT_SHOT:
716 			return NULL;
717 		}
718 #endif
719 		cl = (struct qfq_class *)res.class;
720 		if (cl == NULL)
721 			cl = qfq_find_class(sch, res.classid);
722 		return cl;
723 	}
724 
725 	return NULL;
726 }
727 
728 /* Generic comparison function, handling wraparound. */
729 static inline int qfq_gt(u64 a, u64 b)
730 {
731 	return (s64)(a - b) > 0;
732 }
733 
734 /* Round a precise timestamp to its slotted value. */
735 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
736 {
737 	return ts & ~((1ULL << shift) - 1);
738 }
739 
740 /* return the pointer to the group with lowest index in the bitmap */
741 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
742 					unsigned long bitmap)
743 {
744 	int index = __ffs(bitmap);
745 	return &q->groups[index];
746 }
747 /* Calculate a mask to mimic what would be ffs_from(). */
748 static inline unsigned long mask_from(unsigned long bitmap, int from)
749 {
750 	return bitmap & ~((1UL << from) - 1);
751 }
752 
753 /*
754  * The state computation relies on ER=0, IR=1, EB=2, IB=3
755  * First compute eligibility comparing grp->S, q->V,
756  * then check if someone is blocking us and possibly add EB
757  */
758 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
759 {
760 	/* if S > V we are not eligible */
761 	unsigned int state = qfq_gt(grp->S, q->V);
762 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
763 	struct qfq_group *next;
764 
765 	if (mask) {
766 		next = qfq_ffs(q, mask);
767 		if (qfq_gt(grp->F, next->F))
768 			state |= EB;
769 	}
770 
771 	return state;
772 }
773 
774 
775 /*
776  * In principle
777  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
778  *	q->bitmaps[src] &= ~mask;
779  * but we should make sure that src != dst
780  */
781 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
782 				   int src, int dst)
783 {
784 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
785 	q->bitmaps[src] &= ~mask;
786 }
787 
788 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
789 {
790 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
791 	struct qfq_group *next;
792 
793 	if (mask) {
794 		next = qfq_ffs(q, mask);
795 		if (!qfq_gt(next->F, old_F))
796 			return;
797 	}
798 
799 	mask = (1UL << index) - 1;
800 	qfq_move_groups(q, mask, EB, ER);
801 	qfq_move_groups(q, mask, IB, IR);
802 }
803 
804 /*
805  * perhaps
806  *
807 	old_V ^= q->V;
808 	old_V >>= q->min_slot_shift;
809 	if (old_V) {
810 		...
811 	}
812  *
813  */
814 static void qfq_make_eligible(struct qfq_sched *q)
815 {
816 	unsigned long vslot = q->V >> q->min_slot_shift;
817 	unsigned long old_vslot = q->oldV >> q->min_slot_shift;
818 
819 	if (vslot != old_vslot) {
820 		unsigned long mask = (1UL << fls(vslot ^ old_vslot)) - 1;
821 		qfq_move_groups(q, mask, IR, ER);
822 		qfq_move_groups(q, mask, IB, EB);
823 	}
824 }
825 
826 
827 /*
828  * The index of the slot in which the aggregate is to be inserted must
829  * not be higher than QFQ_MAX_SLOTS-2. There is a '-2' and not a '-1'
830  * because the start time of the group may be moved backward by one
831  * slot after the aggregate has been inserted, and this would cause
832  * non-empty slots to be right-shifted by one position.
833  *
834  * If the weight and lmax (max_pkt_size) of the classes do not change,
835  * then QFQ+ does meet the above contraint according to the current
836  * values of its parameters. In fact, if the weight and lmax of the
837  * classes do not change, then, from the theory, QFQ+ guarantees that
838  * the slot index is never higher than
839  * 2 + QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
840  * (QFQ_MAX_WEIGHT/QFQ_MAX_WSUM) = 2 + 8 * 128 * (1 / 64) = 18
841  *
842  * When the weight of a class is increased or the lmax of the class is
843  * decreased, a new aggregate with smaller slot size than the original
844  * parent aggregate of the class may happen to be activated. The
845  * activation of this aggregate should be properly delayed to when the
846  * service of the class has finished in the ideal system tracked by
847  * QFQ+. If the activation of the aggregate is not delayed to this
848  * reference time instant, then this aggregate may be unjustly served
849  * before other aggregates waiting for service. This may cause the
850  * above bound to the slot index to be violated for some of these
851  * unlucky aggregates.
852  *
853  * Instead of delaying the activation of the new aggregate, which is
854  * quite complex, the following inaccurate but simple solution is used:
855  * if the slot index is higher than QFQ_MAX_SLOTS-2, then the
856  * timestamps of the aggregate are shifted backward so as to let the
857  * slot index become equal to QFQ_MAX_SLOTS-2.
858  */
859 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
860 			    u64 roundedS)
861 {
862 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
863 	unsigned int i; /* slot index in the bucket list */
864 
865 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
866 		u64 deltaS = roundedS - grp->S -
867 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
868 		agg->S -= deltaS;
869 		agg->F -= deltaS;
870 		slot = QFQ_MAX_SLOTS - 2;
871 	}
872 
873 	i = (grp->front + slot) % QFQ_MAX_SLOTS;
874 
875 	hlist_add_head(&agg->next, &grp->slots[i]);
876 	__set_bit(slot, &grp->full_slots);
877 }
878 
879 /* Maybe introduce hlist_first_entry?? */
880 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
881 {
882 	return hlist_entry(grp->slots[grp->front].first,
883 			   struct qfq_aggregate, next);
884 }
885 
886 /*
887  * remove the entry from the slot
888  */
889 static void qfq_front_slot_remove(struct qfq_group *grp)
890 {
891 	struct qfq_aggregate *agg = qfq_slot_head(grp);
892 
893 	BUG_ON(!agg);
894 	hlist_del(&agg->next);
895 	if (hlist_empty(&grp->slots[grp->front]))
896 		__clear_bit(0, &grp->full_slots);
897 }
898 
899 /*
900  * Returns the first aggregate in the first non-empty bucket of the
901  * group. As a side effect, adjusts the bucket list so the first
902  * non-empty bucket is at position 0 in full_slots.
903  */
904 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
905 {
906 	unsigned int i;
907 
908 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
909 		 grp->index, grp->full_slots);
910 
911 	if (grp->full_slots == 0)
912 		return NULL;
913 
914 	i = __ffs(grp->full_slots);  /* zero based */
915 	if (i > 0) {
916 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
917 		grp->full_slots >>= i;
918 	}
919 
920 	return qfq_slot_head(grp);
921 }
922 
923 /*
924  * adjust the bucket list. When the start time of a group decreases,
925  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
926  * move the objects. The mask of occupied slots must be shifted
927  * because we use ffs() to find the first non-empty slot.
928  * This covers decreases in the group's start time, but what about
929  * increases of the start time ?
930  * Here too we should make sure that i is less than 32
931  */
932 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
933 {
934 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
935 
936 	grp->full_slots <<= i;
937 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
938 }
939 
940 static void qfq_update_eligible(struct qfq_sched *q)
941 {
942 	struct qfq_group *grp;
943 	unsigned long ineligible;
944 
945 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
946 	if (ineligible) {
947 		if (!q->bitmaps[ER]) {
948 			grp = qfq_ffs(q, ineligible);
949 			if (qfq_gt(grp->S, q->V))
950 				q->V = grp->S;
951 		}
952 		qfq_make_eligible(q);
953 	}
954 }
955 
956 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
957 static void agg_dequeue(struct qfq_aggregate *agg,
958 			struct qfq_class *cl, unsigned int len)
959 {
960 	qdisc_dequeue_peeked(cl->qdisc);
961 
962 	cl->deficit -= (int) len;
963 
964 	if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
965 		list_del(&cl->alist);
966 	else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
967 		cl->deficit += agg->lmax;
968 		list_move_tail(&cl->alist, &agg->active);
969 	}
970 }
971 
972 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
973 					   struct qfq_class **cl,
974 					   unsigned int *len)
975 {
976 	struct sk_buff *skb;
977 
978 	*cl = list_first_entry(&agg->active, struct qfq_class, alist);
979 	skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
980 	if (skb == NULL)
981 		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
982 	else
983 		*len = qdisc_pkt_len(skb);
984 
985 	return skb;
986 }
987 
988 /* Update F according to the actual service received by the aggregate. */
989 static inline void charge_actual_service(struct qfq_aggregate *agg)
990 {
991 	/* compute the service received by the aggregate */
992 	u32 service_received = agg->initial_budget - agg->budget;
993 
994 	agg->F = agg->S + (u64)service_received * agg->inv_w;
995 }
996 
997 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
998 {
999 	struct qfq_sched *q = qdisc_priv(sch);
1000 	struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1001 	struct qfq_class *cl;
1002 	struct sk_buff *skb = NULL;
1003 	/* next-packet len, 0 means no more active classes in in-service agg */
1004 	unsigned int len = 0;
1005 
1006 	if (in_serv_agg == NULL)
1007 		return NULL;
1008 
1009 	if (!list_empty(&in_serv_agg->active))
1010 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1011 
1012 	/*
1013 	 * If there are no active classes in the in-service aggregate,
1014 	 * or if the aggregate has not enough budget to serve its next
1015 	 * class, then choose the next aggregate to serve.
1016 	 */
1017 	if (len == 0 || in_serv_agg->budget < len) {
1018 		charge_actual_service(in_serv_agg);
1019 
1020 		/* recharge the budget of the aggregate */
1021 		in_serv_agg->initial_budget = in_serv_agg->budget =
1022 			in_serv_agg->budgetmax;
1023 
1024 		if (!list_empty(&in_serv_agg->active))
1025 			/*
1026 			 * Still active: reschedule for
1027 			 * service. Possible optimization: if no other
1028 			 * aggregate is active, then there is no point
1029 			 * in rescheduling this aggregate, and we can
1030 			 * just keep it as the in-service one. This
1031 			 * should be however a corner case, and to
1032 			 * handle it, we would need to maintain an
1033 			 * extra num_active_aggs field.
1034 			*/
1035 			qfq_activate_agg(q, in_serv_agg, requeue);
1036 		else if (sch->q.qlen == 0) { /* no aggregate to serve */
1037 			q->in_serv_agg = NULL;
1038 			return NULL;
1039 		}
1040 
1041 		/*
1042 		 * If we get here, there are other aggregates queued:
1043 		 * choose the new aggregate to serve.
1044 		 */
1045 		in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1046 		skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1047 	}
1048 	if (!skb)
1049 		return NULL;
1050 
1051 	sch->q.qlen--;
1052 	qdisc_bstats_update(sch, skb);
1053 
1054 	agg_dequeue(in_serv_agg, cl, len);
1055 	in_serv_agg->budget -= len;
1056 	q->V += (u64)len * IWSUM;
1057 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1058 		 len, (unsigned long long) in_serv_agg->F,
1059 		 (unsigned long long) q->V);
1060 
1061 	return skb;
1062 }
1063 
1064 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1065 {
1066 	struct qfq_group *grp;
1067 	struct qfq_aggregate *agg, *new_front_agg;
1068 	u64 old_F;
1069 
1070 	qfq_update_eligible(q);
1071 	q->oldV = q->V;
1072 
1073 	if (!q->bitmaps[ER])
1074 		return NULL;
1075 
1076 	grp = qfq_ffs(q, q->bitmaps[ER]);
1077 	old_F = grp->F;
1078 
1079 	agg = qfq_slot_head(grp);
1080 
1081 	/* agg starts to be served, remove it from schedule */
1082 	qfq_front_slot_remove(grp);
1083 
1084 	new_front_agg = qfq_slot_scan(grp);
1085 
1086 	if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1087 		__clear_bit(grp->index, &q->bitmaps[ER]);
1088 	else {
1089 		u64 roundedS = qfq_round_down(new_front_agg->S,
1090 					      grp->slot_shift);
1091 		unsigned int s;
1092 
1093 		if (grp->S == roundedS)
1094 			return agg;
1095 		grp->S = roundedS;
1096 		grp->F = roundedS + (2ULL << grp->slot_shift);
1097 		__clear_bit(grp->index, &q->bitmaps[ER]);
1098 		s = qfq_calc_state(q, grp);
1099 		__set_bit(grp->index, &q->bitmaps[s]);
1100 	}
1101 
1102 	qfq_unblock_groups(q, grp->index, old_F);
1103 
1104 	return agg;
1105 }
1106 
1107 /*
1108  * Assign a reasonable start time for a new aggregate in group i.
1109  * Admissible values for \hat(F) are multiples of \sigma_i
1110  * no greater than V+\sigma_i . Larger values mean that
1111  * we had a wraparound so we consider the timestamp to be stale.
1112  *
1113  * If F is not stale and F >= V then we set S = F.
1114  * Otherwise we should assign S = V, but this may violate
1115  * the ordering in EB (see [2]). So, if we have groups in ER,
1116  * set S to the F_j of the first group j which would be blocking us.
1117  * We are guaranteed not to move S backward because
1118  * otherwise our group i would still be blocked.
1119  */
1120 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1121 {
1122 	unsigned long mask;
1123 	u64 limit, roundedF;
1124 	int slot_shift = agg->grp->slot_shift;
1125 
1126 	roundedF = qfq_round_down(agg->F, slot_shift);
1127 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1128 
1129 	if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1130 		/* timestamp was stale */
1131 		mask = mask_from(q->bitmaps[ER], agg->grp->index);
1132 		if (mask) {
1133 			struct qfq_group *next = qfq_ffs(q, mask);
1134 			if (qfq_gt(roundedF, next->F)) {
1135 				if (qfq_gt(limit, next->F))
1136 					agg->S = next->F;
1137 				else /* preserve timestamp correctness */
1138 					agg->S = limit;
1139 				return;
1140 			}
1141 		}
1142 		agg->S = q->V;
1143 	} else  /* timestamp is not stale */
1144 		agg->S = agg->F;
1145 }
1146 
1147 /*
1148  * Update the timestamps of agg before scheduling/rescheduling it for
1149  * service.  In particular, assign to agg->F its maximum possible
1150  * value, i.e., the virtual finish time with which the aggregate
1151  * should be labeled if it used all its budget once in service.
1152  */
1153 static inline void
1154 qfq_update_agg_ts(struct qfq_sched *q,
1155 		    struct qfq_aggregate *agg, enum update_reason reason)
1156 {
1157 	if (reason != requeue)
1158 		qfq_update_start(q, agg);
1159 	else /* just charge agg for the service received */
1160 		agg->S = agg->F;
1161 
1162 	agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1163 }
1164 
1165 static void qfq_schedule_agg(struct qfq_sched *, struct qfq_aggregate *);
1166 
1167 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1168 {
1169 	struct qfq_sched *q = qdisc_priv(sch);
1170 	struct qfq_class *cl;
1171 	struct qfq_aggregate *agg;
1172 	int err = 0;
1173 
1174 	cl = qfq_classify(skb, sch, &err);
1175 	if (cl == NULL) {
1176 		if (err & __NET_XMIT_BYPASS)
1177 			sch->qstats.drops++;
1178 		kfree_skb(skb);
1179 		return err;
1180 	}
1181 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1182 
1183 	if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1184 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1185 			 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1186 		err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1187 				     qdisc_pkt_len(skb));
1188 		if (err)
1189 			return err;
1190 	}
1191 
1192 	err = qdisc_enqueue(skb, cl->qdisc);
1193 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1194 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1195 		if (net_xmit_drop_count(err)) {
1196 			cl->qstats.drops++;
1197 			sch->qstats.drops++;
1198 		}
1199 		return err;
1200 	}
1201 
1202 	bstats_update(&cl->bstats, skb);
1203 	++sch->q.qlen;
1204 
1205 	agg = cl->agg;
1206 	/* if the queue was not empty, then done here */
1207 	if (cl->qdisc->q.qlen != 1) {
1208 		if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1209 		    list_first_entry(&agg->active, struct qfq_class, alist)
1210 		    == cl && cl->deficit < qdisc_pkt_len(skb))
1211 			list_move_tail(&cl->alist, &agg->active);
1212 
1213 		return err;
1214 	}
1215 
1216 	/* schedule class for service within the aggregate */
1217 	cl->deficit = agg->lmax;
1218 	list_add_tail(&cl->alist, &agg->active);
1219 
1220 	if (list_first_entry(&agg->active, struct qfq_class, alist) != cl)
1221 		return err; /* aggregate was not empty, nothing else to do */
1222 
1223 	/* recharge budget */
1224 	agg->initial_budget = agg->budget = agg->budgetmax;
1225 
1226 	qfq_update_agg_ts(q, agg, enqueue);
1227 	if (q->in_serv_agg == NULL)
1228 		q->in_serv_agg = agg;
1229 	else if (agg != q->in_serv_agg)
1230 		qfq_schedule_agg(q, agg);
1231 
1232 	return err;
1233 }
1234 
1235 /*
1236  * Schedule aggregate according to its timestamps.
1237  */
1238 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1239 {
1240 	struct qfq_group *grp = agg->grp;
1241 	u64 roundedS;
1242 	int s;
1243 
1244 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1245 
1246 	/*
1247 	 * Insert agg in the correct bucket.
1248 	 * If agg->S >= grp->S we don't need to adjust the
1249 	 * bucket list and simply go to the insertion phase.
1250 	 * Otherwise grp->S is decreasing, we must make room
1251 	 * in the bucket list, and also recompute the group state.
1252 	 * Finally, if there were no flows in this group and nobody
1253 	 * was in ER make sure to adjust V.
1254 	 */
1255 	if (grp->full_slots) {
1256 		if (!qfq_gt(grp->S, agg->S))
1257 			goto skip_update;
1258 
1259 		/* create a slot for this agg->S */
1260 		qfq_slot_rotate(grp, roundedS);
1261 		/* group was surely ineligible, remove */
1262 		__clear_bit(grp->index, &q->bitmaps[IR]);
1263 		__clear_bit(grp->index, &q->bitmaps[IB]);
1264 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
1265 		q->V = roundedS;
1266 
1267 	grp->S = roundedS;
1268 	grp->F = roundedS + (2ULL << grp->slot_shift);
1269 	s = qfq_calc_state(q, grp);
1270 	__set_bit(grp->index, &q->bitmaps[s]);
1271 
1272 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1273 		 s, q->bitmaps[s],
1274 		 (unsigned long long) agg->S,
1275 		 (unsigned long long) agg->F,
1276 		 (unsigned long long) q->V);
1277 
1278 skip_update:
1279 	qfq_slot_insert(grp, agg, roundedS);
1280 }
1281 
1282 
1283 /* Update agg ts and schedule agg for service */
1284 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1285 			     enum update_reason reason)
1286 {
1287 	qfq_update_agg_ts(q, agg, reason);
1288 	qfq_schedule_agg(q, agg);
1289 }
1290 
1291 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1292 			    struct qfq_aggregate *agg)
1293 {
1294 	unsigned int i, offset;
1295 	u64 roundedS;
1296 
1297 	roundedS = qfq_round_down(agg->S, grp->slot_shift);
1298 	offset = (roundedS - grp->S) >> grp->slot_shift;
1299 
1300 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1301 
1302 	hlist_del(&agg->next);
1303 	if (hlist_empty(&grp->slots[i]))
1304 		__clear_bit(offset, &grp->full_slots);
1305 }
1306 
1307 /*
1308  * Called to forcibly deschedule an aggregate.  If the aggregate is
1309  * not in the front bucket, or if the latter has other aggregates in
1310  * the front bucket, we can simply remove the aggregate with no other
1311  * side effects.
1312  * Otherwise we must propagate the event up.
1313  */
1314 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1315 {
1316 	struct qfq_group *grp = agg->grp;
1317 	unsigned long mask;
1318 	u64 roundedS;
1319 	int s;
1320 
1321 	if (agg == q->in_serv_agg) {
1322 		charge_actual_service(agg);
1323 		q->in_serv_agg = qfq_choose_next_agg(q);
1324 		return;
1325 	}
1326 
1327 	agg->F = agg->S;
1328 	qfq_slot_remove(q, grp, agg);
1329 
1330 	if (!grp->full_slots) {
1331 		__clear_bit(grp->index, &q->bitmaps[IR]);
1332 		__clear_bit(grp->index, &q->bitmaps[EB]);
1333 		__clear_bit(grp->index, &q->bitmaps[IB]);
1334 
1335 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1336 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1337 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1338 			if (mask)
1339 				mask = ~((1UL << __fls(mask)) - 1);
1340 			else
1341 				mask = ~0UL;
1342 			qfq_move_groups(q, mask, EB, ER);
1343 			qfq_move_groups(q, mask, IB, IR);
1344 		}
1345 		__clear_bit(grp->index, &q->bitmaps[ER]);
1346 	} else if (hlist_empty(&grp->slots[grp->front])) {
1347 		agg = qfq_slot_scan(grp);
1348 		roundedS = qfq_round_down(agg->S, grp->slot_shift);
1349 		if (grp->S != roundedS) {
1350 			__clear_bit(grp->index, &q->bitmaps[ER]);
1351 			__clear_bit(grp->index, &q->bitmaps[IR]);
1352 			__clear_bit(grp->index, &q->bitmaps[EB]);
1353 			__clear_bit(grp->index, &q->bitmaps[IB]);
1354 			grp->S = roundedS;
1355 			grp->F = roundedS + (2ULL << grp->slot_shift);
1356 			s = qfq_calc_state(q, grp);
1357 			__set_bit(grp->index, &q->bitmaps[s]);
1358 		}
1359 	}
1360 
1361 	qfq_update_eligible(q);
1362 }
1363 
1364 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1365 {
1366 	struct qfq_sched *q = qdisc_priv(sch);
1367 	struct qfq_class *cl = (struct qfq_class *)arg;
1368 
1369 	if (cl->qdisc->q.qlen == 0)
1370 		qfq_deactivate_class(q, cl);
1371 }
1372 
1373 static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1374 				       struct hlist_head *slot)
1375 {
1376 	struct qfq_aggregate *agg;
1377 	struct qfq_class *cl;
1378 	unsigned int len;
1379 
1380 	hlist_for_each_entry(agg, slot, next) {
1381 		list_for_each_entry(cl, &agg->active, alist) {
1382 
1383 			if (!cl->qdisc->ops->drop)
1384 				continue;
1385 
1386 			len = cl->qdisc->ops->drop(cl->qdisc);
1387 			if (len > 0) {
1388 				if (cl->qdisc->q.qlen == 0)
1389 					qfq_deactivate_class(q, cl);
1390 
1391 				return len;
1392 			}
1393 		}
1394 	}
1395 	return 0;
1396 }
1397 
1398 static unsigned int qfq_drop(struct Qdisc *sch)
1399 {
1400 	struct qfq_sched *q = qdisc_priv(sch);
1401 	struct qfq_group *grp;
1402 	unsigned int i, j, len;
1403 
1404 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1405 		grp = &q->groups[i];
1406 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1407 			len = qfq_drop_from_slot(q, &grp->slots[j]);
1408 			if (len > 0) {
1409 				sch->q.qlen--;
1410 				return len;
1411 			}
1412 		}
1413 
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1420 {
1421 	struct qfq_sched *q = qdisc_priv(sch);
1422 	struct qfq_group *grp;
1423 	int i, j, err;
1424 	u32 max_cl_shift, maxbudg_shift, max_classes;
1425 
1426 	err = qdisc_class_hash_init(&q->clhash);
1427 	if (err < 0)
1428 		return err;
1429 
1430 	if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1431 		max_classes = QFQ_MAX_AGG_CLASSES;
1432 	else
1433 		max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1434 	/* max_cl_shift = floor(log_2(max_classes)) */
1435 	max_cl_shift = __fls(max_classes);
1436 	q->max_agg_classes = 1<<max_cl_shift;
1437 
1438 	/* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1439 	maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1440 	q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1441 
1442 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1443 		grp = &q->groups[i];
1444 		grp->index = i;
1445 		grp->slot_shift = q->min_slot_shift + i;
1446 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1447 			INIT_HLIST_HEAD(&grp->slots[j]);
1448 	}
1449 
1450 	INIT_HLIST_HEAD(&q->nonfull_aggs);
1451 
1452 	return 0;
1453 }
1454 
1455 static void qfq_reset_qdisc(struct Qdisc *sch)
1456 {
1457 	struct qfq_sched *q = qdisc_priv(sch);
1458 	struct qfq_class *cl;
1459 	unsigned int i;
1460 
1461 	for (i = 0; i < q->clhash.hashsize; i++) {
1462 		hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1463 			if (cl->qdisc->q.qlen > 0)
1464 				qfq_deactivate_class(q, cl);
1465 
1466 			qdisc_reset(cl->qdisc);
1467 		}
1468 	}
1469 	sch->q.qlen = 0;
1470 }
1471 
1472 static void qfq_destroy_qdisc(struct Qdisc *sch)
1473 {
1474 	struct qfq_sched *q = qdisc_priv(sch);
1475 	struct qfq_class *cl;
1476 	struct hlist_node *next;
1477 	unsigned int i;
1478 
1479 	tcf_destroy_chain(&q->filter_list);
1480 
1481 	for (i = 0; i < q->clhash.hashsize; i++) {
1482 		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1483 					  common.hnode) {
1484 			qfq_destroy_class(sch, cl);
1485 		}
1486 	}
1487 	qdisc_class_hash_destroy(&q->clhash);
1488 }
1489 
1490 static const struct Qdisc_class_ops qfq_class_ops = {
1491 	.change		= qfq_change_class,
1492 	.delete		= qfq_delete_class,
1493 	.get		= qfq_get_class,
1494 	.put		= qfq_put_class,
1495 	.tcf_chain	= qfq_tcf_chain,
1496 	.bind_tcf	= qfq_bind_tcf,
1497 	.unbind_tcf	= qfq_unbind_tcf,
1498 	.graft		= qfq_graft_class,
1499 	.leaf		= qfq_class_leaf,
1500 	.qlen_notify	= qfq_qlen_notify,
1501 	.dump		= qfq_dump_class,
1502 	.dump_stats	= qfq_dump_class_stats,
1503 	.walk		= qfq_walk,
1504 };
1505 
1506 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1507 	.cl_ops		= &qfq_class_ops,
1508 	.id		= "qfq",
1509 	.priv_size	= sizeof(struct qfq_sched),
1510 	.enqueue	= qfq_enqueue,
1511 	.dequeue	= qfq_dequeue,
1512 	.peek		= qdisc_peek_dequeued,
1513 	.drop		= qfq_drop,
1514 	.init		= qfq_init_qdisc,
1515 	.reset		= qfq_reset_qdisc,
1516 	.destroy	= qfq_destroy_qdisc,
1517 	.owner		= THIS_MODULE,
1518 };
1519 
1520 static int __init qfq_init(void)
1521 {
1522 	return register_qdisc(&qfq_qdisc_ops);
1523 }
1524 
1525 static void __exit qfq_exit(void)
1526 {
1527 	unregister_qdisc(&qfq_qdisc_ops);
1528 }
1529 
1530 module_init(qfq_init);
1531 module_exit(qfq_exit);
1532 MODULE_LICENSE("GPL");
1533