1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler. 4 * 5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 6 * Copyright (c) 2012 Paolo Valente. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/bitops.h> 12 #include <linux/errno.h> 13 #include <linux/netdevice.h> 14 #include <linux/pkt_sched.h> 15 #include <net/sch_generic.h> 16 #include <net/pkt_sched.h> 17 #include <net/pkt_cls.h> 18 19 20 /* Quick Fair Queueing Plus 21 ======================== 22 23 Sources: 24 25 [1] Paolo Valente, 26 "Reducing the Execution Time of Fair-Queueing Schedulers." 27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf 28 29 Sources for QFQ: 30 31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 32 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 33 34 See also: 35 http://retis.sssup.it/~fabio/linux/qfq/ 36 */ 37 38 /* 39 40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES 41 classes. Each aggregate is timestamped with a virtual start time S 42 and a virtual finish time F, and scheduled according to its 43 timestamps. S and F are computed as a function of a system virtual 44 time function V. The classes within each aggregate are instead 45 scheduled with DRR. 46 47 To speed up operations, QFQ+ divides also aggregates into a limited 48 number of groups. Which group a class belongs to depends on the 49 ratio between the maximum packet length for the class and the weight 50 of the class. Groups have their own S and F. In the end, QFQ+ 51 schedules groups, then aggregates within groups, then classes within 52 aggregates. See [1] and [2] for a full description. 53 54 Virtual time computations. 55 56 S, F and V are all computed in fixed point arithmetic with 57 FRAC_BITS decimal bits. 58 59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 60 one bit per index. 61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 62 63 The layout of the bits is as below: 64 65 [ MTU_SHIFT ][ FRAC_BITS ] 66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 67 ^.__grp->index = 0 68 *.__grp->slot_shift 69 70 where MIN_SLOT_SHIFT is derived by difference from the others. 71 72 The max group index corresponds to Lmax/w_min, where 73 Lmax=1<<MTU_SHIFT, w_min = 1 . 74 From this, and knowing how many groups (MAX_INDEX) we want, 75 we can derive the shift corresponding to each group. 76 77 Because we often need to compute 78 F = S + len/w_i and V = V + len/wsum 79 instead of storing w_i store the value 80 inv_w = (1<<FRAC_BITS)/w_i 81 so we can do F = S + len * inv_w * wsum. 82 We use W_TOT in the formulas so we can easily move between 83 static and adaptive weight sum. 84 85 The per-scheduler-instance data contain all the data structures 86 for the scheduler: bitmaps and bucket lists. 87 88 */ 89 90 /* 91 * Maximum number of consecutive slots occupied by backlogged classes 92 * inside a group. 93 */ 94 #define QFQ_MAX_SLOTS 32 95 96 /* 97 * Shifts used for aggregate<->group mapping. We allow class weights that are 98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the 99 * group with the smallest index that can support the L_i / r_i configured 100 * for the classes in the aggregate. 101 * 102 * grp->index is the index of the group; and grp->slot_shift 103 * is the shift for the corresponding (scaled) sigma_i. 104 */ 105 #define QFQ_MAX_INDEX 24 106 #define QFQ_MAX_WSHIFT 10 107 108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */ 109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT) 110 111 #define FRAC_BITS 30 /* fixed point arithmetic */ 112 #define ONE_FP (1UL << FRAC_BITS) 113 114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */ 115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */ 116 117 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */ 118 119 /* 120 * Possible group states. These values are used as indexes for the bitmaps 121 * array of struct qfq_queue. 122 */ 123 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 124 125 struct qfq_group; 126 127 struct qfq_aggregate; 128 129 struct qfq_class { 130 struct Qdisc_class_common common; 131 132 unsigned int filter_cnt; 133 134 struct gnet_stats_basic_sync bstats; 135 struct gnet_stats_queue qstats; 136 struct net_rate_estimator __rcu *rate_est; 137 struct Qdisc *qdisc; 138 struct list_head alist; /* Link for active-classes list. */ 139 struct qfq_aggregate *agg; /* Parent aggregate. */ 140 int deficit; /* DRR deficit counter. */ 141 }; 142 143 struct qfq_aggregate { 144 struct hlist_node next; /* Link for the slot list. */ 145 u64 S, F; /* flow timestamps (exact) */ 146 147 /* group we belong to. In principle we would need the index, 148 * which is log_2(lmax/weight), but we never reference it 149 * directly, only the group. 150 */ 151 struct qfq_group *grp; 152 153 /* these are copied from the flowset. */ 154 u32 class_weight; /* Weight of each class in this aggregate. */ 155 /* Max pkt size for the classes in this aggregate, DRR quantum. */ 156 int lmax; 157 158 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */ 159 u32 budgetmax; /* Max budget for this aggregate. */ 160 u32 initial_budget, budget; /* Initial and current budget. */ 161 162 int num_classes; /* Number of classes in this aggr. */ 163 struct list_head active; /* DRR queue of active classes. */ 164 165 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */ 166 }; 167 168 struct qfq_group { 169 u64 S, F; /* group timestamps (approx). */ 170 unsigned int slot_shift; /* Slot shift. */ 171 unsigned int index; /* Group index. */ 172 unsigned int front; /* Index of the front slot. */ 173 unsigned long full_slots; /* non-empty slots */ 174 175 /* Array of RR lists of active aggregates. */ 176 struct hlist_head slots[QFQ_MAX_SLOTS]; 177 }; 178 179 struct qfq_sched { 180 struct tcf_proto __rcu *filter_list; 181 struct tcf_block *block; 182 struct Qdisc_class_hash clhash; 183 184 u64 oldV, V; /* Precise virtual times. */ 185 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */ 186 u32 wsum; /* weight sum */ 187 u32 iwsum; /* inverse weight sum */ 188 189 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 190 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 191 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */ 192 193 u32 max_agg_classes; /* Max number of classes per aggr. */ 194 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */ 195 }; 196 197 /* 198 * Possible reasons why the timestamps of an aggregate are updated 199 * enqueue: the aggregate switches from idle to active and must scheduled 200 * for service 201 * requeue: the aggregate finishes its budget, so it stops being served and 202 * must be rescheduled for service 203 */ 204 enum update_reason {enqueue, requeue}; 205 206 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 207 { 208 struct qfq_sched *q = qdisc_priv(sch); 209 struct Qdisc_class_common *clc; 210 211 clc = qdisc_class_find(&q->clhash, classid); 212 if (clc == NULL) 213 return NULL; 214 return container_of(clc, struct qfq_class, common); 215 } 216 217 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 218 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 }, 219 [TCA_QFQ_LMAX] = { .type = NLA_U32 }, 220 }; 221 222 /* 223 * Calculate a flow index, given its weight and maximum packet length. 224 * index = log_2(maxlen/weight) but we need to apply the scaling. 225 * This is used only once at flow creation. 226 */ 227 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift) 228 { 229 u64 slot_size = (u64)maxlen * inv_w; 230 unsigned long size_map; 231 int index = 0; 232 233 size_map = slot_size >> min_slot_shift; 234 if (!size_map) 235 goto out; 236 237 index = __fls(size_map) + 1; /* basically a log_2 */ 238 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1))); 239 240 if (index < 0) 241 index = 0; 242 out: 243 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 244 (unsigned long) ONE_FP/inv_w, maxlen, index); 245 246 return index; 247 } 248 249 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *); 250 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *, 251 enum update_reason); 252 253 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 254 u32 lmax, u32 weight) 255 { 256 INIT_LIST_HEAD(&agg->active); 257 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 258 259 agg->lmax = lmax; 260 agg->class_weight = weight; 261 } 262 263 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q, 264 u32 lmax, u32 weight) 265 { 266 struct qfq_aggregate *agg; 267 268 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next) 269 if (agg->lmax == lmax && agg->class_weight == weight) 270 return agg; 271 272 return NULL; 273 } 274 275 276 /* Update aggregate as a function of the new number of classes. */ 277 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 278 int new_num_classes) 279 { 280 u32 new_agg_weight; 281 282 if (new_num_classes == q->max_agg_classes) 283 hlist_del_init(&agg->nonfull_next); 284 285 if (agg->num_classes > new_num_classes && 286 new_num_classes == q->max_agg_classes - 1) /* agg no more full */ 287 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 288 289 /* The next assignment may let 290 * agg->initial_budget > agg->budgetmax 291 * hold, we will take it into account in charge_actual_service(). 292 */ 293 agg->budgetmax = new_num_classes * agg->lmax; 294 new_agg_weight = agg->class_weight * new_num_classes; 295 agg->inv_w = ONE_FP/new_agg_weight; 296 297 if (agg->grp == NULL) { 298 int i = qfq_calc_index(agg->inv_w, agg->budgetmax, 299 q->min_slot_shift); 300 agg->grp = &q->groups[i]; 301 } 302 303 q->wsum += 304 (int) agg->class_weight * (new_num_classes - agg->num_classes); 305 q->iwsum = ONE_FP / q->wsum; 306 307 agg->num_classes = new_num_classes; 308 } 309 310 /* Add class to aggregate. */ 311 static void qfq_add_to_agg(struct qfq_sched *q, 312 struct qfq_aggregate *agg, 313 struct qfq_class *cl) 314 { 315 cl->agg = agg; 316 317 qfq_update_agg(q, agg, agg->num_classes+1); 318 if (cl->qdisc->q.qlen > 0) { /* adding an active class */ 319 list_add_tail(&cl->alist, &agg->active); 320 if (list_first_entry(&agg->active, struct qfq_class, alist) == 321 cl && q->in_serv_agg != agg) /* agg was inactive */ 322 qfq_activate_agg(q, agg, enqueue); /* schedule agg */ 323 } 324 } 325 326 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *); 327 328 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 329 { 330 hlist_del_init(&agg->nonfull_next); 331 q->wsum -= agg->class_weight; 332 if (q->wsum != 0) 333 q->iwsum = ONE_FP / q->wsum; 334 335 if (q->in_serv_agg == agg) 336 q->in_serv_agg = qfq_choose_next_agg(q); 337 kfree(agg); 338 } 339 340 /* Deschedule class from within its parent aggregate. */ 341 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 342 { 343 struct qfq_aggregate *agg = cl->agg; 344 345 346 list_del(&cl->alist); /* remove from RR queue of the aggregate */ 347 if (list_empty(&agg->active)) /* agg is now inactive */ 348 qfq_deactivate_agg(q, agg); 349 } 350 351 /* Remove class from its parent aggregate. */ 352 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 353 { 354 struct qfq_aggregate *agg = cl->agg; 355 356 cl->agg = NULL; 357 if (agg->num_classes == 1) { /* agg being emptied, destroy it */ 358 qfq_destroy_agg(q, agg); 359 return; 360 } 361 qfq_update_agg(q, agg, agg->num_classes-1); 362 } 363 364 /* Deschedule class and remove it from its parent aggregate. */ 365 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 366 { 367 if (cl->qdisc->q.qlen > 0) /* class is active */ 368 qfq_deactivate_class(q, cl); 369 370 qfq_rm_from_agg(q, cl); 371 } 372 373 /* Move class to a new aggregate, matching the new class weight and/or lmax */ 374 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight, 375 u32 lmax) 376 { 377 struct qfq_sched *q = qdisc_priv(sch); 378 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight); 379 380 if (new_agg == NULL) { /* create new aggregate */ 381 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC); 382 if (new_agg == NULL) 383 return -ENOBUFS; 384 qfq_init_agg(q, new_agg, lmax, weight); 385 } 386 qfq_deact_rm_from_agg(q, cl); 387 qfq_add_to_agg(q, new_agg, cl); 388 389 return 0; 390 } 391 392 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 393 struct nlattr **tca, unsigned long *arg, 394 struct netlink_ext_ack *extack) 395 { 396 struct qfq_sched *q = qdisc_priv(sch); 397 struct qfq_class *cl = (struct qfq_class *)*arg; 398 bool existing = false; 399 struct nlattr *tb[TCA_QFQ_MAX + 1]; 400 struct qfq_aggregate *new_agg = NULL; 401 u32 weight, lmax, inv_w; 402 int err; 403 int delta_w; 404 405 if (tca[TCA_OPTIONS] == NULL) { 406 pr_notice("qfq: no options\n"); 407 return -EINVAL; 408 } 409 410 err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], 411 qfq_policy, NULL); 412 if (err < 0) 413 return err; 414 415 if (tb[TCA_QFQ_WEIGHT]) { 416 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]); 417 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) { 418 pr_notice("qfq: invalid weight %u\n", weight); 419 return -EINVAL; 420 } 421 } else 422 weight = 1; 423 424 if (tb[TCA_QFQ_LMAX]) { 425 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 426 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) { 427 pr_notice("qfq: invalid max length %u\n", lmax); 428 return -EINVAL; 429 } 430 } else 431 lmax = psched_mtu(qdisc_dev(sch)); 432 433 inv_w = ONE_FP / weight; 434 weight = ONE_FP / inv_w; 435 436 if (cl != NULL && 437 lmax == cl->agg->lmax && 438 weight == cl->agg->class_weight) 439 return 0; /* nothing to change */ 440 441 delta_w = weight - (cl ? cl->agg->class_weight : 0); 442 443 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 444 pr_notice("qfq: total weight out of range (%d + %u)\n", 445 delta_w, q->wsum); 446 return -EINVAL; 447 } 448 449 if (cl != NULL) { /* modify existing class */ 450 if (tca[TCA_RATE]) { 451 err = gen_replace_estimator(&cl->bstats, NULL, 452 &cl->rate_est, 453 NULL, 454 true, 455 tca[TCA_RATE]); 456 if (err) 457 return err; 458 } 459 existing = true; 460 goto set_change_agg; 461 } 462 463 /* create and init new class */ 464 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 465 if (cl == NULL) 466 return -ENOBUFS; 467 468 gnet_stats_basic_sync_init(&cl->bstats); 469 cl->common.classid = classid; 470 cl->deficit = lmax; 471 472 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 473 classid, NULL); 474 if (cl->qdisc == NULL) 475 cl->qdisc = &noop_qdisc; 476 477 if (tca[TCA_RATE]) { 478 err = gen_new_estimator(&cl->bstats, NULL, 479 &cl->rate_est, 480 NULL, 481 true, 482 tca[TCA_RATE]); 483 if (err) 484 goto destroy_class; 485 } 486 487 if (cl->qdisc != &noop_qdisc) 488 qdisc_hash_add(cl->qdisc, true); 489 490 set_change_agg: 491 sch_tree_lock(sch); 492 new_agg = qfq_find_agg(q, lmax, weight); 493 if (new_agg == NULL) { /* create new aggregate */ 494 sch_tree_unlock(sch); 495 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL); 496 if (new_agg == NULL) { 497 err = -ENOBUFS; 498 gen_kill_estimator(&cl->rate_est); 499 goto destroy_class; 500 } 501 sch_tree_lock(sch); 502 qfq_init_agg(q, new_agg, lmax, weight); 503 } 504 if (existing) 505 qfq_deact_rm_from_agg(q, cl); 506 else 507 qdisc_class_hash_insert(&q->clhash, &cl->common); 508 qfq_add_to_agg(q, new_agg, cl); 509 sch_tree_unlock(sch); 510 qdisc_class_hash_grow(sch, &q->clhash); 511 512 *arg = (unsigned long)cl; 513 return 0; 514 515 destroy_class: 516 qdisc_put(cl->qdisc); 517 kfree(cl); 518 return err; 519 } 520 521 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 522 { 523 struct qfq_sched *q = qdisc_priv(sch); 524 525 qfq_rm_from_agg(q, cl); 526 gen_kill_estimator(&cl->rate_est); 527 qdisc_put(cl->qdisc); 528 kfree(cl); 529 } 530 531 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg, 532 struct netlink_ext_ack *extack) 533 { 534 struct qfq_sched *q = qdisc_priv(sch); 535 struct qfq_class *cl = (struct qfq_class *)arg; 536 537 if (cl->filter_cnt > 0) 538 return -EBUSY; 539 540 sch_tree_lock(sch); 541 542 qdisc_purge_queue(cl->qdisc); 543 qdisc_class_hash_remove(&q->clhash, &cl->common); 544 545 sch_tree_unlock(sch); 546 547 qfq_destroy_class(sch, cl); 548 return 0; 549 } 550 551 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid) 552 { 553 return (unsigned long)qfq_find_class(sch, classid); 554 } 555 556 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl, 557 struct netlink_ext_ack *extack) 558 { 559 struct qfq_sched *q = qdisc_priv(sch); 560 561 if (cl) 562 return NULL; 563 564 return q->block; 565 } 566 567 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 568 u32 classid) 569 { 570 struct qfq_class *cl = qfq_find_class(sch, classid); 571 572 if (cl != NULL) 573 cl->filter_cnt++; 574 575 return (unsigned long)cl; 576 } 577 578 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 579 { 580 struct qfq_class *cl = (struct qfq_class *)arg; 581 582 cl->filter_cnt--; 583 } 584 585 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 586 struct Qdisc *new, struct Qdisc **old, 587 struct netlink_ext_ack *extack) 588 { 589 struct qfq_class *cl = (struct qfq_class *)arg; 590 591 if (new == NULL) { 592 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 593 cl->common.classid, NULL); 594 if (new == NULL) 595 new = &noop_qdisc; 596 } 597 598 *old = qdisc_replace(sch, new, &cl->qdisc); 599 return 0; 600 } 601 602 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 603 { 604 struct qfq_class *cl = (struct qfq_class *)arg; 605 606 return cl->qdisc; 607 } 608 609 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 610 struct sk_buff *skb, struct tcmsg *tcm) 611 { 612 struct qfq_class *cl = (struct qfq_class *)arg; 613 struct nlattr *nest; 614 615 tcm->tcm_parent = TC_H_ROOT; 616 tcm->tcm_handle = cl->common.classid; 617 tcm->tcm_info = cl->qdisc->handle; 618 619 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 620 if (nest == NULL) 621 goto nla_put_failure; 622 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) || 623 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax)) 624 goto nla_put_failure; 625 return nla_nest_end(skb, nest); 626 627 nla_put_failure: 628 nla_nest_cancel(skb, nest); 629 return -EMSGSIZE; 630 } 631 632 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 633 struct gnet_dump *d) 634 { 635 struct qfq_class *cl = (struct qfq_class *)arg; 636 struct tc_qfq_stats xstats; 637 638 memset(&xstats, 0, sizeof(xstats)); 639 640 xstats.weight = cl->agg->class_weight; 641 xstats.lmax = cl->agg->lmax; 642 643 if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 || 644 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || 645 qdisc_qstats_copy(d, cl->qdisc) < 0) 646 return -1; 647 648 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 649 } 650 651 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 652 { 653 struct qfq_sched *q = qdisc_priv(sch); 654 struct qfq_class *cl; 655 unsigned int i; 656 657 if (arg->stop) 658 return; 659 660 for (i = 0; i < q->clhash.hashsize; i++) { 661 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 662 if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg)) 663 return; 664 } 665 } 666 } 667 668 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 669 int *qerr) 670 { 671 struct qfq_sched *q = qdisc_priv(sch); 672 struct qfq_class *cl; 673 struct tcf_result res; 674 struct tcf_proto *fl; 675 int result; 676 677 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 678 pr_debug("qfq_classify: found %d\n", skb->priority); 679 cl = qfq_find_class(sch, skb->priority); 680 if (cl != NULL) 681 return cl; 682 } 683 684 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 685 fl = rcu_dereference_bh(q->filter_list); 686 result = tcf_classify(skb, NULL, fl, &res, false); 687 if (result >= 0) { 688 #ifdef CONFIG_NET_CLS_ACT 689 switch (result) { 690 case TC_ACT_QUEUED: 691 case TC_ACT_STOLEN: 692 case TC_ACT_TRAP: 693 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 694 fallthrough; 695 case TC_ACT_SHOT: 696 return NULL; 697 } 698 #endif 699 cl = (struct qfq_class *)res.class; 700 if (cl == NULL) 701 cl = qfq_find_class(sch, res.classid); 702 return cl; 703 } 704 705 return NULL; 706 } 707 708 /* Generic comparison function, handling wraparound. */ 709 static inline int qfq_gt(u64 a, u64 b) 710 { 711 return (s64)(a - b) > 0; 712 } 713 714 /* Round a precise timestamp to its slotted value. */ 715 static inline u64 qfq_round_down(u64 ts, unsigned int shift) 716 { 717 return ts & ~((1ULL << shift) - 1); 718 } 719 720 /* return the pointer to the group with lowest index in the bitmap */ 721 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 722 unsigned long bitmap) 723 { 724 int index = __ffs(bitmap); 725 return &q->groups[index]; 726 } 727 /* Calculate a mask to mimic what would be ffs_from(). */ 728 static inline unsigned long mask_from(unsigned long bitmap, int from) 729 { 730 return bitmap & ~((1UL << from) - 1); 731 } 732 733 /* 734 * The state computation relies on ER=0, IR=1, EB=2, IB=3 735 * First compute eligibility comparing grp->S, q->V, 736 * then check if someone is blocking us and possibly add EB 737 */ 738 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 739 { 740 /* if S > V we are not eligible */ 741 unsigned int state = qfq_gt(grp->S, q->V); 742 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 743 struct qfq_group *next; 744 745 if (mask) { 746 next = qfq_ffs(q, mask); 747 if (qfq_gt(grp->F, next->F)) 748 state |= EB; 749 } 750 751 return state; 752 } 753 754 755 /* 756 * In principle 757 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 758 * q->bitmaps[src] &= ~mask; 759 * but we should make sure that src != dst 760 */ 761 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 762 int src, int dst) 763 { 764 q->bitmaps[dst] |= q->bitmaps[src] & mask; 765 q->bitmaps[src] &= ~mask; 766 } 767 768 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 769 { 770 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 771 struct qfq_group *next; 772 773 if (mask) { 774 next = qfq_ffs(q, mask); 775 if (!qfq_gt(next->F, old_F)) 776 return; 777 } 778 779 mask = (1UL << index) - 1; 780 qfq_move_groups(q, mask, EB, ER); 781 qfq_move_groups(q, mask, IB, IR); 782 } 783 784 /* 785 * perhaps 786 * 787 old_V ^= q->V; 788 old_V >>= q->min_slot_shift; 789 if (old_V) { 790 ... 791 } 792 * 793 */ 794 static void qfq_make_eligible(struct qfq_sched *q) 795 { 796 unsigned long vslot = q->V >> q->min_slot_shift; 797 unsigned long old_vslot = q->oldV >> q->min_slot_shift; 798 799 if (vslot != old_vslot) { 800 unsigned long mask; 801 int last_flip_pos = fls(vslot ^ old_vslot); 802 803 if (last_flip_pos > 31) /* higher than the number of groups */ 804 mask = ~0UL; /* make all groups eligible */ 805 else 806 mask = (1UL << last_flip_pos) - 1; 807 808 qfq_move_groups(q, mask, IR, ER); 809 qfq_move_groups(q, mask, IB, EB); 810 } 811 } 812 813 /* 814 * The index of the slot in which the input aggregate agg is to be 815 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2' 816 * and not a '-1' because the start time of the group may be moved 817 * backward by one slot after the aggregate has been inserted, and 818 * this would cause non-empty slots to be right-shifted by one 819 * position. 820 * 821 * QFQ+ fully satisfies this bound to the slot index if the parameters 822 * of the classes are not changed dynamically, and if QFQ+ never 823 * happens to postpone the service of agg unjustly, i.e., it never 824 * happens that the aggregate becomes backlogged and eligible, or just 825 * eligible, while an aggregate with a higher approximated finish time 826 * is being served. In particular, in this case QFQ+ guarantees that 827 * the timestamps of agg are low enough that the slot index is never 828 * higher than 2. Unfortunately, QFQ+ cannot provide the same 829 * guarantee if it happens to unjustly postpone the service of agg, or 830 * if the parameters of some class are changed. 831 * 832 * As for the first event, i.e., an out-of-order service, the 833 * upper bound to the slot index guaranteed by QFQ+ grows to 834 * 2 + 835 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * 836 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1. 837 * 838 * The following function deals with this problem by backward-shifting 839 * the timestamps of agg, if needed, so as to guarantee that the slot 840 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may 841 * cause the service of other aggregates to be postponed, yet the 842 * worst-case guarantees of these aggregates are not violated. In 843 * fact, in case of no out-of-order service, the timestamps of agg 844 * would have been even lower than they are after the backward shift, 845 * because QFQ+ would have guaranteed a maximum value equal to 2 for 846 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose 847 * service is postponed because of the backward-shift would have 848 * however waited for the service of agg before being served. 849 * 850 * The other event that may cause the slot index to be higher than 2 851 * for agg is a recent change of the parameters of some class. If the 852 * weight of a class is increased or the lmax (max_pkt_size) of the 853 * class is decreased, then a new aggregate with smaller slot size 854 * than the original parent aggregate of the class may happen to be 855 * activated. The activation of this aggregate should be properly 856 * delayed to when the service of the class has finished in the ideal 857 * system tracked by QFQ+. If the activation of the aggregate is not 858 * delayed to this reference time instant, then this aggregate may be 859 * unjustly served before other aggregates waiting for service. This 860 * may cause the above bound to the slot index to be violated for some 861 * of these unlucky aggregates. 862 * 863 * Instead of delaying the activation of the new aggregate, which is 864 * quite complex, the above-discussed capping of the slot index is 865 * used to handle also the consequences of a change of the parameters 866 * of a class. 867 */ 868 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg, 869 u64 roundedS) 870 { 871 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 872 unsigned int i; /* slot index in the bucket list */ 873 874 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { 875 u64 deltaS = roundedS - grp->S - 876 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); 877 agg->S -= deltaS; 878 agg->F -= deltaS; 879 slot = QFQ_MAX_SLOTS - 2; 880 } 881 882 i = (grp->front + slot) % QFQ_MAX_SLOTS; 883 884 hlist_add_head(&agg->next, &grp->slots[i]); 885 __set_bit(slot, &grp->full_slots); 886 } 887 888 /* Maybe introduce hlist_first_entry?? */ 889 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp) 890 { 891 return hlist_entry(grp->slots[grp->front].first, 892 struct qfq_aggregate, next); 893 } 894 895 /* 896 * remove the entry from the slot 897 */ 898 static void qfq_front_slot_remove(struct qfq_group *grp) 899 { 900 struct qfq_aggregate *agg = qfq_slot_head(grp); 901 902 BUG_ON(!agg); 903 hlist_del(&agg->next); 904 if (hlist_empty(&grp->slots[grp->front])) 905 __clear_bit(0, &grp->full_slots); 906 } 907 908 /* 909 * Returns the first aggregate in the first non-empty bucket of the 910 * group. As a side effect, adjusts the bucket list so the first 911 * non-empty bucket is at position 0 in full_slots. 912 */ 913 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp) 914 { 915 unsigned int i; 916 917 pr_debug("qfq slot_scan: grp %u full %#lx\n", 918 grp->index, grp->full_slots); 919 920 if (grp->full_slots == 0) 921 return NULL; 922 923 i = __ffs(grp->full_slots); /* zero based */ 924 if (i > 0) { 925 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 926 grp->full_slots >>= i; 927 } 928 929 return qfq_slot_head(grp); 930 } 931 932 /* 933 * adjust the bucket list. When the start time of a group decreases, 934 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 935 * move the objects. The mask of occupied slots must be shifted 936 * because we use ffs() to find the first non-empty slot. 937 * This covers decreases in the group's start time, but what about 938 * increases of the start time ? 939 * Here too we should make sure that i is less than 32 940 */ 941 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 942 { 943 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 944 945 grp->full_slots <<= i; 946 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 947 } 948 949 static void qfq_update_eligible(struct qfq_sched *q) 950 { 951 struct qfq_group *grp; 952 unsigned long ineligible; 953 954 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 955 if (ineligible) { 956 if (!q->bitmaps[ER]) { 957 grp = qfq_ffs(q, ineligible); 958 if (qfq_gt(grp->S, q->V)) 959 q->V = grp->S; 960 } 961 qfq_make_eligible(q); 962 } 963 } 964 965 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */ 966 static void agg_dequeue(struct qfq_aggregate *agg, 967 struct qfq_class *cl, unsigned int len) 968 { 969 qdisc_dequeue_peeked(cl->qdisc); 970 971 cl->deficit -= (int) len; 972 973 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */ 974 list_del(&cl->alist); 975 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) { 976 cl->deficit += agg->lmax; 977 list_move_tail(&cl->alist, &agg->active); 978 } 979 } 980 981 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg, 982 struct qfq_class **cl, 983 unsigned int *len) 984 { 985 struct sk_buff *skb; 986 987 *cl = list_first_entry(&agg->active, struct qfq_class, alist); 988 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc); 989 if (skb == NULL) 990 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n"); 991 else 992 *len = qdisc_pkt_len(skb); 993 994 return skb; 995 } 996 997 /* Update F according to the actual service received by the aggregate. */ 998 static inline void charge_actual_service(struct qfq_aggregate *agg) 999 { 1000 /* Compute the service received by the aggregate, taking into 1001 * account that, after decreasing the number of classes in 1002 * agg, it may happen that 1003 * agg->initial_budget - agg->budget > agg->bugdetmax 1004 */ 1005 u32 service_received = min(agg->budgetmax, 1006 agg->initial_budget - agg->budget); 1007 1008 agg->F = agg->S + (u64)service_received * agg->inv_w; 1009 } 1010 1011 /* Assign a reasonable start time for a new aggregate in group i. 1012 * Admissible values for \hat(F) are multiples of \sigma_i 1013 * no greater than V+\sigma_i . Larger values mean that 1014 * we had a wraparound so we consider the timestamp to be stale. 1015 * 1016 * If F is not stale and F >= V then we set S = F. 1017 * Otherwise we should assign S = V, but this may violate 1018 * the ordering in EB (see [2]). So, if we have groups in ER, 1019 * set S to the F_j of the first group j which would be blocking us. 1020 * We are guaranteed not to move S backward because 1021 * otherwise our group i would still be blocked. 1022 */ 1023 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg) 1024 { 1025 unsigned long mask; 1026 u64 limit, roundedF; 1027 int slot_shift = agg->grp->slot_shift; 1028 1029 roundedF = qfq_round_down(agg->F, slot_shift); 1030 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 1031 1032 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) { 1033 /* timestamp was stale */ 1034 mask = mask_from(q->bitmaps[ER], agg->grp->index); 1035 if (mask) { 1036 struct qfq_group *next = qfq_ffs(q, mask); 1037 if (qfq_gt(roundedF, next->F)) { 1038 if (qfq_gt(limit, next->F)) 1039 agg->S = next->F; 1040 else /* preserve timestamp correctness */ 1041 agg->S = limit; 1042 return; 1043 } 1044 } 1045 agg->S = q->V; 1046 } else /* timestamp is not stale */ 1047 agg->S = agg->F; 1048 } 1049 1050 /* Update the timestamps of agg before scheduling/rescheduling it for 1051 * service. In particular, assign to agg->F its maximum possible 1052 * value, i.e., the virtual finish time with which the aggregate 1053 * should be labeled if it used all its budget once in service. 1054 */ 1055 static inline void 1056 qfq_update_agg_ts(struct qfq_sched *q, 1057 struct qfq_aggregate *agg, enum update_reason reason) 1058 { 1059 if (reason != requeue) 1060 qfq_update_start(q, agg); 1061 else /* just charge agg for the service received */ 1062 agg->S = agg->F; 1063 1064 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w; 1065 } 1066 1067 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg); 1068 1069 static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 1070 { 1071 struct qfq_sched *q = qdisc_priv(sch); 1072 struct qfq_aggregate *in_serv_agg = q->in_serv_agg; 1073 struct qfq_class *cl; 1074 struct sk_buff *skb = NULL; 1075 /* next-packet len, 0 means no more active classes in in-service agg */ 1076 unsigned int len = 0; 1077 1078 if (in_serv_agg == NULL) 1079 return NULL; 1080 1081 if (!list_empty(&in_serv_agg->active)) 1082 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1083 1084 /* 1085 * If there are no active classes in the in-service aggregate, 1086 * or if the aggregate has not enough budget to serve its next 1087 * class, then choose the next aggregate to serve. 1088 */ 1089 if (len == 0 || in_serv_agg->budget < len) { 1090 charge_actual_service(in_serv_agg); 1091 1092 /* recharge the budget of the aggregate */ 1093 in_serv_agg->initial_budget = in_serv_agg->budget = 1094 in_serv_agg->budgetmax; 1095 1096 if (!list_empty(&in_serv_agg->active)) { 1097 /* 1098 * Still active: reschedule for 1099 * service. Possible optimization: if no other 1100 * aggregate is active, then there is no point 1101 * in rescheduling this aggregate, and we can 1102 * just keep it as the in-service one. This 1103 * should be however a corner case, and to 1104 * handle it, we would need to maintain an 1105 * extra num_active_aggs field. 1106 */ 1107 qfq_update_agg_ts(q, in_serv_agg, requeue); 1108 qfq_schedule_agg(q, in_serv_agg); 1109 } else if (sch->q.qlen == 0) { /* no aggregate to serve */ 1110 q->in_serv_agg = NULL; 1111 return NULL; 1112 } 1113 1114 /* 1115 * If we get here, there are other aggregates queued: 1116 * choose the new aggregate to serve. 1117 */ 1118 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q); 1119 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1120 } 1121 if (!skb) 1122 return NULL; 1123 1124 qdisc_qstats_backlog_dec(sch, skb); 1125 sch->q.qlen--; 1126 qdisc_bstats_update(sch, skb); 1127 1128 agg_dequeue(in_serv_agg, cl, len); 1129 /* If lmax is lowered, through qfq_change_class, for a class 1130 * owning pending packets with larger size than the new value 1131 * of lmax, then the following condition may hold. 1132 */ 1133 if (unlikely(in_serv_agg->budget < len)) 1134 in_serv_agg->budget = 0; 1135 else 1136 in_serv_agg->budget -= len; 1137 1138 q->V += (u64)len * q->iwsum; 1139 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 1140 len, (unsigned long long) in_serv_agg->F, 1141 (unsigned long long) q->V); 1142 1143 return skb; 1144 } 1145 1146 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q) 1147 { 1148 struct qfq_group *grp; 1149 struct qfq_aggregate *agg, *new_front_agg; 1150 u64 old_F; 1151 1152 qfq_update_eligible(q); 1153 q->oldV = q->V; 1154 1155 if (!q->bitmaps[ER]) 1156 return NULL; 1157 1158 grp = qfq_ffs(q, q->bitmaps[ER]); 1159 old_F = grp->F; 1160 1161 agg = qfq_slot_head(grp); 1162 1163 /* agg starts to be served, remove it from schedule */ 1164 qfq_front_slot_remove(grp); 1165 1166 new_front_agg = qfq_slot_scan(grp); 1167 1168 if (new_front_agg == NULL) /* group is now inactive, remove from ER */ 1169 __clear_bit(grp->index, &q->bitmaps[ER]); 1170 else { 1171 u64 roundedS = qfq_round_down(new_front_agg->S, 1172 grp->slot_shift); 1173 unsigned int s; 1174 1175 if (grp->S == roundedS) 1176 return agg; 1177 grp->S = roundedS; 1178 grp->F = roundedS + (2ULL << grp->slot_shift); 1179 __clear_bit(grp->index, &q->bitmaps[ER]); 1180 s = qfq_calc_state(q, grp); 1181 __set_bit(grp->index, &q->bitmaps[s]); 1182 } 1183 1184 qfq_unblock_groups(q, grp->index, old_F); 1185 1186 return agg; 1187 } 1188 1189 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, 1190 struct sk_buff **to_free) 1191 { 1192 unsigned int len = qdisc_pkt_len(skb), gso_segs; 1193 struct qfq_sched *q = qdisc_priv(sch); 1194 struct qfq_class *cl; 1195 struct qfq_aggregate *agg; 1196 int err = 0; 1197 bool first; 1198 1199 cl = qfq_classify(skb, sch, &err); 1200 if (cl == NULL) { 1201 if (err & __NET_XMIT_BYPASS) 1202 qdisc_qstats_drop(sch); 1203 __qdisc_drop(skb, to_free); 1204 return err; 1205 } 1206 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 1207 1208 if (unlikely(cl->agg->lmax < len)) { 1209 pr_debug("qfq: increasing maxpkt from %u to %u for class %u", 1210 cl->agg->lmax, len, cl->common.classid); 1211 err = qfq_change_agg(sch, cl, cl->agg->class_weight, len); 1212 if (err) { 1213 cl->qstats.drops++; 1214 return qdisc_drop(skb, sch, to_free); 1215 } 1216 } 1217 1218 gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1; 1219 first = !cl->qdisc->q.qlen; 1220 err = qdisc_enqueue(skb, cl->qdisc, to_free); 1221 if (unlikely(err != NET_XMIT_SUCCESS)) { 1222 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 1223 if (net_xmit_drop_count(err)) { 1224 cl->qstats.drops++; 1225 qdisc_qstats_drop(sch); 1226 } 1227 return err; 1228 } 1229 1230 _bstats_update(&cl->bstats, len, gso_segs); 1231 sch->qstats.backlog += len; 1232 ++sch->q.qlen; 1233 1234 agg = cl->agg; 1235 /* if the queue was not empty, then done here */ 1236 if (!first) { 1237 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) && 1238 list_first_entry(&agg->active, struct qfq_class, alist) 1239 == cl && cl->deficit < len) 1240 list_move_tail(&cl->alist, &agg->active); 1241 1242 return err; 1243 } 1244 1245 /* schedule class for service within the aggregate */ 1246 cl->deficit = agg->lmax; 1247 list_add_tail(&cl->alist, &agg->active); 1248 1249 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl || 1250 q->in_serv_agg == agg) 1251 return err; /* non-empty or in service, nothing else to do */ 1252 1253 qfq_activate_agg(q, agg, enqueue); 1254 1255 return err; 1256 } 1257 1258 /* 1259 * Schedule aggregate according to its timestamps. 1260 */ 1261 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1262 { 1263 struct qfq_group *grp = agg->grp; 1264 u64 roundedS; 1265 int s; 1266 1267 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1268 1269 /* 1270 * Insert agg in the correct bucket. 1271 * If agg->S >= grp->S we don't need to adjust the 1272 * bucket list and simply go to the insertion phase. 1273 * Otherwise grp->S is decreasing, we must make room 1274 * in the bucket list, and also recompute the group state. 1275 * Finally, if there were no flows in this group and nobody 1276 * was in ER make sure to adjust V. 1277 */ 1278 if (grp->full_slots) { 1279 if (!qfq_gt(grp->S, agg->S)) 1280 goto skip_update; 1281 1282 /* create a slot for this agg->S */ 1283 qfq_slot_rotate(grp, roundedS); 1284 /* group was surely ineligible, remove */ 1285 __clear_bit(grp->index, &q->bitmaps[IR]); 1286 __clear_bit(grp->index, &q->bitmaps[IB]); 1287 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) && 1288 q->in_serv_agg == NULL) 1289 q->V = roundedS; 1290 1291 grp->S = roundedS; 1292 grp->F = roundedS + (2ULL << grp->slot_shift); 1293 s = qfq_calc_state(q, grp); 1294 __set_bit(grp->index, &q->bitmaps[s]); 1295 1296 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 1297 s, q->bitmaps[s], 1298 (unsigned long long) agg->S, 1299 (unsigned long long) agg->F, 1300 (unsigned long long) q->V); 1301 1302 skip_update: 1303 qfq_slot_insert(grp, agg, roundedS); 1304 } 1305 1306 1307 /* Update agg ts and schedule agg for service */ 1308 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 1309 enum update_reason reason) 1310 { 1311 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */ 1312 1313 qfq_update_agg_ts(q, agg, reason); 1314 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */ 1315 q->in_serv_agg = agg; /* start serving this aggregate */ 1316 /* update V: to be in service, agg must be eligible */ 1317 q->oldV = q->V = agg->S; 1318 } else if (agg != q->in_serv_agg) 1319 qfq_schedule_agg(q, agg); 1320 } 1321 1322 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 1323 struct qfq_aggregate *agg) 1324 { 1325 unsigned int i, offset; 1326 u64 roundedS; 1327 1328 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1329 offset = (roundedS - grp->S) >> grp->slot_shift; 1330 1331 i = (grp->front + offset) % QFQ_MAX_SLOTS; 1332 1333 hlist_del(&agg->next); 1334 if (hlist_empty(&grp->slots[i])) 1335 __clear_bit(offset, &grp->full_slots); 1336 } 1337 1338 /* 1339 * Called to forcibly deschedule an aggregate. If the aggregate is 1340 * not in the front bucket, or if the latter has other aggregates in 1341 * the front bucket, we can simply remove the aggregate with no other 1342 * side effects. 1343 * Otherwise we must propagate the event up. 1344 */ 1345 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1346 { 1347 struct qfq_group *grp = agg->grp; 1348 unsigned long mask; 1349 u64 roundedS; 1350 int s; 1351 1352 if (agg == q->in_serv_agg) { 1353 charge_actual_service(agg); 1354 q->in_serv_agg = qfq_choose_next_agg(q); 1355 return; 1356 } 1357 1358 agg->F = agg->S; 1359 qfq_slot_remove(q, grp, agg); 1360 1361 if (!grp->full_slots) { 1362 __clear_bit(grp->index, &q->bitmaps[IR]); 1363 __clear_bit(grp->index, &q->bitmaps[EB]); 1364 __clear_bit(grp->index, &q->bitmaps[IB]); 1365 1366 if (test_bit(grp->index, &q->bitmaps[ER]) && 1367 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 1368 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 1369 if (mask) 1370 mask = ~((1UL << __fls(mask)) - 1); 1371 else 1372 mask = ~0UL; 1373 qfq_move_groups(q, mask, EB, ER); 1374 qfq_move_groups(q, mask, IB, IR); 1375 } 1376 __clear_bit(grp->index, &q->bitmaps[ER]); 1377 } else if (hlist_empty(&grp->slots[grp->front])) { 1378 agg = qfq_slot_scan(grp); 1379 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1380 if (grp->S != roundedS) { 1381 __clear_bit(grp->index, &q->bitmaps[ER]); 1382 __clear_bit(grp->index, &q->bitmaps[IR]); 1383 __clear_bit(grp->index, &q->bitmaps[EB]); 1384 __clear_bit(grp->index, &q->bitmaps[IB]); 1385 grp->S = roundedS; 1386 grp->F = roundedS + (2ULL << grp->slot_shift); 1387 s = qfq_calc_state(q, grp); 1388 __set_bit(grp->index, &q->bitmaps[s]); 1389 } 1390 } 1391 } 1392 1393 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 1394 { 1395 struct qfq_sched *q = qdisc_priv(sch); 1396 struct qfq_class *cl = (struct qfq_class *)arg; 1397 1398 qfq_deactivate_class(q, cl); 1399 } 1400 1401 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt, 1402 struct netlink_ext_ack *extack) 1403 { 1404 struct qfq_sched *q = qdisc_priv(sch); 1405 struct qfq_group *grp; 1406 int i, j, err; 1407 u32 max_cl_shift, maxbudg_shift, max_classes; 1408 1409 err = tcf_block_get(&q->block, &q->filter_list, sch, extack); 1410 if (err) 1411 return err; 1412 1413 err = qdisc_class_hash_init(&q->clhash); 1414 if (err < 0) 1415 return err; 1416 1417 max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1, 1418 QFQ_MAX_AGG_CLASSES); 1419 /* max_cl_shift = floor(log_2(max_classes)) */ 1420 max_cl_shift = __fls(max_classes); 1421 q->max_agg_classes = 1<<max_cl_shift; 1422 1423 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */ 1424 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift; 1425 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX; 1426 1427 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1428 grp = &q->groups[i]; 1429 grp->index = i; 1430 grp->slot_shift = q->min_slot_shift + i; 1431 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1432 INIT_HLIST_HEAD(&grp->slots[j]); 1433 } 1434 1435 INIT_HLIST_HEAD(&q->nonfull_aggs); 1436 1437 return 0; 1438 } 1439 1440 static void qfq_reset_qdisc(struct Qdisc *sch) 1441 { 1442 struct qfq_sched *q = qdisc_priv(sch); 1443 struct qfq_class *cl; 1444 unsigned int i; 1445 1446 for (i = 0; i < q->clhash.hashsize; i++) { 1447 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 1448 if (cl->qdisc->q.qlen > 0) 1449 qfq_deactivate_class(q, cl); 1450 1451 qdisc_reset(cl->qdisc); 1452 } 1453 } 1454 } 1455 1456 static void qfq_destroy_qdisc(struct Qdisc *sch) 1457 { 1458 struct qfq_sched *q = qdisc_priv(sch); 1459 struct qfq_class *cl; 1460 struct hlist_node *next; 1461 unsigned int i; 1462 1463 tcf_block_put(q->block); 1464 1465 for (i = 0; i < q->clhash.hashsize; i++) { 1466 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1467 common.hnode) { 1468 qfq_destroy_class(sch, cl); 1469 } 1470 } 1471 qdisc_class_hash_destroy(&q->clhash); 1472 } 1473 1474 static const struct Qdisc_class_ops qfq_class_ops = { 1475 .change = qfq_change_class, 1476 .delete = qfq_delete_class, 1477 .find = qfq_search_class, 1478 .tcf_block = qfq_tcf_block, 1479 .bind_tcf = qfq_bind_tcf, 1480 .unbind_tcf = qfq_unbind_tcf, 1481 .graft = qfq_graft_class, 1482 .leaf = qfq_class_leaf, 1483 .qlen_notify = qfq_qlen_notify, 1484 .dump = qfq_dump_class, 1485 .dump_stats = qfq_dump_class_stats, 1486 .walk = qfq_walk, 1487 }; 1488 1489 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1490 .cl_ops = &qfq_class_ops, 1491 .id = "qfq", 1492 .priv_size = sizeof(struct qfq_sched), 1493 .enqueue = qfq_enqueue, 1494 .dequeue = qfq_dequeue, 1495 .peek = qdisc_peek_dequeued, 1496 .init = qfq_init_qdisc, 1497 .reset = qfq_reset_qdisc, 1498 .destroy = qfq_destroy_qdisc, 1499 .owner = THIS_MODULE, 1500 }; 1501 1502 static int __init qfq_init(void) 1503 { 1504 return register_qdisc(&qfq_qdisc_ops); 1505 } 1506 1507 static void __exit qfq_exit(void) 1508 { 1509 unregister_qdisc(&qfq_qdisc_ops); 1510 } 1511 1512 module_init(qfq_init); 1513 module_exit(qfq_exit); 1514 MODULE_LICENSE("GPL"); 1515