1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler. 4 * 5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 6 * Copyright (c) 2012 Paolo Valente. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/init.h> 11 #include <linux/bitops.h> 12 #include <linux/errno.h> 13 #include <linux/netdevice.h> 14 #include <linux/pkt_sched.h> 15 #include <net/sch_generic.h> 16 #include <net/pkt_sched.h> 17 #include <net/pkt_cls.h> 18 19 20 /* Quick Fair Queueing Plus 21 ======================== 22 23 Sources: 24 25 [1] Paolo Valente, 26 "Reducing the Execution Time of Fair-Queueing Schedulers." 27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf 28 29 Sources for QFQ: 30 31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 32 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 33 34 See also: 35 http://retis.sssup.it/~fabio/linux/qfq/ 36 */ 37 38 /* 39 40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES 41 classes. Each aggregate is timestamped with a virtual start time S 42 and a virtual finish time F, and scheduled according to its 43 timestamps. S and F are computed as a function of a system virtual 44 time function V. The classes within each aggregate are instead 45 scheduled with DRR. 46 47 To speed up operations, QFQ+ divides also aggregates into a limited 48 number of groups. Which group a class belongs to depends on the 49 ratio between the maximum packet length for the class and the weight 50 of the class. Groups have their own S and F. In the end, QFQ+ 51 schedules groups, then aggregates within groups, then classes within 52 aggregates. See [1] and [2] for a full description. 53 54 Virtual time computations. 55 56 S, F and V are all computed in fixed point arithmetic with 57 FRAC_BITS decimal bits. 58 59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 60 one bit per index. 61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 62 63 The layout of the bits is as below: 64 65 [ MTU_SHIFT ][ FRAC_BITS ] 66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 67 ^.__grp->index = 0 68 *.__grp->slot_shift 69 70 where MIN_SLOT_SHIFT is derived by difference from the others. 71 72 The max group index corresponds to Lmax/w_min, where 73 Lmax=1<<MTU_SHIFT, w_min = 1 . 74 From this, and knowing how many groups (MAX_INDEX) we want, 75 we can derive the shift corresponding to each group. 76 77 Because we often need to compute 78 F = S + len/w_i and V = V + len/wsum 79 instead of storing w_i store the value 80 inv_w = (1<<FRAC_BITS)/w_i 81 so we can do F = S + len * inv_w * wsum. 82 We use W_TOT in the formulas so we can easily move between 83 static and adaptive weight sum. 84 85 The per-scheduler-instance data contain all the data structures 86 for the scheduler: bitmaps and bucket lists. 87 88 */ 89 90 /* 91 * Maximum number of consecutive slots occupied by backlogged classes 92 * inside a group. 93 */ 94 #define QFQ_MAX_SLOTS 32 95 96 /* 97 * Shifts used for aggregate<->group mapping. We allow class weights that are 98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the 99 * group with the smallest index that can support the L_i / r_i configured 100 * for the classes in the aggregate. 101 * 102 * grp->index is the index of the group; and grp->slot_shift 103 * is the shift for the corresponding (scaled) sigma_i. 104 */ 105 #define QFQ_MAX_INDEX 24 106 #define QFQ_MAX_WSHIFT 10 107 108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */ 109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT) 110 111 #define FRAC_BITS 30 /* fixed point arithmetic */ 112 #define ONE_FP (1UL << FRAC_BITS) 113 114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */ 115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */ 116 117 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */ 118 119 /* 120 * Possible group states. These values are used as indexes for the bitmaps 121 * array of struct qfq_queue. 122 */ 123 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 124 125 struct qfq_group; 126 127 struct qfq_aggregate; 128 129 struct qfq_class { 130 struct Qdisc_class_common common; 131 132 unsigned int filter_cnt; 133 134 struct gnet_stats_basic_sync bstats; 135 struct gnet_stats_queue qstats; 136 struct net_rate_estimator __rcu *rate_est; 137 struct Qdisc *qdisc; 138 struct list_head alist; /* Link for active-classes list. */ 139 struct qfq_aggregate *agg; /* Parent aggregate. */ 140 int deficit; /* DRR deficit counter. */ 141 }; 142 143 struct qfq_aggregate { 144 struct hlist_node next; /* Link for the slot list. */ 145 u64 S, F; /* flow timestamps (exact) */ 146 147 /* group we belong to. In principle we would need the index, 148 * which is log_2(lmax/weight), but we never reference it 149 * directly, only the group. 150 */ 151 struct qfq_group *grp; 152 153 /* these are copied from the flowset. */ 154 u32 class_weight; /* Weight of each class in this aggregate. */ 155 /* Max pkt size for the classes in this aggregate, DRR quantum. */ 156 int lmax; 157 158 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */ 159 u32 budgetmax; /* Max budget for this aggregate. */ 160 u32 initial_budget, budget; /* Initial and current budget. */ 161 162 int num_classes; /* Number of classes in this aggr. */ 163 struct list_head active; /* DRR queue of active classes. */ 164 165 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */ 166 }; 167 168 struct qfq_group { 169 u64 S, F; /* group timestamps (approx). */ 170 unsigned int slot_shift; /* Slot shift. */ 171 unsigned int index; /* Group index. */ 172 unsigned int front; /* Index of the front slot. */ 173 unsigned long full_slots; /* non-empty slots */ 174 175 /* Array of RR lists of active aggregates. */ 176 struct hlist_head slots[QFQ_MAX_SLOTS]; 177 }; 178 179 struct qfq_sched { 180 struct tcf_proto __rcu *filter_list; 181 struct tcf_block *block; 182 struct Qdisc_class_hash clhash; 183 184 u64 oldV, V; /* Precise virtual times. */ 185 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */ 186 u32 wsum; /* weight sum */ 187 u32 iwsum; /* inverse weight sum */ 188 189 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 190 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 191 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */ 192 193 u32 max_agg_classes; /* Max number of classes per aggr. */ 194 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */ 195 }; 196 197 /* 198 * Possible reasons why the timestamps of an aggregate are updated 199 * enqueue: the aggregate switches from idle to active and must scheduled 200 * for service 201 * requeue: the aggregate finishes its budget, so it stops being served and 202 * must be rescheduled for service 203 */ 204 enum update_reason {enqueue, requeue}; 205 206 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 207 { 208 struct qfq_sched *q = qdisc_priv(sch); 209 struct Qdisc_class_common *clc; 210 211 clc = qdisc_class_find(&q->clhash, classid); 212 if (clc == NULL) 213 return NULL; 214 return container_of(clc, struct qfq_class, common); 215 } 216 217 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 218 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 }, 219 [TCA_QFQ_LMAX] = { .type = NLA_U32 }, 220 }; 221 222 /* 223 * Calculate a flow index, given its weight and maximum packet length. 224 * index = log_2(maxlen/weight) but we need to apply the scaling. 225 * This is used only once at flow creation. 226 */ 227 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift) 228 { 229 u64 slot_size = (u64)maxlen * inv_w; 230 unsigned long size_map; 231 int index = 0; 232 233 size_map = slot_size >> min_slot_shift; 234 if (!size_map) 235 goto out; 236 237 index = __fls(size_map) + 1; /* basically a log_2 */ 238 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1))); 239 240 if (index < 0) 241 index = 0; 242 out: 243 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 244 (unsigned long) ONE_FP/inv_w, maxlen, index); 245 246 return index; 247 } 248 249 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *); 250 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *, 251 enum update_reason); 252 253 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 254 u32 lmax, u32 weight) 255 { 256 INIT_LIST_HEAD(&agg->active); 257 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 258 259 agg->lmax = lmax; 260 agg->class_weight = weight; 261 } 262 263 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q, 264 u32 lmax, u32 weight) 265 { 266 struct qfq_aggregate *agg; 267 268 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next) 269 if (agg->lmax == lmax && agg->class_weight == weight) 270 return agg; 271 272 return NULL; 273 } 274 275 276 /* Update aggregate as a function of the new number of classes. */ 277 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 278 int new_num_classes) 279 { 280 u32 new_agg_weight; 281 282 if (new_num_classes == q->max_agg_classes) 283 hlist_del_init(&agg->nonfull_next); 284 285 if (agg->num_classes > new_num_classes && 286 new_num_classes == q->max_agg_classes - 1) /* agg no more full */ 287 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs); 288 289 /* The next assignment may let 290 * agg->initial_budget > agg->budgetmax 291 * hold, we will take it into account in charge_actual_service(). 292 */ 293 agg->budgetmax = new_num_classes * agg->lmax; 294 new_agg_weight = agg->class_weight * new_num_classes; 295 agg->inv_w = ONE_FP/new_agg_weight; 296 297 if (agg->grp == NULL) { 298 int i = qfq_calc_index(agg->inv_w, agg->budgetmax, 299 q->min_slot_shift); 300 agg->grp = &q->groups[i]; 301 } 302 303 q->wsum += 304 (int) agg->class_weight * (new_num_classes - agg->num_classes); 305 q->iwsum = ONE_FP / q->wsum; 306 307 agg->num_classes = new_num_classes; 308 } 309 310 /* Add class to aggregate. */ 311 static void qfq_add_to_agg(struct qfq_sched *q, 312 struct qfq_aggregate *agg, 313 struct qfq_class *cl) 314 { 315 cl->agg = agg; 316 317 qfq_update_agg(q, agg, agg->num_classes+1); 318 if (cl->qdisc->q.qlen > 0) { /* adding an active class */ 319 list_add_tail(&cl->alist, &agg->active); 320 if (list_first_entry(&agg->active, struct qfq_class, alist) == 321 cl && q->in_serv_agg != agg) /* agg was inactive */ 322 qfq_activate_agg(q, agg, enqueue); /* schedule agg */ 323 } 324 } 325 326 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *); 327 328 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 329 { 330 hlist_del_init(&agg->nonfull_next); 331 q->wsum -= agg->class_weight; 332 if (q->wsum != 0) 333 q->iwsum = ONE_FP / q->wsum; 334 335 if (q->in_serv_agg == agg) 336 q->in_serv_agg = qfq_choose_next_agg(q); 337 kfree(agg); 338 } 339 340 /* Deschedule class from within its parent aggregate. */ 341 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 342 { 343 struct qfq_aggregate *agg = cl->agg; 344 345 346 list_del(&cl->alist); /* remove from RR queue of the aggregate */ 347 if (list_empty(&agg->active)) /* agg is now inactive */ 348 qfq_deactivate_agg(q, agg); 349 } 350 351 /* Remove class from its parent aggregate. */ 352 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 353 { 354 struct qfq_aggregate *agg = cl->agg; 355 356 cl->agg = NULL; 357 if (agg->num_classes == 1) { /* agg being emptied, destroy it */ 358 qfq_destroy_agg(q, agg); 359 return; 360 } 361 qfq_update_agg(q, agg, agg->num_classes-1); 362 } 363 364 /* Deschedule class and remove it from its parent aggregate. */ 365 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl) 366 { 367 if (cl->qdisc->q.qlen > 0) /* class is active */ 368 qfq_deactivate_class(q, cl); 369 370 qfq_rm_from_agg(q, cl); 371 } 372 373 /* Move class to a new aggregate, matching the new class weight and/or lmax */ 374 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight, 375 u32 lmax) 376 { 377 struct qfq_sched *q = qdisc_priv(sch); 378 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight); 379 380 if (new_agg == NULL) { /* create new aggregate */ 381 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC); 382 if (new_agg == NULL) 383 return -ENOBUFS; 384 qfq_init_agg(q, new_agg, lmax, weight); 385 } 386 qfq_deact_rm_from_agg(q, cl); 387 qfq_add_to_agg(q, new_agg, cl); 388 389 return 0; 390 } 391 392 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 393 struct nlattr **tca, unsigned long *arg, 394 struct netlink_ext_ack *extack) 395 { 396 struct qfq_sched *q = qdisc_priv(sch); 397 struct qfq_class *cl = (struct qfq_class *)*arg; 398 bool existing = false; 399 struct nlattr *tb[TCA_QFQ_MAX + 1]; 400 struct qfq_aggregate *new_agg = NULL; 401 u32 weight, lmax, inv_w; 402 int err; 403 int delta_w; 404 405 if (tca[TCA_OPTIONS] == NULL) { 406 pr_notice("qfq: no options\n"); 407 return -EINVAL; 408 } 409 410 err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], 411 qfq_policy, NULL); 412 if (err < 0) 413 return err; 414 415 if (tb[TCA_QFQ_WEIGHT]) { 416 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]); 417 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) { 418 pr_notice("qfq: invalid weight %u\n", weight); 419 return -EINVAL; 420 } 421 } else 422 weight = 1; 423 424 if (tb[TCA_QFQ_LMAX]) { 425 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 426 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) { 427 pr_notice("qfq: invalid max length %u\n", lmax); 428 return -EINVAL; 429 } 430 } else 431 lmax = psched_mtu(qdisc_dev(sch)); 432 433 inv_w = ONE_FP / weight; 434 weight = ONE_FP / inv_w; 435 436 if (cl != NULL && 437 lmax == cl->agg->lmax && 438 weight == cl->agg->class_weight) 439 return 0; /* nothing to change */ 440 441 delta_w = weight - (cl ? cl->agg->class_weight : 0); 442 443 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 444 pr_notice("qfq: total weight out of range (%d + %u)\n", 445 delta_w, q->wsum); 446 return -EINVAL; 447 } 448 449 if (cl != NULL) { /* modify existing class */ 450 if (tca[TCA_RATE]) { 451 err = gen_replace_estimator(&cl->bstats, NULL, 452 &cl->rate_est, 453 NULL, 454 true, 455 tca[TCA_RATE]); 456 if (err) 457 return err; 458 } 459 existing = true; 460 goto set_change_agg; 461 } 462 463 /* create and init new class */ 464 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 465 if (cl == NULL) 466 return -ENOBUFS; 467 468 gnet_stats_basic_sync_init(&cl->bstats); 469 cl->common.classid = classid; 470 cl->deficit = lmax; 471 472 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 473 classid, NULL); 474 if (cl->qdisc == NULL) 475 cl->qdisc = &noop_qdisc; 476 477 if (tca[TCA_RATE]) { 478 err = gen_new_estimator(&cl->bstats, NULL, 479 &cl->rate_est, 480 NULL, 481 true, 482 tca[TCA_RATE]); 483 if (err) 484 goto destroy_class; 485 } 486 487 if (cl->qdisc != &noop_qdisc) 488 qdisc_hash_add(cl->qdisc, true); 489 490 set_change_agg: 491 sch_tree_lock(sch); 492 new_agg = qfq_find_agg(q, lmax, weight); 493 if (new_agg == NULL) { /* create new aggregate */ 494 sch_tree_unlock(sch); 495 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL); 496 if (new_agg == NULL) { 497 err = -ENOBUFS; 498 gen_kill_estimator(&cl->rate_est); 499 goto destroy_class; 500 } 501 sch_tree_lock(sch); 502 qfq_init_agg(q, new_agg, lmax, weight); 503 } 504 if (existing) 505 qfq_deact_rm_from_agg(q, cl); 506 else 507 qdisc_class_hash_insert(&q->clhash, &cl->common); 508 qfq_add_to_agg(q, new_agg, cl); 509 sch_tree_unlock(sch); 510 qdisc_class_hash_grow(sch, &q->clhash); 511 512 *arg = (unsigned long)cl; 513 return 0; 514 515 destroy_class: 516 qdisc_put(cl->qdisc); 517 kfree(cl); 518 return err; 519 } 520 521 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 522 { 523 struct qfq_sched *q = qdisc_priv(sch); 524 525 qfq_rm_from_agg(q, cl); 526 gen_kill_estimator(&cl->rate_est); 527 qdisc_put(cl->qdisc); 528 kfree(cl); 529 } 530 531 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg, 532 struct netlink_ext_ack *extack) 533 { 534 struct qfq_sched *q = qdisc_priv(sch); 535 struct qfq_class *cl = (struct qfq_class *)arg; 536 537 if (cl->filter_cnt > 0) 538 return -EBUSY; 539 540 sch_tree_lock(sch); 541 542 qdisc_purge_queue(cl->qdisc); 543 qdisc_class_hash_remove(&q->clhash, &cl->common); 544 545 sch_tree_unlock(sch); 546 547 qfq_destroy_class(sch, cl); 548 return 0; 549 } 550 551 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid) 552 { 553 return (unsigned long)qfq_find_class(sch, classid); 554 } 555 556 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl, 557 struct netlink_ext_ack *extack) 558 { 559 struct qfq_sched *q = qdisc_priv(sch); 560 561 if (cl) 562 return NULL; 563 564 return q->block; 565 } 566 567 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 568 u32 classid) 569 { 570 struct qfq_class *cl = qfq_find_class(sch, classid); 571 572 if (cl != NULL) 573 cl->filter_cnt++; 574 575 return (unsigned long)cl; 576 } 577 578 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 579 { 580 struct qfq_class *cl = (struct qfq_class *)arg; 581 582 cl->filter_cnt--; 583 } 584 585 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 586 struct Qdisc *new, struct Qdisc **old, 587 struct netlink_ext_ack *extack) 588 { 589 struct qfq_class *cl = (struct qfq_class *)arg; 590 591 if (new == NULL) { 592 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 593 cl->common.classid, NULL); 594 if (new == NULL) 595 new = &noop_qdisc; 596 } 597 598 *old = qdisc_replace(sch, new, &cl->qdisc); 599 return 0; 600 } 601 602 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 603 { 604 struct qfq_class *cl = (struct qfq_class *)arg; 605 606 return cl->qdisc; 607 } 608 609 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 610 struct sk_buff *skb, struct tcmsg *tcm) 611 { 612 struct qfq_class *cl = (struct qfq_class *)arg; 613 struct nlattr *nest; 614 615 tcm->tcm_parent = TC_H_ROOT; 616 tcm->tcm_handle = cl->common.classid; 617 tcm->tcm_info = cl->qdisc->handle; 618 619 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 620 if (nest == NULL) 621 goto nla_put_failure; 622 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) || 623 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax)) 624 goto nla_put_failure; 625 return nla_nest_end(skb, nest); 626 627 nla_put_failure: 628 nla_nest_cancel(skb, nest); 629 return -EMSGSIZE; 630 } 631 632 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 633 struct gnet_dump *d) 634 { 635 struct qfq_class *cl = (struct qfq_class *)arg; 636 struct tc_qfq_stats xstats; 637 638 memset(&xstats, 0, sizeof(xstats)); 639 640 xstats.weight = cl->agg->class_weight; 641 xstats.lmax = cl->agg->lmax; 642 643 if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 || 644 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || 645 qdisc_qstats_copy(d, cl->qdisc) < 0) 646 return -1; 647 648 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 649 } 650 651 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 652 { 653 struct qfq_sched *q = qdisc_priv(sch); 654 struct qfq_class *cl; 655 unsigned int i; 656 657 if (arg->stop) 658 return; 659 660 for (i = 0; i < q->clhash.hashsize; i++) { 661 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 662 if (arg->count < arg->skip) { 663 arg->count++; 664 continue; 665 } 666 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 667 arg->stop = 1; 668 return; 669 } 670 arg->count++; 671 } 672 } 673 } 674 675 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 676 int *qerr) 677 { 678 struct qfq_sched *q = qdisc_priv(sch); 679 struct qfq_class *cl; 680 struct tcf_result res; 681 struct tcf_proto *fl; 682 int result; 683 684 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 685 pr_debug("qfq_classify: found %d\n", skb->priority); 686 cl = qfq_find_class(sch, skb->priority); 687 if (cl != NULL) 688 return cl; 689 } 690 691 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 692 fl = rcu_dereference_bh(q->filter_list); 693 result = tcf_classify(skb, NULL, fl, &res, false); 694 if (result >= 0) { 695 #ifdef CONFIG_NET_CLS_ACT 696 switch (result) { 697 case TC_ACT_QUEUED: 698 case TC_ACT_STOLEN: 699 case TC_ACT_TRAP: 700 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 701 fallthrough; 702 case TC_ACT_SHOT: 703 return NULL; 704 } 705 #endif 706 cl = (struct qfq_class *)res.class; 707 if (cl == NULL) 708 cl = qfq_find_class(sch, res.classid); 709 return cl; 710 } 711 712 return NULL; 713 } 714 715 /* Generic comparison function, handling wraparound. */ 716 static inline int qfq_gt(u64 a, u64 b) 717 { 718 return (s64)(a - b) > 0; 719 } 720 721 /* Round a precise timestamp to its slotted value. */ 722 static inline u64 qfq_round_down(u64 ts, unsigned int shift) 723 { 724 return ts & ~((1ULL << shift) - 1); 725 } 726 727 /* return the pointer to the group with lowest index in the bitmap */ 728 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 729 unsigned long bitmap) 730 { 731 int index = __ffs(bitmap); 732 return &q->groups[index]; 733 } 734 /* Calculate a mask to mimic what would be ffs_from(). */ 735 static inline unsigned long mask_from(unsigned long bitmap, int from) 736 { 737 return bitmap & ~((1UL << from) - 1); 738 } 739 740 /* 741 * The state computation relies on ER=0, IR=1, EB=2, IB=3 742 * First compute eligibility comparing grp->S, q->V, 743 * then check if someone is blocking us and possibly add EB 744 */ 745 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 746 { 747 /* if S > V we are not eligible */ 748 unsigned int state = qfq_gt(grp->S, q->V); 749 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 750 struct qfq_group *next; 751 752 if (mask) { 753 next = qfq_ffs(q, mask); 754 if (qfq_gt(grp->F, next->F)) 755 state |= EB; 756 } 757 758 return state; 759 } 760 761 762 /* 763 * In principle 764 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 765 * q->bitmaps[src] &= ~mask; 766 * but we should make sure that src != dst 767 */ 768 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 769 int src, int dst) 770 { 771 q->bitmaps[dst] |= q->bitmaps[src] & mask; 772 q->bitmaps[src] &= ~mask; 773 } 774 775 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 776 { 777 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 778 struct qfq_group *next; 779 780 if (mask) { 781 next = qfq_ffs(q, mask); 782 if (!qfq_gt(next->F, old_F)) 783 return; 784 } 785 786 mask = (1UL << index) - 1; 787 qfq_move_groups(q, mask, EB, ER); 788 qfq_move_groups(q, mask, IB, IR); 789 } 790 791 /* 792 * perhaps 793 * 794 old_V ^= q->V; 795 old_V >>= q->min_slot_shift; 796 if (old_V) { 797 ... 798 } 799 * 800 */ 801 static void qfq_make_eligible(struct qfq_sched *q) 802 { 803 unsigned long vslot = q->V >> q->min_slot_shift; 804 unsigned long old_vslot = q->oldV >> q->min_slot_shift; 805 806 if (vslot != old_vslot) { 807 unsigned long mask; 808 int last_flip_pos = fls(vslot ^ old_vslot); 809 810 if (last_flip_pos > 31) /* higher than the number of groups */ 811 mask = ~0UL; /* make all groups eligible */ 812 else 813 mask = (1UL << last_flip_pos) - 1; 814 815 qfq_move_groups(q, mask, IR, ER); 816 qfq_move_groups(q, mask, IB, EB); 817 } 818 } 819 820 /* 821 * The index of the slot in which the input aggregate agg is to be 822 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2' 823 * and not a '-1' because the start time of the group may be moved 824 * backward by one slot after the aggregate has been inserted, and 825 * this would cause non-empty slots to be right-shifted by one 826 * position. 827 * 828 * QFQ+ fully satisfies this bound to the slot index if the parameters 829 * of the classes are not changed dynamically, and if QFQ+ never 830 * happens to postpone the service of agg unjustly, i.e., it never 831 * happens that the aggregate becomes backlogged and eligible, or just 832 * eligible, while an aggregate with a higher approximated finish time 833 * is being served. In particular, in this case QFQ+ guarantees that 834 * the timestamps of agg are low enough that the slot index is never 835 * higher than 2. Unfortunately, QFQ+ cannot provide the same 836 * guarantee if it happens to unjustly postpone the service of agg, or 837 * if the parameters of some class are changed. 838 * 839 * As for the first event, i.e., an out-of-order service, the 840 * upper bound to the slot index guaranteed by QFQ+ grows to 841 * 2 + 842 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * 843 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1. 844 * 845 * The following function deals with this problem by backward-shifting 846 * the timestamps of agg, if needed, so as to guarantee that the slot 847 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may 848 * cause the service of other aggregates to be postponed, yet the 849 * worst-case guarantees of these aggregates are not violated. In 850 * fact, in case of no out-of-order service, the timestamps of agg 851 * would have been even lower than they are after the backward shift, 852 * because QFQ+ would have guaranteed a maximum value equal to 2 for 853 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose 854 * service is postponed because of the backward-shift would have 855 * however waited for the service of agg before being served. 856 * 857 * The other event that may cause the slot index to be higher than 2 858 * for agg is a recent change of the parameters of some class. If the 859 * weight of a class is increased or the lmax (max_pkt_size) of the 860 * class is decreased, then a new aggregate with smaller slot size 861 * than the original parent aggregate of the class may happen to be 862 * activated. The activation of this aggregate should be properly 863 * delayed to when the service of the class has finished in the ideal 864 * system tracked by QFQ+. If the activation of the aggregate is not 865 * delayed to this reference time instant, then this aggregate may be 866 * unjustly served before other aggregates waiting for service. This 867 * may cause the above bound to the slot index to be violated for some 868 * of these unlucky aggregates. 869 * 870 * Instead of delaying the activation of the new aggregate, which is 871 * quite complex, the above-discussed capping of the slot index is 872 * used to handle also the consequences of a change of the parameters 873 * of a class. 874 */ 875 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg, 876 u64 roundedS) 877 { 878 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 879 unsigned int i; /* slot index in the bucket list */ 880 881 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { 882 u64 deltaS = roundedS - grp->S - 883 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); 884 agg->S -= deltaS; 885 agg->F -= deltaS; 886 slot = QFQ_MAX_SLOTS - 2; 887 } 888 889 i = (grp->front + slot) % QFQ_MAX_SLOTS; 890 891 hlist_add_head(&agg->next, &grp->slots[i]); 892 __set_bit(slot, &grp->full_slots); 893 } 894 895 /* Maybe introduce hlist_first_entry?? */ 896 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp) 897 { 898 return hlist_entry(grp->slots[grp->front].first, 899 struct qfq_aggregate, next); 900 } 901 902 /* 903 * remove the entry from the slot 904 */ 905 static void qfq_front_slot_remove(struct qfq_group *grp) 906 { 907 struct qfq_aggregate *agg = qfq_slot_head(grp); 908 909 BUG_ON(!agg); 910 hlist_del(&agg->next); 911 if (hlist_empty(&grp->slots[grp->front])) 912 __clear_bit(0, &grp->full_slots); 913 } 914 915 /* 916 * Returns the first aggregate in the first non-empty bucket of the 917 * group. As a side effect, adjusts the bucket list so the first 918 * non-empty bucket is at position 0 in full_slots. 919 */ 920 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp) 921 { 922 unsigned int i; 923 924 pr_debug("qfq slot_scan: grp %u full %#lx\n", 925 grp->index, grp->full_slots); 926 927 if (grp->full_slots == 0) 928 return NULL; 929 930 i = __ffs(grp->full_slots); /* zero based */ 931 if (i > 0) { 932 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 933 grp->full_slots >>= i; 934 } 935 936 return qfq_slot_head(grp); 937 } 938 939 /* 940 * adjust the bucket list. When the start time of a group decreases, 941 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 942 * move the objects. The mask of occupied slots must be shifted 943 * because we use ffs() to find the first non-empty slot. 944 * This covers decreases in the group's start time, but what about 945 * increases of the start time ? 946 * Here too we should make sure that i is less than 32 947 */ 948 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 949 { 950 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 951 952 grp->full_slots <<= i; 953 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 954 } 955 956 static void qfq_update_eligible(struct qfq_sched *q) 957 { 958 struct qfq_group *grp; 959 unsigned long ineligible; 960 961 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 962 if (ineligible) { 963 if (!q->bitmaps[ER]) { 964 grp = qfq_ffs(q, ineligible); 965 if (qfq_gt(grp->S, q->V)) 966 q->V = grp->S; 967 } 968 qfq_make_eligible(q); 969 } 970 } 971 972 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */ 973 static void agg_dequeue(struct qfq_aggregate *agg, 974 struct qfq_class *cl, unsigned int len) 975 { 976 qdisc_dequeue_peeked(cl->qdisc); 977 978 cl->deficit -= (int) len; 979 980 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */ 981 list_del(&cl->alist); 982 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) { 983 cl->deficit += agg->lmax; 984 list_move_tail(&cl->alist, &agg->active); 985 } 986 } 987 988 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg, 989 struct qfq_class **cl, 990 unsigned int *len) 991 { 992 struct sk_buff *skb; 993 994 *cl = list_first_entry(&agg->active, struct qfq_class, alist); 995 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc); 996 if (skb == NULL) 997 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n"); 998 else 999 *len = qdisc_pkt_len(skb); 1000 1001 return skb; 1002 } 1003 1004 /* Update F according to the actual service received by the aggregate. */ 1005 static inline void charge_actual_service(struct qfq_aggregate *agg) 1006 { 1007 /* Compute the service received by the aggregate, taking into 1008 * account that, after decreasing the number of classes in 1009 * agg, it may happen that 1010 * agg->initial_budget - agg->budget > agg->bugdetmax 1011 */ 1012 u32 service_received = min(agg->budgetmax, 1013 agg->initial_budget - agg->budget); 1014 1015 agg->F = agg->S + (u64)service_received * agg->inv_w; 1016 } 1017 1018 /* Assign a reasonable start time for a new aggregate in group i. 1019 * Admissible values for \hat(F) are multiples of \sigma_i 1020 * no greater than V+\sigma_i . Larger values mean that 1021 * we had a wraparound so we consider the timestamp to be stale. 1022 * 1023 * If F is not stale and F >= V then we set S = F. 1024 * Otherwise we should assign S = V, but this may violate 1025 * the ordering in EB (see [2]). So, if we have groups in ER, 1026 * set S to the F_j of the first group j which would be blocking us. 1027 * We are guaranteed not to move S backward because 1028 * otherwise our group i would still be blocked. 1029 */ 1030 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg) 1031 { 1032 unsigned long mask; 1033 u64 limit, roundedF; 1034 int slot_shift = agg->grp->slot_shift; 1035 1036 roundedF = qfq_round_down(agg->F, slot_shift); 1037 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 1038 1039 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) { 1040 /* timestamp was stale */ 1041 mask = mask_from(q->bitmaps[ER], agg->grp->index); 1042 if (mask) { 1043 struct qfq_group *next = qfq_ffs(q, mask); 1044 if (qfq_gt(roundedF, next->F)) { 1045 if (qfq_gt(limit, next->F)) 1046 agg->S = next->F; 1047 else /* preserve timestamp correctness */ 1048 agg->S = limit; 1049 return; 1050 } 1051 } 1052 agg->S = q->V; 1053 } else /* timestamp is not stale */ 1054 agg->S = agg->F; 1055 } 1056 1057 /* Update the timestamps of agg before scheduling/rescheduling it for 1058 * service. In particular, assign to agg->F its maximum possible 1059 * value, i.e., the virtual finish time with which the aggregate 1060 * should be labeled if it used all its budget once in service. 1061 */ 1062 static inline void 1063 qfq_update_agg_ts(struct qfq_sched *q, 1064 struct qfq_aggregate *agg, enum update_reason reason) 1065 { 1066 if (reason != requeue) 1067 qfq_update_start(q, agg); 1068 else /* just charge agg for the service received */ 1069 agg->S = agg->F; 1070 1071 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w; 1072 } 1073 1074 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg); 1075 1076 static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 1077 { 1078 struct qfq_sched *q = qdisc_priv(sch); 1079 struct qfq_aggregate *in_serv_agg = q->in_serv_agg; 1080 struct qfq_class *cl; 1081 struct sk_buff *skb = NULL; 1082 /* next-packet len, 0 means no more active classes in in-service agg */ 1083 unsigned int len = 0; 1084 1085 if (in_serv_agg == NULL) 1086 return NULL; 1087 1088 if (!list_empty(&in_serv_agg->active)) 1089 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1090 1091 /* 1092 * If there are no active classes in the in-service aggregate, 1093 * or if the aggregate has not enough budget to serve its next 1094 * class, then choose the next aggregate to serve. 1095 */ 1096 if (len == 0 || in_serv_agg->budget < len) { 1097 charge_actual_service(in_serv_agg); 1098 1099 /* recharge the budget of the aggregate */ 1100 in_serv_agg->initial_budget = in_serv_agg->budget = 1101 in_serv_agg->budgetmax; 1102 1103 if (!list_empty(&in_serv_agg->active)) { 1104 /* 1105 * Still active: reschedule for 1106 * service. Possible optimization: if no other 1107 * aggregate is active, then there is no point 1108 * in rescheduling this aggregate, and we can 1109 * just keep it as the in-service one. This 1110 * should be however a corner case, and to 1111 * handle it, we would need to maintain an 1112 * extra num_active_aggs field. 1113 */ 1114 qfq_update_agg_ts(q, in_serv_agg, requeue); 1115 qfq_schedule_agg(q, in_serv_agg); 1116 } else if (sch->q.qlen == 0) { /* no aggregate to serve */ 1117 q->in_serv_agg = NULL; 1118 return NULL; 1119 } 1120 1121 /* 1122 * If we get here, there are other aggregates queued: 1123 * choose the new aggregate to serve. 1124 */ 1125 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q); 1126 skb = qfq_peek_skb(in_serv_agg, &cl, &len); 1127 } 1128 if (!skb) 1129 return NULL; 1130 1131 qdisc_qstats_backlog_dec(sch, skb); 1132 sch->q.qlen--; 1133 qdisc_bstats_update(sch, skb); 1134 1135 agg_dequeue(in_serv_agg, cl, len); 1136 /* If lmax is lowered, through qfq_change_class, for a class 1137 * owning pending packets with larger size than the new value 1138 * of lmax, then the following condition may hold. 1139 */ 1140 if (unlikely(in_serv_agg->budget < len)) 1141 in_serv_agg->budget = 0; 1142 else 1143 in_serv_agg->budget -= len; 1144 1145 q->V += (u64)len * q->iwsum; 1146 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 1147 len, (unsigned long long) in_serv_agg->F, 1148 (unsigned long long) q->V); 1149 1150 return skb; 1151 } 1152 1153 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q) 1154 { 1155 struct qfq_group *grp; 1156 struct qfq_aggregate *agg, *new_front_agg; 1157 u64 old_F; 1158 1159 qfq_update_eligible(q); 1160 q->oldV = q->V; 1161 1162 if (!q->bitmaps[ER]) 1163 return NULL; 1164 1165 grp = qfq_ffs(q, q->bitmaps[ER]); 1166 old_F = grp->F; 1167 1168 agg = qfq_slot_head(grp); 1169 1170 /* agg starts to be served, remove it from schedule */ 1171 qfq_front_slot_remove(grp); 1172 1173 new_front_agg = qfq_slot_scan(grp); 1174 1175 if (new_front_agg == NULL) /* group is now inactive, remove from ER */ 1176 __clear_bit(grp->index, &q->bitmaps[ER]); 1177 else { 1178 u64 roundedS = qfq_round_down(new_front_agg->S, 1179 grp->slot_shift); 1180 unsigned int s; 1181 1182 if (grp->S == roundedS) 1183 return agg; 1184 grp->S = roundedS; 1185 grp->F = roundedS + (2ULL << grp->slot_shift); 1186 __clear_bit(grp->index, &q->bitmaps[ER]); 1187 s = qfq_calc_state(q, grp); 1188 __set_bit(grp->index, &q->bitmaps[s]); 1189 } 1190 1191 qfq_unblock_groups(q, grp->index, old_F); 1192 1193 return agg; 1194 } 1195 1196 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, 1197 struct sk_buff **to_free) 1198 { 1199 unsigned int len = qdisc_pkt_len(skb), gso_segs; 1200 struct qfq_sched *q = qdisc_priv(sch); 1201 struct qfq_class *cl; 1202 struct qfq_aggregate *agg; 1203 int err = 0; 1204 bool first; 1205 1206 cl = qfq_classify(skb, sch, &err); 1207 if (cl == NULL) { 1208 if (err & __NET_XMIT_BYPASS) 1209 qdisc_qstats_drop(sch); 1210 __qdisc_drop(skb, to_free); 1211 return err; 1212 } 1213 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 1214 1215 if (unlikely(cl->agg->lmax < len)) { 1216 pr_debug("qfq: increasing maxpkt from %u to %u for class %u", 1217 cl->agg->lmax, len, cl->common.classid); 1218 err = qfq_change_agg(sch, cl, cl->agg->class_weight, len); 1219 if (err) { 1220 cl->qstats.drops++; 1221 return qdisc_drop(skb, sch, to_free); 1222 } 1223 } 1224 1225 gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1; 1226 first = !cl->qdisc->q.qlen; 1227 err = qdisc_enqueue(skb, cl->qdisc, to_free); 1228 if (unlikely(err != NET_XMIT_SUCCESS)) { 1229 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 1230 if (net_xmit_drop_count(err)) { 1231 cl->qstats.drops++; 1232 qdisc_qstats_drop(sch); 1233 } 1234 return err; 1235 } 1236 1237 _bstats_update(&cl->bstats, len, gso_segs); 1238 sch->qstats.backlog += len; 1239 ++sch->q.qlen; 1240 1241 agg = cl->agg; 1242 /* if the queue was not empty, then done here */ 1243 if (!first) { 1244 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) && 1245 list_first_entry(&agg->active, struct qfq_class, alist) 1246 == cl && cl->deficit < len) 1247 list_move_tail(&cl->alist, &agg->active); 1248 1249 return err; 1250 } 1251 1252 /* schedule class for service within the aggregate */ 1253 cl->deficit = agg->lmax; 1254 list_add_tail(&cl->alist, &agg->active); 1255 1256 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl || 1257 q->in_serv_agg == agg) 1258 return err; /* non-empty or in service, nothing else to do */ 1259 1260 qfq_activate_agg(q, agg, enqueue); 1261 1262 return err; 1263 } 1264 1265 /* 1266 * Schedule aggregate according to its timestamps. 1267 */ 1268 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1269 { 1270 struct qfq_group *grp = agg->grp; 1271 u64 roundedS; 1272 int s; 1273 1274 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1275 1276 /* 1277 * Insert agg in the correct bucket. 1278 * If agg->S >= grp->S we don't need to adjust the 1279 * bucket list and simply go to the insertion phase. 1280 * Otherwise grp->S is decreasing, we must make room 1281 * in the bucket list, and also recompute the group state. 1282 * Finally, if there were no flows in this group and nobody 1283 * was in ER make sure to adjust V. 1284 */ 1285 if (grp->full_slots) { 1286 if (!qfq_gt(grp->S, agg->S)) 1287 goto skip_update; 1288 1289 /* create a slot for this agg->S */ 1290 qfq_slot_rotate(grp, roundedS); 1291 /* group was surely ineligible, remove */ 1292 __clear_bit(grp->index, &q->bitmaps[IR]); 1293 __clear_bit(grp->index, &q->bitmaps[IB]); 1294 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) && 1295 q->in_serv_agg == NULL) 1296 q->V = roundedS; 1297 1298 grp->S = roundedS; 1299 grp->F = roundedS + (2ULL << grp->slot_shift); 1300 s = qfq_calc_state(q, grp); 1301 __set_bit(grp->index, &q->bitmaps[s]); 1302 1303 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 1304 s, q->bitmaps[s], 1305 (unsigned long long) agg->S, 1306 (unsigned long long) agg->F, 1307 (unsigned long long) q->V); 1308 1309 skip_update: 1310 qfq_slot_insert(grp, agg, roundedS); 1311 } 1312 1313 1314 /* Update agg ts and schedule agg for service */ 1315 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg, 1316 enum update_reason reason) 1317 { 1318 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */ 1319 1320 qfq_update_agg_ts(q, agg, reason); 1321 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */ 1322 q->in_serv_agg = agg; /* start serving this aggregate */ 1323 /* update V: to be in service, agg must be eligible */ 1324 q->oldV = q->V = agg->S; 1325 } else if (agg != q->in_serv_agg) 1326 qfq_schedule_agg(q, agg); 1327 } 1328 1329 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 1330 struct qfq_aggregate *agg) 1331 { 1332 unsigned int i, offset; 1333 u64 roundedS; 1334 1335 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1336 offset = (roundedS - grp->S) >> grp->slot_shift; 1337 1338 i = (grp->front + offset) % QFQ_MAX_SLOTS; 1339 1340 hlist_del(&agg->next); 1341 if (hlist_empty(&grp->slots[i])) 1342 __clear_bit(offset, &grp->full_slots); 1343 } 1344 1345 /* 1346 * Called to forcibly deschedule an aggregate. If the aggregate is 1347 * not in the front bucket, or if the latter has other aggregates in 1348 * the front bucket, we can simply remove the aggregate with no other 1349 * side effects. 1350 * Otherwise we must propagate the event up. 1351 */ 1352 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg) 1353 { 1354 struct qfq_group *grp = agg->grp; 1355 unsigned long mask; 1356 u64 roundedS; 1357 int s; 1358 1359 if (agg == q->in_serv_agg) { 1360 charge_actual_service(agg); 1361 q->in_serv_agg = qfq_choose_next_agg(q); 1362 return; 1363 } 1364 1365 agg->F = agg->S; 1366 qfq_slot_remove(q, grp, agg); 1367 1368 if (!grp->full_slots) { 1369 __clear_bit(grp->index, &q->bitmaps[IR]); 1370 __clear_bit(grp->index, &q->bitmaps[EB]); 1371 __clear_bit(grp->index, &q->bitmaps[IB]); 1372 1373 if (test_bit(grp->index, &q->bitmaps[ER]) && 1374 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 1375 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 1376 if (mask) 1377 mask = ~((1UL << __fls(mask)) - 1); 1378 else 1379 mask = ~0UL; 1380 qfq_move_groups(q, mask, EB, ER); 1381 qfq_move_groups(q, mask, IB, IR); 1382 } 1383 __clear_bit(grp->index, &q->bitmaps[ER]); 1384 } else if (hlist_empty(&grp->slots[grp->front])) { 1385 agg = qfq_slot_scan(grp); 1386 roundedS = qfq_round_down(agg->S, grp->slot_shift); 1387 if (grp->S != roundedS) { 1388 __clear_bit(grp->index, &q->bitmaps[ER]); 1389 __clear_bit(grp->index, &q->bitmaps[IR]); 1390 __clear_bit(grp->index, &q->bitmaps[EB]); 1391 __clear_bit(grp->index, &q->bitmaps[IB]); 1392 grp->S = roundedS; 1393 grp->F = roundedS + (2ULL << grp->slot_shift); 1394 s = qfq_calc_state(q, grp); 1395 __set_bit(grp->index, &q->bitmaps[s]); 1396 } 1397 } 1398 } 1399 1400 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 1401 { 1402 struct qfq_sched *q = qdisc_priv(sch); 1403 struct qfq_class *cl = (struct qfq_class *)arg; 1404 1405 qfq_deactivate_class(q, cl); 1406 } 1407 1408 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt, 1409 struct netlink_ext_ack *extack) 1410 { 1411 struct qfq_sched *q = qdisc_priv(sch); 1412 struct qfq_group *grp; 1413 int i, j, err; 1414 u32 max_cl_shift, maxbudg_shift, max_classes; 1415 1416 err = tcf_block_get(&q->block, &q->filter_list, sch, extack); 1417 if (err) 1418 return err; 1419 1420 err = qdisc_class_hash_init(&q->clhash); 1421 if (err < 0) 1422 return err; 1423 1424 max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1, 1425 QFQ_MAX_AGG_CLASSES); 1426 /* max_cl_shift = floor(log_2(max_classes)) */ 1427 max_cl_shift = __fls(max_classes); 1428 q->max_agg_classes = 1<<max_cl_shift; 1429 1430 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */ 1431 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift; 1432 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX; 1433 1434 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1435 grp = &q->groups[i]; 1436 grp->index = i; 1437 grp->slot_shift = q->min_slot_shift + i; 1438 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1439 INIT_HLIST_HEAD(&grp->slots[j]); 1440 } 1441 1442 INIT_HLIST_HEAD(&q->nonfull_aggs); 1443 1444 return 0; 1445 } 1446 1447 static void qfq_reset_qdisc(struct Qdisc *sch) 1448 { 1449 struct qfq_sched *q = qdisc_priv(sch); 1450 struct qfq_class *cl; 1451 unsigned int i; 1452 1453 for (i = 0; i < q->clhash.hashsize; i++) { 1454 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 1455 if (cl->qdisc->q.qlen > 0) 1456 qfq_deactivate_class(q, cl); 1457 1458 qdisc_reset(cl->qdisc); 1459 } 1460 } 1461 } 1462 1463 static void qfq_destroy_qdisc(struct Qdisc *sch) 1464 { 1465 struct qfq_sched *q = qdisc_priv(sch); 1466 struct qfq_class *cl; 1467 struct hlist_node *next; 1468 unsigned int i; 1469 1470 tcf_block_put(q->block); 1471 1472 for (i = 0; i < q->clhash.hashsize; i++) { 1473 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1474 common.hnode) { 1475 qfq_destroy_class(sch, cl); 1476 } 1477 } 1478 qdisc_class_hash_destroy(&q->clhash); 1479 } 1480 1481 static const struct Qdisc_class_ops qfq_class_ops = { 1482 .change = qfq_change_class, 1483 .delete = qfq_delete_class, 1484 .find = qfq_search_class, 1485 .tcf_block = qfq_tcf_block, 1486 .bind_tcf = qfq_bind_tcf, 1487 .unbind_tcf = qfq_unbind_tcf, 1488 .graft = qfq_graft_class, 1489 .leaf = qfq_class_leaf, 1490 .qlen_notify = qfq_qlen_notify, 1491 .dump = qfq_dump_class, 1492 .dump_stats = qfq_dump_class_stats, 1493 .walk = qfq_walk, 1494 }; 1495 1496 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1497 .cl_ops = &qfq_class_ops, 1498 .id = "qfq", 1499 .priv_size = sizeof(struct qfq_sched), 1500 .enqueue = qfq_enqueue, 1501 .dequeue = qfq_dequeue, 1502 .peek = qdisc_peek_dequeued, 1503 .init = qfq_init_qdisc, 1504 .reset = qfq_reset_qdisc, 1505 .destroy = qfq_destroy_qdisc, 1506 .owner = THIS_MODULE, 1507 }; 1508 1509 static int __init qfq_init(void) 1510 { 1511 return register_qdisc(&qfq_qdisc_ops); 1512 } 1513 1514 static void __exit qfq_exit(void) 1515 { 1516 unregister_qdisc(&qfq_qdisc_ops); 1517 } 1518 1519 module_init(qfq_init); 1520 module_exit(qfq_exit); 1521 MODULE_LICENSE("GPL"); 1522