xref: /openbmc/linux/net/sched/sch_qfq.c (revision 7fe2f639)
1 /*
2  * net/sched/sch_qfq.c         Quick Fair Queueing Scheduler.
3  *
4  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 as published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/bitops.h>
14 #include <linux/errno.h>
15 #include <linux/netdevice.h>
16 #include <linux/pkt_sched.h>
17 #include <net/sch_generic.h>
18 #include <net/pkt_sched.h>
19 #include <net/pkt_cls.h>
20 
21 
22 /*  Quick Fair Queueing
23     ===================
24 
25     Sources:
26 
27     Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
28     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
29 
30     See also:
31     http://retis.sssup.it/~fabio/linux/qfq/
32  */
33 
34 /*
35 
36   Virtual time computations.
37 
38   S, F and V are all computed in fixed point arithmetic with
39   FRAC_BITS decimal bits.
40 
41   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
42 	one bit per index.
43   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
44 
45   The layout of the bits is as below:
46 
47                    [ MTU_SHIFT ][      FRAC_BITS    ]
48                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
49 				 ^.__grp->index = 0
50 				 *.__grp->slot_shift
51 
52   where MIN_SLOT_SHIFT is derived by difference from the others.
53 
54   The max group index corresponds to Lmax/w_min, where
55   Lmax=1<<MTU_SHIFT, w_min = 1 .
56   From this, and knowing how many groups (MAX_INDEX) we want,
57   we can derive the shift corresponding to each group.
58 
59   Because we often need to compute
60 	F = S + len/w_i  and V = V + len/wsum
61   instead of storing w_i store the value
62 	inv_w = (1<<FRAC_BITS)/w_i
63   so we can do F = S + len * inv_w * wsum.
64   We use W_TOT in the formulas so we can easily move between
65   static and adaptive weight sum.
66 
67   The per-scheduler-instance data contain all the data structures
68   for the scheduler: bitmaps and bucket lists.
69 
70  */
71 
72 /*
73  * Maximum number of consecutive slots occupied by backlogged classes
74  * inside a group.
75  */
76 #define QFQ_MAX_SLOTS	32
77 
78 /*
79  * Shifts used for class<->group mapping.  We allow class weights that are
80  * in the range [1, 2^MAX_WSHIFT], and we try to map each class i to the
81  * group with the smallest index that can support the L_i / r_i configured
82  * for the class.
83  *
84  * grp->index is the index of the group; and grp->slot_shift
85  * is the shift for the corresponding (scaled) sigma_i.
86  */
87 #define QFQ_MAX_INDEX		19
88 #define QFQ_MAX_WSHIFT		16
89 
90 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT)
91 #define QFQ_MAX_WSUM		(2*QFQ_MAX_WEIGHT)
92 
93 #define FRAC_BITS		30	/* fixed point arithmetic */
94 #define ONE_FP			(1UL << FRAC_BITS)
95 #define IWSUM			(ONE_FP/QFQ_MAX_WSUM)
96 
97 #define QFQ_MTU_SHIFT		11
98 #define QFQ_MIN_SLOT_SHIFT	(FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
99 
100 /*
101  * Possible group states.  These values are used as indexes for the bitmaps
102  * array of struct qfq_queue.
103  */
104 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
105 
106 struct qfq_group;
107 
108 struct qfq_class {
109 	struct Qdisc_class_common common;
110 
111 	unsigned int refcnt;
112 	unsigned int filter_cnt;
113 
114 	struct gnet_stats_basic_packed bstats;
115 	struct gnet_stats_queue qstats;
116 	struct gnet_stats_rate_est rate_est;
117 	struct Qdisc *qdisc;
118 
119 	struct hlist_node next;	/* Link for the slot list. */
120 	u64 S, F;		/* flow timestamps (exact) */
121 
122 	/* group we belong to. In principle we would need the index,
123 	 * which is log_2(lmax/weight), but we never reference it
124 	 * directly, only the group.
125 	 */
126 	struct qfq_group *grp;
127 
128 	/* these are copied from the flowset. */
129 	u32	inv_w;		/* ONE_FP/weight */
130 	u32	lmax;		/* Max packet size for this flow. */
131 };
132 
133 struct qfq_group {
134 	u64 S, F;			/* group timestamps (approx). */
135 	unsigned int slot_shift;	/* Slot shift. */
136 	unsigned int index;		/* Group index. */
137 	unsigned int front;		/* Index of the front slot. */
138 	unsigned long full_slots;	/* non-empty slots */
139 
140 	/* Array of RR lists of active classes. */
141 	struct hlist_head slots[QFQ_MAX_SLOTS];
142 };
143 
144 struct qfq_sched {
145 	struct tcf_proto *filter_list;
146 	struct Qdisc_class_hash clhash;
147 
148 	u64		V;		/* Precise virtual time. */
149 	u32		wsum;		/* weight sum */
150 
151 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
152 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
153 };
154 
155 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
156 {
157 	struct qfq_sched *q = qdisc_priv(sch);
158 	struct Qdisc_class_common *clc;
159 
160 	clc = qdisc_class_find(&q->clhash, classid);
161 	if (clc == NULL)
162 		return NULL;
163 	return container_of(clc, struct qfq_class, common);
164 }
165 
166 static void qfq_purge_queue(struct qfq_class *cl)
167 {
168 	unsigned int len = cl->qdisc->q.qlen;
169 
170 	qdisc_reset(cl->qdisc);
171 	qdisc_tree_decrease_qlen(cl->qdisc, len);
172 }
173 
174 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
175 	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
176 	[TCA_QFQ_LMAX] = { .type = NLA_U32 },
177 };
178 
179 /*
180  * Calculate a flow index, given its weight and maximum packet length.
181  * index = log_2(maxlen/weight) but we need to apply the scaling.
182  * This is used only once at flow creation.
183  */
184 static int qfq_calc_index(u32 inv_w, unsigned int maxlen)
185 {
186 	u64 slot_size = (u64)maxlen * inv_w;
187 	unsigned long size_map;
188 	int index = 0;
189 
190 	size_map = slot_size >> QFQ_MIN_SLOT_SHIFT;
191 	if (!size_map)
192 		goto out;
193 
194 	index = __fls(size_map) + 1;	/* basically a log_2 */
195 	index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
196 
197 	if (index < 0)
198 		index = 0;
199 out:
200 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
201 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
202 
203 	return index;
204 }
205 
206 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
207 			    struct nlattr **tca, unsigned long *arg)
208 {
209 	struct qfq_sched *q = qdisc_priv(sch);
210 	struct qfq_class *cl = (struct qfq_class *)*arg;
211 	struct nlattr *tb[TCA_QFQ_MAX + 1];
212 	u32 weight, lmax, inv_w;
213 	int i, err;
214 
215 	if (tca[TCA_OPTIONS] == NULL) {
216 		pr_notice("qfq: no options\n");
217 		return -EINVAL;
218 	}
219 
220 	err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
221 	if (err < 0)
222 		return err;
223 
224 	if (tb[TCA_QFQ_WEIGHT]) {
225 		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
226 		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
227 			pr_notice("qfq: invalid weight %u\n", weight);
228 			return -EINVAL;
229 		}
230 	} else
231 		weight = 1;
232 
233 	inv_w = ONE_FP / weight;
234 	weight = ONE_FP / inv_w;
235 	if (q->wsum + weight > QFQ_MAX_WSUM) {
236 		pr_notice("qfq: total weight out of range (%u + %u)\n",
237 			  weight, q->wsum);
238 		return -EINVAL;
239 	}
240 
241 	if (tb[TCA_QFQ_LMAX]) {
242 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
243 		if (!lmax || lmax > (1UL << QFQ_MTU_SHIFT)) {
244 			pr_notice("qfq: invalid max length %u\n", lmax);
245 			return -EINVAL;
246 		}
247 	} else
248 		lmax = 1UL << QFQ_MTU_SHIFT;
249 
250 	if (cl != NULL) {
251 		if (tca[TCA_RATE]) {
252 			err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
253 						    qdisc_root_sleeping_lock(sch),
254 						    tca[TCA_RATE]);
255 			if (err)
256 				return err;
257 		}
258 
259 		sch_tree_lock(sch);
260 		if (tb[TCA_QFQ_WEIGHT]) {
261 			q->wsum = weight - ONE_FP / cl->inv_w;
262 			cl->inv_w = inv_w;
263 		}
264 		sch_tree_unlock(sch);
265 
266 		return 0;
267 	}
268 
269 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
270 	if (cl == NULL)
271 		return -ENOBUFS;
272 
273 	cl->refcnt = 1;
274 	cl->common.classid = classid;
275 	cl->lmax = lmax;
276 	cl->inv_w = inv_w;
277 	i = qfq_calc_index(cl->inv_w, cl->lmax);
278 
279 	cl->grp = &q->groups[i];
280 	q->wsum += weight;
281 
282 	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
283 				      &pfifo_qdisc_ops, classid);
284 	if (cl->qdisc == NULL)
285 		cl->qdisc = &noop_qdisc;
286 
287 	if (tca[TCA_RATE]) {
288 		err = gen_new_estimator(&cl->bstats, &cl->rate_est,
289 					qdisc_root_sleeping_lock(sch),
290 					tca[TCA_RATE]);
291 		if (err) {
292 			qdisc_destroy(cl->qdisc);
293 			kfree(cl);
294 			return err;
295 		}
296 	}
297 
298 	sch_tree_lock(sch);
299 	qdisc_class_hash_insert(&q->clhash, &cl->common);
300 	sch_tree_unlock(sch);
301 
302 	qdisc_class_hash_grow(sch, &q->clhash);
303 
304 	*arg = (unsigned long)cl;
305 	return 0;
306 }
307 
308 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
309 {
310 	struct qfq_sched *q = qdisc_priv(sch);
311 
312 	if (cl->inv_w) {
313 		q->wsum -= ONE_FP / cl->inv_w;
314 		cl->inv_w = 0;
315 	}
316 
317 	gen_kill_estimator(&cl->bstats, &cl->rate_est);
318 	qdisc_destroy(cl->qdisc);
319 	kfree(cl);
320 }
321 
322 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
323 {
324 	struct qfq_sched *q = qdisc_priv(sch);
325 	struct qfq_class *cl = (struct qfq_class *)arg;
326 
327 	if (cl->filter_cnt > 0)
328 		return -EBUSY;
329 
330 	sch_tree_lock(sch);
331 
332 	qfq_purge_queue(cl);
333 	qdisc_class_hash_remove(&q->clhash, &cl->common);
334 
335 	BUG_ON(--cl->refcnt == 0);
336 	/*
337 	 * This shouldn't happen: we "hold" one cops->get() when called
338 	 * from tc_ctl_tclass; the destroy method is done from cops->put().
339 	 */
340 
341 	sch_tree_unlock(sch);
342 	return 0;
343 }
344 
345 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
346 {
347 	struct qfq_class *cl = qfq_find_class(sch, classid);
348 
349 	if (cl != NULL)
350 		cl->refcnt++;
351 
352 	return (unsigned long)cl;
353 }
354 
355 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
356 {
357 	struct qfq_class *cl = (struct qfq_class *)arg;
358 
359 	if (--cl->refcnt == 0)
360 		qfq_destroy_class(sch, cl);
361 }
362 
363 static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl)
364 {
365 	struct qfq_sched *q = qdisc_priv(sch);
366 
367 	if (cl)
368 		return NULL;
369 
370 	return &q->filter_list;
371 }
372 
373 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
374 				  u32 classid)
375 {
376 	struct qfq_class *cl = qfq_find_class(sch, classid);
377 
378 	if (cl != NULL)
379 		cl->filter_cnt++;
380 
381 	return (unsigned long)cl;
382 }
383 
384 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
385 {
386 	struct qfq_class *cl = (struct qfq_class *)arg;
387 
388 	cl->filter_cnt--;
389 }
390 
391 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
392 			   struct Qdisc *new, struct Qdisc **old)
393 {
394 	struct qfq_class *cl = (struct qfq_class *)arg;
395 
396 	if (new == NULL) {
397 		new = qdisc_create_dflt(sch->dev_queue,
398 					&pfifo_qdisc_ops, cl->common.classid);
399 		if (new == NULL)
400 			new = &noop_qdisc;
401 	}
402 
403 	sch_tree_lock(sch);
404 	qfq_purge_queue(cl);
405 	*old = cl->qdisc;
406 	cl->qdisc = new;
407 	sch_tree_unlock(sch);
408 	return 0;
409 }
410 
411 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
412 {
413 	struct qfq_class *cl = (struct qfq_class *)arg;
414 
415 	return cl->qdisc;
416 }
417 
418 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
419 			  struct sk_buff *skb, struct tcmsg *tcm)
420 {
421 	struct qfq_class *cl = (struct qfq_class *)arg;
422 	struct nlattr *nest;
423 
424 	tcm->tcm_parent	= TC_H_ROOT;
425 	tcm->tcm_handle	= cl->common.classid;
426 	tcm->tcm_info	= cl->qdisc->handle;
427 
428 	nest = nla_nest_start(skb, TCA_OPTIONS);
429 	if (nest == NULL)
430 		goto nla_put_failure;
431 	NLA_PUT_U32(skb, TCA_QFQ_WEIGHT, ONE_FP/cl->inv_w);
432 	NLA_PUT_U32(skb, TCA_QFQ_LMAX, cl->lmax);
433 	return nla_nest_end(skb, nest);
434 
435 nla_put_failure:
436 	nla_nest_cancel(skb, nest);
437 	return -EMSGSIZE;
438 }
439 
440 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
441 				struct gnet_dump *d)
442 {
443 	struct qfq_class *cl = (struct qfq_class *)arg;
444 	struct tc_qfq_stats xstats;
445 
446 	memset(&xstats, 0, sizeof(xstats));
447 	cl->qdisc->qstats.qlen = cl->qdisc->q.qlen;
448 
449 	xstats.weight = ONE_FP/cl->inv_w;
450 	xstats.lmax = cl->lmax;
451 
452 	if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
453 	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
454 	    gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0)
455 		return -1;
456 
457 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
458 }
459 
460 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
461 {
462 	struct qfq_sched *q = qdisc_priv(sch);
463 	struct qfq_class *cl;
464 	struct hlist_node *n;
465 	unsigned int i;
466 
467 	if (arg->stop)
468 		return;
469 
470 	for (i = 0; i < q->clhash.hashsize; i++) {
471 		hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) {
472 			if (arg->count < arg->skip) {
473 				arg->count++;
474 				continue;
475 			}
476 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
477 				arg->stop = 1;
478 				return;
479 			}
480 			arg->count++;
481 		}
482 	}
483 }
484 
485 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
486 				      int *qerr)
487 {
488 	struct qfq_sched *q = qdisc_priv(sch);
489 	struct qfq_class *cl;
490 	struct tcf_result res;
491 	int result;
492 
493 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
494 		pr_debug("qfq_classify: found %d\n", skb->priority);
495 		cl = qfq_find_class(sch, skb->priority);
496 		if (cl != NULL)
497 			return cl;
498 	}
499 
500 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
501 	result = tc_classify(skb, q->filter_list, &res);
502 	if (result >= 0) {
503 #ifdef CONFIG_NET_CLS_ACT
504 		switch (result) {
505 		case TC_ACT_QUEUED:
506 		case TC_ACT_STOLEN:
507 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
508 		case TC_ACT_SHOT:
509 			return NULL;
510 		}
511 #endif
512 		cl = (struct qfq_class *)res.class;
513 		if (cl == NULL)
514 			cl = qfq_find_class(sch, res.classid);
515 		return cl;
516 	}
517 
518 	return NULL;
519 }
520 
521 /* Generic comparison function, handling wraparound. */
522 static inline int qfq_gt(u64 a, u64 b)
523 {
524 	return (s64)(a - b) > 0;
525 }
526 
527 /* Round a precise timestamp to its slotted value. */
528 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
529 {
530 	return ts & ~((1ULL << shift) - 1);
531 }
532 
533 /* return the pointer to the group with lowest index in the bitmap */
534 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
535 					unsigned long bitmap)
536 {
537 	int index = __ffs(bitmap);
538 	return &q->groups[index];
539 }
540 /* Calculate a mask to mimic what would be ffs_from(). */
541 static inline unsigned long mask_from(unsigned long bitmap, int from)
542 {
543 	return bitmap & ~((1UL << from) - 1);
544 }
545 
546 /*
547  * The state computation relies on ER=0, IR=1, EB=2, IB=3
548  * First compute eligibility comparing grp->S, q->V,
549  * then check if someone is blocking us and possibly add EB
550  */
551 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
552 {
553 	/* if S > V we are not eligible */
554 	unsigned int state = qfq_gt(grp->S, q->V);
555 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
556 	struct qfq_group *next;
557 
558 	if (mask) {
559 		next = qfq_ffs(q, mask);
560 		if (qfq_gt(grp->F, next->F))
561 			state |= EB;
562 	}
563 
564 	return state;
565 }
566 
567 
568 /*
569  * In principle
570  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
571  *	q->bitmaps[src] &= ~mask;
572  * but we should make sure that src != dst
573  */
574 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
575 				   int src, int dst)
576 {
577 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
578 	q->bitmaps[src] &= ~mask;
579 }
580 
581 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
582 {
583 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
584 	struct qfq_group *next;
585 
586 	if (mask) {
587 		next = qfq_ffs(q, mask);
588 		if (!qfq_gt(next->F, old_F))
589 			return;
590 	}
591 
592 	mask = (1UL << index) - 1;
593 	qfq_move_groups(q, mask, EB, ER);
594 	qfq_move_groups(q, mask, IB, IR);
595 }
596 
597 /*
598  * perhaps
599  *
600 	old_V ^= q->V;
601 	old_V >>= QFQ_MIN_SLOT_SHIFT;
602 	if (old_V) {
603 		...
604 	}
605  *
606  */
607 static void qfq_make_eligible(struct qfq_sched *q, u64 old_V)
608 {
609 	unsigned long vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
610 	unsigned long old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
611 
612 	if (vslot != old_vslot) {
613 		unsigned long mask = (1UL << fls(vslot ^ old_vslot)) - 1;
614 		qfq_move_groups(q, mask, IR, ER);
615 		qfq_move_groups(q, mask, IB, EB);
616 	}
617 }
618 
619 
620 /*
621  * XXX we should make sure that slot becomes less than 32.
622  * This is guaranteed by the input values.
623  * roundedS is always cl->S rounded on grp->slot_shift bits.
624  */
625 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl,
626 			    u64 roundedS)
627 {
628 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
629 	unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
630 
631 	hlist_add_head(&cl->next, &grp->slots[i]);
632 	__set_bit(slot, &grp->full_slots);
633 }
634 
635 /* Maybe introduce hlist_first_entry?? */
636 static struct qfq_class *qfq_slot_head(struct qfq_group *grp)
637 {
638 	return hlist_entry(grp->slots[grp->front].first,
639 			   struct qfq_class, next);
640 }
641 
642 /*
643  * remove the entry from the slot
644  */
645 static void qfq_front_slot_remove(struct qfq_group *grp)
646 {
647 	struct qfq_class *cl = qfq_slot_head(grp);
648 
649 	BUG_ON(!cl);
650 	hlist_del(&cl->next);
651 	if (hlist_empty(&grp->slots[grp->front]))
652 		__clear_bit(0, &grp->full_slots);
653 }
654 
655 /*
656  * Returns the first full queue in a group. As a side effect,
657  * adjust the bucket list so the first non-empty bucket is at
658  * position 0 in full_slots.
659  */
660 static struct qfq_class *qfq_slot_scan(struct qfq_group *grp)
661 {
662 	unsigned int i;
663 
664 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
665 		 grp->index, grp->full_slots);
666 
667 	if (grp->full_slots == 0)
668 		return NULL;
669 
670 	i = __ffs(grp->full_slots);  /* zero based */
671 	if (i > 0) {
672 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
673 		grp->full_slots >>= i;
674 	}
675 
676 	return qfq_slot_head(grp);
677 }
678 
679 /*
680  * adjust the bucket list. When the start time of a group decreases,
681  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
682  * move the objects. The mask of occupied slots must be shifted
683  * because we use ffs() to find the first non-empty slot.
684  * This covers decreases in the group's start time, but what about
685  * increases of the start time ?
686  * Here too we should make sure that i is less than 32
687  */
688 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
689 {
690 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
691 
692 	grp->full_slots <<= i;
693 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
694 }
695 
696 static void qfq_update_eligible(struct qfq_sched *q, u64 old_V)
697 {
698 	struct qfq_group *grp;
699 	unsigned long ineligible;
700 
701 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
702 	if (ineligible) {
703 		if (!q->bitmaps[ER]) {
704 			grp = qfq_ffs(q, ineligible);
705 			if (qfq_gt(grp->S, q->V))
706 				q->V = grp->S;
707 		}
708 		qfq_make_eligible(q, old_V);
709 	}
710 }
711 
712 /* What is length of next packet in queue (0 if queue is empty) */
713 static unsigned int qdisc_peek_len(struct Qdisc *sch)
714 {
715 	struct sk_buff *skb;
716 
717 	skb = sch->ops->peek(sch);
718 	return skb ? qdisc_pkt_len(skb) : 0;
719 }
720 
721 /*
722  * Updates the class, returns true if also the group needs to be updated.
723  */
724 static bool qfq_update_class(struct qfq_group *grp, struct qfq_class *cl)
725 {
726 	unsigned int len = qdisc_peek_len(cl->qdisc);
727 
728 	cl->S = cl->F;
729 	if (!len)
730 		qfq_front_slot_remove(grp);	/* queue is empty */
731 	else {
732 		u64 roundedS;
733 
734 		cl->F = cl->S + (u64)len * cl->inv_w;
735 		roundedS = qfq_round_down(cl->S, grp->slot_shift);
736 		if (roundedS == grp->S)
737 			return false;
738 
739 		qfq_front_slot_remove(grp);
740 		qfq_slot_insert(grp, cl, roundedS);
741 	}
742 
743 	return true;
744 }
745 
746 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
747 {
748 	struct qfq_sched *q = qdisc_priv(sch);
749 	struct qfq_group *grp;
750 	struct qfq_class *cl;
751 	struct sk_buff *skb;
752 	unsigned int len;
753 	u64 old_V;
754 
755 	if (!q->bitmaps[ER])
756 		return NULL;
757 
758 	grp = qfq_ffs(q, q->bitmaps[ER]);
759 
760 	cl = qfq_slot_head(grp);
761 	skb = qdisc_dequeue_peeked(cl->qdisc);
762 	if (!skb) {
763 		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
764 		return NULL;
765 	}
766 
767 	sch->q.qlen--;
768 	qdisc_bstats_update(sch, skb);
769 
770 	old_V = q->V;
771 	len = qdisc_pkt_len(skb);
772 	q->V += (u64)len * IWSUM;
773 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
774 		 len, (unsigned long long) cl->F, (unsigned long long) q->V);
775 
776 	if (qfq_update_class(grp, cl)) {
777 		u64 old_F = grp->F;
778 
779 		cl = qfq_slot_scan(grp);
780 		if (!cl)
781 			__clear_bit(grp->index, &q->bitmaps[ER]);
782 		else {
783 			u64 roundedS = qfq_round_down(cl->S, grp->slot_shift);
784 			unsigned int s;
785 
786 			if (grp->S == roundedS)
787 				goto skip_unblock;
788 			grp->S = roundedS;
789 			grp->F = roundedS + (2ULL << grp->slot_shift);
790 			__clear_bit(grp->index, &q->bitmaps[ER]);
791 			s = qfq_calc_state(q, grp);
792 			__set_bit(grp->index, &q->bitmaps[s]);
793 		}
794 
795 		qfq_unblock_groups(q, grp->index, old_F);
796 	}
797 
798 skip_unblock:
799 	qfq_update_eligible(q, old_V);
800 
801 	return skb;
802 }
803 
804 /*
805  * Assign a reasonable start time for a new flow k in group i.
806  * Admissible values for \hat(F) are multiples of \sigma_i
807  * no greater than V+\sigma_i . Larger values mean that
808  * we had a wraparound so we consider the timestamp to be stale.
809  *
810  * If F is not stale and F >= V then we set S = F.
811  * Otherwise we should assign S = V, but this may violate
812  * the ordering in ER. So, if we have groups in ER, set S to
813  * the F_j of the first group j which would be blocking us.
814  * We are guaranteed not to move S backward because
815  * otherwise our group i would still be blocked.
816  */
817 static void qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
818 {
819 	unsigned long mask;
820 	uint32_t limit, roundedF;
821 	int slot_shift = cl->grp->slot_shift;
822 
823 	roundedF = qfq_round_down(cl->F, slot_shift);
824 	limit = qfq_round_down(q->V, slot_shift) + (1UL << slot_shift);
825 
826 	if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
827 		/* timestamp was stale */
828 		mask = mask_from(q->bitmaps[ER], cl->grp->index);
829 		if (mask) {
830 			struct qfq_group *next = qfq_ffs(q, mask);
831 			if (qfq_gt(roundedF, next->F)) {
832 				cl->S = next->F;
833 				return;
834 			}
835 		}
836 		cl->S = q->V;
837 	} else  /* timestamp is not stale */
838 		cl->S = cl->F;
839 }
840 
841 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
842 {
843 	struct qfq_sched *q = qdisc_priv(sch);
844 	struct qfq_group *grp;
845 	struct qfq_class *cl;
846 	int err;
847 	u64 roundedS;
848 	int s;
849 
850 	cl = qfq_classify(skb, sch, &err);
851 	if (cl == NULL) {
852 		if (err & __NET_XMIT_BYPASS)
853 			sch->qstats.drops++;
854 		kfree_skb(skb);
855 		return err;
856 	}
857 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
858 
859 	err = qdisc_enqueue(skb, cl->qdisc);
860 	if (unlikely(err != NET_XMIT_SUCCESS)) {
861 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
862 		if (net_xmit_drop_count(err)) {
863 			cl->qstats.drops++;
864 			sch->qstats.drops++;
865 		}
866 		return err;
867 	}
868 
869 	bstats_update(&cl->bstats, skb);
870 	++sch->q.qlen;
871 
872 	/* If the new skb is not the head of queue, then done here. */
873 	if (cl->qdisc->q.qlen != 1)
874 		return err;
875 
876 	/* If reach this point, queue q was idle */
877 	grp = cl->grp;
878 	qfq_update_start(q, cl);
879 
880 	/* compute new finish time and rounded start. */
881 	cl->F = cl->S + (u64)qdisc_pkt_len(skb) * cl->inv_w;
882 	roundedS = qfq_round_down(cl->S, grp->slot_shift);
883 
884 	/*
885 	 * insert cl in the correct bucket.
886 	 * If cl->S >= grp->S we don't need to adjust the
887 	 * bucket list and simply go to the insertion phase.
888 	 * Otherwise grp->S is decreasing, we must make room
889 	 * in the bucket list, and also recompute the group state.
890 	 * Finally, if there were no flows in this group and nobody
891 	 * was in ER make sure to adjust V.
892 	 */
893 	if (grp->full_slots) {
894 		if (!qfq_gt(grp->S, cl->S))
895 			goto skip_update;
896 
897 		/* create a slot for this cl->S */
898 		qfq_slot_rotate(grp, roundedS);
899 		/* group was surely ineligible, remove */
900 		__clear_bit(grp->index, &q->bitmaps[IR]);
901 		__clear_bit(grp->index, &q->bitmaps[IB]);
902 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
903 		q->V = roundedS;
904 
905 	grp->S = roundedS;
906 	grp->F = roundedS + (2ULL << grp->slot_shift);
907 	s = qfq_calc_state(q, grp);
908 	__set_bit(grp->index, &q->bitmaps[s]);
909 
910 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
911 		 s, q->bitmaps[s],
912 		 (unsigned long long) cl->S,
913 		 (unsigned long long) cl->F,
914 		 (unsigned long long) q->V);
915 
916 skip_update:
917 	qfq_slot_insert(grp, cl, roundedS);
918 
919 	return err;
920 }
921 
922 
923 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
924 			    struct qfq_class *cl)
925 {
926 	unsigned int i, offset;
927 	u64 roundedS;
928 
929 	roundedS = qfq_round_down(cl->S, grp->slot_shift);
930 	offset = (roundedS - grp->S) >> grp->slot_shift;
931 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
932 
933 	hlist_del(&cl->next);
934 	if (hlist_empty(&grp->slots[i]))
935 		__clear_bit(offset, &grp->full_slots);
936 }
937 
938 /*
939  * called to forcibly destroy a queue.
940  * If the queue is not in the front bucket, or if it has
941  * other queues in the front bucket, we can simply remove
942  * the queue with no other side effects.
943  * Otherwise we must propagate the event up.
944  */
945 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
946 {
947 	struct qfq_group *grp = cl->grp;
948 	unsigned long mask;
949 	u64 roundedS;
950 	int s;
951 
952 	cl->F = cl->S;
953 	qfq_slot_remove(q, grp, cl);
954 
955 	if (!grp->full_slots) {
956 		__clear_bit(grp->index, &q->bitmaps[IR]);
957 		__clear_bit(grp->index, &q->bitmaps[EB]);
958 		__clear_bit(grp->index, &q->bitmaps[IB]);
959 
960 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
961 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
962 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
963 			if (mask)
964 				mask = ~((1UL << __fls(mask)) - 1);
965 			else
966 				mask = ~0UL;
967 			qfq_move_groups(q, mask, EB, ER);
968 			qfq_move_groups(q, mask, IB, IR);
969 		}
970 		__clear_bit(grp->index, &q->bitmaps[ER]);
971 	} else if (hlist_empty(&grp->slots[grp->front])) {
972 		cl = qfq_slot_scan(grp);
973 		roundedS = qfq_round_down(cl->S, grp->slot_shift);
974 		if (grp->S != roundedS) {
975 			__clear_bit(grp->index, &q->bitmaps[ER]);
976 			__clear_bit(grp->index, &q->bitmaps[IR]);
977 			__clear_bit(grp->index, &q->bitmaps[EB]);
978 			__clear_bit(grp->index, &q->bitmaps[IB]);
979 			grp->S = roundedS;
980 			grp->F = roundedS + (2ULL << grp->slot_shift);
981 			s = qfq_calc_state(q, grp);
982 			__set_bit(grp->index, &q->bitmaps[s]);
983 		}
984 	}
985 
986 	qfq_update_eligible(q, q->V);
987 }
988 
989 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
990 {
991 	struct qfq_sched *q = qdisc_priv(sch);
992 	struct qfq_class *cl = (struct qfq_class *)arg;
993 
994 	if (cl->qdisc->q.qlen == 0)
995 		qfq_deactivate_class(q, cl);
996 }
997 
998 static unsigned int qfq_drop(struct Qdisc *sch)
999 {
1000 	struct qfq_sched *q = qdisc_priv(sch);
1001 	struct qfq_group *grp;
1002 	unsigned int i, j, len;
1003 
1004 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1005 		grp = &q->groups[i];
1006 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1007 			struct qfq_class *cl;
1008 			struct hlist_node *n;
1009 
1010 			hlist_for_each_entry(cl, n, &grp->slots[j], next) {
1011 
1012 				if (!cl->qdisc->ops->drop)
1013 					continue;
1014 
1015 				len = cl->qdisc->ops->drop(cl->qdisc);
1016 				if (len > 0) {
1017 					sch->q.qlen--;
1018 					if (!cl->qdisc->q.qlen)
1019 						qfq_deactivate_class(q, cl);
1020 
1021 					return len;
1022 				}
1023 			}
1024 		}
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1031 {
1032 	struct qfq_sched *q = qdisc_priv(sch);
1033 	struct qfq_group *grp;
1034 	int i, j, err;
1035 
1036 	err = qdisc_class_hash_init(&q->clhash);
1037 	if (err < 0)
1038 		return err;
1039 
1040 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1041 		grp = &q->groups[i];
1042 		grp->index = i;
1043 		grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS
1044 				   - (QFQ_MAX_INDEX - i);
1045 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1046 			INIT_HLIST_HEAD(&grp->slots[j]);
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 static void qfq_reset_qdisc(struct Qdisc *sch)
1053 {
1054 	struct qfq_sched *q = qdisc_priv(sch);
1055 	struct qfq_group *grp;
1056 	struct qfq_class *cl;
1057 	struct hlist_node *n, *tmp;
1058 	unsigned int i, j;
1059 
1060 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1061 		grp = &q->groups[i];
1062 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1063 			hlist_for_each_entry_safe(cl, n, tmp,
1064 						  &grp->slots[j], next) {
1065 				qfq_deactivate_class(q, cl);
1066 			}
1067 		}
1068 	}
1069 
1070 	for (i = 0; i < q->clhash.hashsize; i++) {
1071 		hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode)
1072 			qdisc_reset(cl->qdisc);
1073 	}
1074 	sch->q.qlen = 0;
1075 }
1076 
1077 static void qfq_destroy_qdisc(struct Qdisc *sch)
1078 {
1079 	struct qfq_sched *q = qdisc_priv(sch);
1080 	struct qfq_class *cl;
1081 	struct hlist_node *n, *next;
1082 	unsigned int i;
1083 
1084 	tcf_destroy_chain(&q->filter_list);
1085 
1086 	for (i = 0; i < q->clhash.hashsize; i++) {
1087 		hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i],
1088 					  common.hnode) {
1089 			qfq_destroy_class(sch, cl);
1090 		}
1091 	}
1092 	qdisc_class_hash_destroy(&q->clhash);
1093 }
1094 
1095 static const struct Qdisc_class_ops qfq_class_ops = {
1096 	.change		= qfq_change_class,
1097 	.delete		= qfq_delete_class,
1098 	.get		= qfq_get_class,
1099 	.put		= qfq_put_class,
1100 	.tcf_chain	= qfq_tcf_chain,
1101 	.bind_tcf	= qfq_bind_tcf,
1102 	.unbind_tcf	= qfq_unbind_tcf,
1103 	.graft		= qfq_graft_class,
1104 	.leaf		= qfq_class_leaf,
1105 	.qlen_notify	= qfq_qlen_notify,
1106 	.dump		= qfq_dump_class,
1107 	.dump_stats	= qfq_dump_class_stats,
1108 	.walk		= qfq_walk,
1109 };
1110 
1111 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1112 	.cl_ops		= &qfq_class_ops,
1113 	.id		= "qfq",
1114 	.priv_size	= sizeof(struct qfq_sched),
1115 	.enqueue	= qfq_enqueue,
1116 	.dequeue	= qfq_dequeue,
1117 	.peek		= qdisc_peek_dequeued,
1118 	.drop		= qfq_drop,
1119 	.init		= qfq_init_qdisc,
1120 	.reset		= qfq_reset_qdisc,
1121 	.destroy	= qfq_destroy_qdisc,
1122 	.owner		= THIS_MODULE,
1123 };
1124 
1125 static int __init qfq_init(void)
1126 {
1127 	return register_qdisc(&qfq_qdisc_ops);
1128 }
1129 
1130 static void __exit qfq_exit(void)
1131 {
1132 	unregister_qdisc(&qfq_qdisc_ops);
1133 }
1134 
1135 module_init(qfq_init);
1136 module_exit(qfq_exit);
1137 MODULE_LICENSE("GPL");
1138