1 /* 2 * net/sched/sch_qfq.c Quick Fair Queueing Scheduler. 3 * 4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * version 2 as published by the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/bitops.h> 14 #include <linux/errno.h> 15 #include <linux/netdevice.h> 16 #include <linux/pkt_sched.h> 17 #include <net/sch_generic.h> 18 #include <net/pkt_sched.h> 19 #include <net/pkt_cls.h> 20 21 22 /* Quick Fair Queueing 23 =================== 24 25 Sources: 26 27 Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient 28 Packet Scheduling with Tight Bandwidth Distribution Guarantees." 29 30 See also: 31 http://retis.sssup.it/~fabio/linux/qfq/ 32 */ 33 34 /* 35 36 Virtual time computations. 37 38 S, F and V are all computed in fixed point arithmetic with 39 FRAC_BITS decimal bits. 40 41 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 42 one bit per index. 43 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 44 45 The layout of the bits is as below: 46 47 [ MTU_SHIFT ][ FRAC_BITS ] 48 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 49 ^.__grp->index = 0 50 *.__grp->slot_shift 51 52 where MIN_SLOT_SHIFT is derived by difference from the others. 53 54 The max group index corresponds to Lmax/w_min, where 55 Lmax=1<<MTU_SHIFT, w_min = 1 . 56 From this, and knowing how many groups (MAX_INDEX) we want, 57 we can derive the shift corresponding to each group. 58 59 Because we often need to compute 60 F = S + len/w_i and V = V + len/wsum 61 instead of storing w_i store the value 62 inv_w = (1<<FRAC_BITS)/w_i 63 so we can do F = S + len * inv_w * wsum. 64 We use W_TOT in the formulas so we can easily move between 65 static and adaptive weight sum. 66 67 The per-scheduler-instance data contain all the data structures 68 for the scheduler: bitmaps and bucket lists. 69 70 */ 71 72 /* 73 * Maximum number of consecutive slots occupied by backlogged classes 74 * inside a group. 75 */ 76 #define QFQ_MAX_SLOTS 32 77 78 /* 79 * Shifts used for class<->group mapping. We allow class weights that are 80 * in the range [1, 2^MAX_WSHIFT], and we try to map each class i to the 81 * group with the smallest index that can support the L_i / r_i configured 82 * for the class. 83 * 84 * grp->index is the index of the group; and grp->slot_shift 85 * is the shift for the corresponding (scaled) sigma_i. 86 */ 87 #define QFQ_MAX_INDEX 24 88 #define QFQ_MAX_WSHIFT 12 89 90 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) 91 #define QFQ_MAX_WSUM (16*QFQ_MAX_WEIGHT) 92 93 #define FRAC_BITS 30 /* fixed point arithmetic */ 94 #define ONE_FP (1UL << FRAC_BITS) 95 #define IWSUM (ONE_FP/QFQ_MAX_WSUM) 96 97 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */ 98 #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX) 99 #define QFQ_MIN_LMAX 256 /* min possible lmax for a class */ 100 101 /* 102 * Possible group states. These values are used as indexes for the bitmaps 103 * array of struct qfq_queue. 104 */ 105 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 106 107 struct qfq_group; 108 109 struct qfq_class { 110 struct Qdisc_class_common common; 111 112 unsigned int refcnt; 113 unsigned int filter_cnt; 114 115 struct gnet_stats_basic_packed bstats; 116 struct gnet_stats_queue qstats; 117 struct gnet_stats_rate_est rate_est; 118 struct Qdisc *qdisc; 119 120 struct hlist_node next; /* Link for the slot list. */ 121 u64 S, F; /* flow timestamps (exact) */ 122 123 /* group we belong to. In principle we would need the index, 124 * which is log_2(lmax/weight), but we never reference it 125 * directly, only the group. 126 */ 127 struct qfq_group *grp; 128 129 /* these are copied from the flowset. */ 130 u32 inv_w; /* ONE_FP/weight */ 131 u32 lmax; /* Max packet size for this flow. */ 132 }; 133 134 struct qfq_group { 135 u64 S, F; /* group timestamps (approx). */ 136 unsigned int slot_shift; /* Slot shift. */ 137 unsigned int index; /* Group index. */ 138 unsigned int front; /* Index of the front slot. */ 139 unsigned long full_slots; /* non-empty slots */ 140 141 /* Array of RR lists of active classes. */ 142 struct hlist_head slots[QFQ_MAX_SLOTS]; 143 }; 144 145 struct qfq_sched { 146 struct tcf_proto *filter_list; 147 struct Qdisc_class_hash clhash; 148 149 u64 V; /* Precise virtual time. */ 150 u32 wsum; /* weight sum */ 151 152 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 153 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 154 }; 155 156 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid) 157 { 158 struct qfq_sched *q = qdisc_priv(sch); 159 struct Qdisc_class_common *clc; 160 161 clc = qdisc_class_find(&q->clhash, classid); 162 if (clc == NULL) 163 return NULL; 164 return container_of(clc, struct qfq_class, common); 165 } 166 167 static void qfq_purge_queue(struct qfq_class *cl) 168 { 169 unsigned int len = cl->qdisc->q.qlen; 170 171 qdisc_reset(cl->qdisc); 172 qdisc_tree_decrease_qlen(cl->qdisc, len); 173 } 174 175 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = { 176 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 }, 177 [TCA_QFQ_LMAX] = { .type = NLA_U32 }, 178 }; 179 180 /* 181 * Calculate a flow index, given its weight and maximum packet length. 182 * index = log_2(maxlen/weight) but we need to apply the scaling. 183 * This is used only once at flow creation. 184 */ 185 static int qfq_calc_index(u32 inv_w, unsigned int maxlen) 186 { 187 u64 slot_size = (u64)maxlen * inv_w; 188 unsigned long size_map; 189 int index = 0; 190 191 size_map = slot_size >> QFQ_MIN_SLOT_SHIFT; 192 if (!size_map) 193 goto out; 194 195 index = __fls(size_map) + 1; /* basically a log_2 */ 196 index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1))); 197 198 if (index < 0) 199 index = 0; 200 out: 201 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n", 202 (unsigned long) ONE_FP/inv_w, maxlen, index); 203 204 return index; 205 } 206 207 /* Length of the next packet (0 if the queue is empty). */ 208 static unsigned int qdisc_peek_len(struct Qdisc *sch) 209 { 210 struct sk_buff *skb; 211 212 skb = sch->ops->peek(sch); 213 return skb ? qdisc_pkt_len(skb) : 0; 214 } 215 216 static void qfq_deactivate_class(struct qfq_sched *, struct qfq_class *); 217 static void qfq_activate_class(struct qfq_sched *q, struct qfq_class *cl, 218 unsigned int len); 219 220 static void qfq_update_class_params(struct qfq_sched *q, struct qfq_class *cl, 221 u32 lmax, u32 inv_w, int delta_w) 222 { 223 int i; 224 225 /* update qfq-specific data */ 226 cl->lmax = lmax; 227 cl->inv_w = inv_w; 228 i = qfq_calc_index(cl->inv_w, cl->lmax); 229 230 cl->grp = &q->groups[i]; 231 232 q->wsum += delta_w; 233 } 234 235 static void qfq_update_reactivate_class(struct qfq_sched *q, 236 struct qfq_class *cl, 237 u32 inv_w, u32 lmax, int delta_w) 238 { 239 bool need_reactivation = false; 240 int i = qfq_calc_index(inv_w, lmax); 241 242 if (&q->groups[i] != cl->grp && cl->qdisc->q.qlen > 0) { 243 /* 244 * shift cl->F back, to not charge the 245 * class for the not-yet-served head 246 * packet 247 */ 248 cl->F = cl->S; 249 /* remove class from its slot in the old group */ 250 qfq_deactivate_class(q, cl); 251 need_reactivation = true; 252 } 253 254 qfq_update_class_params(q, cl, lmax, inv_w, delta_w); 255 256 if (need_reactivation) /* activate in new group */ 257 qfq_activate_class(q, cl, qdisc_peek_len(cl->qdisc)); 258 } 259 260 261 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 262 struct nlattr **tca, unsigned long *arg) 263 { 264 struct qfq_sched *q = qdisc_priv(sch); 265 struct qfq_class *cl = (struct qfq_class *)*arg; 266 struct nlattr *tb[TCA_QFQ_MAX + 1]; 267 u32 weight, lmax, inv_w; 268 int err; 269 int delta_w; 270 271 if (tca[TCA_OPTIONS] == NULL) { 272 pr_notice("qfq: no options\n"); 273 return -EINVAL; 274 } 275 276 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy); 277 if (err < 0) 278 return err; 279 280 if (tb[TCA_QFQ_WEIGHT]) { 281 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]); 282 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) { 283 pr_notice("qfq: invalid weight %u\n", weight); 284 return -EINVAL; 285 } 286 } else 287 weight = 1; 288 289 inv_w = ONE_FP / weight; 290 weight = ONE_FP / inv_w; 291 delta_w = weight - (cl ? ONE_FP / cl->inv_w : 0); 292 if (q->wsum + delta_w > QFQ_MAX_WSUM) { 293 pr_notice("qfq: total weight out of range (%u + %u)\n", 294 delta_w, q->wsum); 295 return -EINVAL; 296 } 297 298 if (tb[TCA_QFQ_LMAX]) { 299 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]); 300 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) { 301 pr_notice("qfq: invalid max length %u\n", lmax); 302 return -EINVAL; 303 } 304 } else 305 lmax = psched_mtu(qdisc_dev(sch)); 306 307 if (cl != NULL) { 308 if (tca[TCA_RATE]) { 309 err = gen_replace_estimator(&cl->bstats, &cl->rate_est, 310 qdisc_root_sleeping_lock(sch), 311 tca[TCA_RATE]); 312 if (err) 313 return err; 314 } 315 316 if (lmax == cl->lmax && inv_w == cl->inv_w) 317 return 0; /* nothing to update */ 318 319 sch_tree_lock(sch); 320 qfq_update_reactivate_class(q, cl, inv_w, lmax, delta_w); 321 sch_tree_unlock(sch); 322 323 return 0; 324 } 325 326 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL); 327 if (cl == NULL) 328 return -ENOBUFS; 329 330 cl->refcnt = 1; 331 cl->common.classid = classid; 332 333 qfq_update_class_params(q, cl, lmax, inv_w, delta_w); 334 335 cl->qdisc = qdisc_create_dflt(sch->dev_queue, 336 &pfifo_qdisc_ops, classid); 337 if (cl->qdisc == NULL) 338 cl->qdisc = &noop_qdisc; 339 340 if (tca[TCA_RATE]) { 341 err = gen_new_estimator(&cl->bstats, &cl->rate_est, 342 qdisc_root_sleeping_lock(sch), 343 tca[TCA_RATE]); 344 if (err) { 345 qdisc_destroy(cl->qdisc); 346 kfree(cl); 347 return err; 348 } 349 } 350 351 sch_tree_lock(sch); 352 qdisc_class_hash_insert(&q->clhash, &cl->common); 353 sch_tree_unlock(sch); 354 355 qdisc_class_hash_grow(sch, &q->clhash); 356 357 *arg = (unsigned long)cl; 358 return 0; 359 } 360 361 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl) 362 { 363 struct qfq_sched *q = qdisc_priv(sch); 364 365 if (cl->inv_w) { 366 q->wsum -= ONE_FP / cl->inv_w; 367 cl->inv_w = 0; 368 } 369 370 gen_kill_estimator(&cl->bstats, &cl->rate_est); 371 qdisc_destroy(cl->qdisc); 372 kfree(cl); 373 } 374 375 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg) 376 { 377 struct qfq_sched *q = qdisc_priv(sch); 378 struct qfq_class *cl = (struct qfq_class *)arg; 379 380 if (cl->filter_cnt > 0) 381 return -EBUSY; 382 383 sch_tree_lock(sch); 384 385 qfq_purge_queue(cl); 386 qdisc_class_hash_remove(&q->clhash, &cl->common); 387 388 BUG_ON(--cl->refcnt == 0); 389 /* 390 * This shouldn't happen: we "hold" one cops->get() when called 391 * from tc_ctl_tclass; the destroy method is done from cops->put(). 392 */ 393 394 sch_tree_unlock(sch); 395 return 0; 396 } 397 398 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid) 399 { 400 struct qfq_class *cl = qfq_find_class(sch, classid); 401 402 if (cl != NULL) 403 cl->refcnt++; 404 405 return (unsigned long)cl; 406 } 407 408 static void qfq_put_class(struct Qdisc *sch, unsigned long arg) 409 { 410 struct qfq_class *cl = (struct qfq_class *)arg; 411 412 if (--cl->refcnt == 0) 413 qfq_destroy_class(sch, cl); 414 } 415 416 static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl) 417 { 418 struct qfq_sched *q = qdisc_priv(sch); 419 420 if (cl) 421 return NULL; 422 423 return &q->filter_list; 424 } 425 426 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent, 427 u32 classid) 428 { 429 struct qfq_class *cl = qfq_find_class(sch, classid); 430 431 if (cl != NULL) 432 cl->filter_cnt++; 433 434 return (unsigned long)cl; 435 } 436 437 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg) 438 { 439 struct qfq_class *cl = (struct qfq_class *)arg; 440 441 cl->filter_cnt--; 442 } 443 444 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg, 445 struct Qdisc *new, struct Qdisc **old) 446 { 447 struct qfq_class *cl = (struct qfq_class *)arg; 448 449 if (new == NULL) { 450 new = qdisc_create_dflt(sch->dev_queue, 451 &pfifo_qdisc_ops, cl->common.classid); 452 if (new == NULL) 453 new = &noop_qdisc; 454 } 455 456 sch_tree_lock(sch); 457 qfq_purge_queue(cl); 458 *old = cl->qdisc; 459 cl->qdisc = new; 460 sch_tree_unlock(sch); 461 return 0; 462 } 463 464 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg) 465 { 466 struct qfq_class *cl = (struct qfq_class *)arg; 467 468 return cl->qdisc; 469 } 470 471 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg, 472 struct sk_buff *skb, struct tcmsg *tcm) 473 { 474 struct qfq_class *cl = (struct qfq_class *)arg; 475 struct nlattr *nest; 476 477 tcm->tcm_parent = TC_H_ROOT; 478 tcm->tcm_handle = cl->common.classid; 479 tcm->tcm_info = cl->qdisc->handle; 480 481 nest = nla_nest_start(skb, TCA_OPTIONS); 482 if (nest == NULL) 483 goto nla_put_failure; 484 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, ONE_FP/cl->inv_w) || 485 nla_put_u32(skb, TCA_QFQ_LMAX, cl->lmax)) 486 goto nla_put_failure; 487 return nla_nest_end(skb, nest); 488 489 nla_put_failure: 490 nla_nest_cancel(skb, nest); 491 return -EMSGSIZE; 492 } 493 494 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg, 495 struct gnet_dump *d) 496 { 497 struct qfq_class *cl = (struct qfq_class *)arg; 498 struct tc_qfq_stats xstats; 499 500 memset(&xstats, 0, sizeof(xstats)); 501 cl->qdisc->qstats.qlen = cl->qdisc->q.qlen; 502 503 xstats.weight = ONE_FP/cl->inv_w; 504 xstats.lmax = cl->lmax; 505 506 if (gnet_stats_copy_basic(d, &cl->bstats) < 0 || 507 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 || 508 gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0) 509 return -1; 510 511 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 512 } 513 514 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg) 515 { 516 struct qfq_sched *q = qdisc_priv(sch); 517 struct qfq_class *cl; 518 struct hlist_node *n; 519 unsigned int i; 520 521 if (arg->stop) 522 return; 523 524 for (i = 0; i < q->clhash.hashsize; i++) { 525 hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) { 526 if (arg->count < arg->skip) { 527 arg->count++; 528 continue; 529 } 530 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 531 arg->stop = 1; 532 return; 533 } 534 arg->count++; 535 } 536 } 537 } 538 539 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch, 540 int *qerr) 541 { 542 struct qfq_sched *q = qdisc_priv(sch); 543 struct qfq_class *cl; 544 struct tcf_result res; 545 int result; 546 547 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) { 548 pr_debug("qfq_classify: found %d\n", skb->priority); 549 cl = qfq_find_class(sch, skb->priority); 550 if (cl != NULL) 551 return cl; 552 } 553 554 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 555 result = tc_classify(skb, q->filter_list, &res); 556 if (result >= 0) { 557 #ifdef CONFIG_NET_CLS_ACT 558 switch (result) { 559 case TC_ACT_QUEUED: 560 case TC_ACT_STOLEN: 561 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 562 case TC_ACT_SHOT: 563 return NULL; 564 } 565 #endif 566 cl = (struct qfq_class *)res.class; 567 if (cl == NULL) 568 cl = qfq_find_class(sch, res.classid); 569 return cl; 570 } 571 572 return NULL; 573 } 574 575 /* Generic comparison function, handling wraparound. */ 576 static inline int qfq_gt(u64 a, u64 b) 577 { 578 return (s64)(a - b) > 0; 579 } 580 581 /* Round a precise timestamp to its slotted value. */ 582 static inline u64 qfq_round_down(u64 ts, unsigned int shift) 583 { 584 return ts & ~((1ULL << shift) - 1); 585 } 586 587 /* return the pointer to the group with lowest index in the bitmap */ 588 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 589 unsigned long bitmap) 590 { 591 int index = __ffs(bitmap); 592 return &q->groups[index]; 593 } 594 /* Calculate a mask to mimic what would be ffs_from(). */ 595 static inline unsigned long mask_from(unsigned long bitmap, int from) 596 { 597 return bitmap & ~((1UL << from) - 1); 598 } 599 600 /* 601 * The state computation relies on ER=0, IR=1, EB=2, IB=3 602 * First compute eligibility comparing grp->S, q->V, 603 * then check if someone is blocking us and possibly add EB 604 */ 605 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp) 606 { 607 /* if S > V we are not eligible */ 608 unsigned int state = qfq_gt(grp->S, q->V); 609 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 610 struct qfq_group *next; 611 612 if (mask) { 613 next = qfq_ffs(q, mask); 614 if (qfq_gt(grp->F, next->F)) 615 state |= EB; 616 } 617 618 return state; 619 } 620 621 622 /* 623 * In principle 624 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 625 * q->bitmaps[src] &= ~mask; 626 * but we should make sure that src != dst 627 */ 628 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask, 629 int src, int dst) 630 { 631 q->bitmaps[dst] |= q->bitmaps[src] & mask; 632 q->bitmaps[src] &= ~mask; 633 } 634 635 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F) 636 { 637 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 638 struct qfq_group *next; 639 640 if (mask) { 641 next = qfq_ffs(q, mask); 642 if (!qfq_gt(next->F, old_F)) 643 return; 644 } 645 646 mask = (1UL << index) - 1; 647 qfq_move_groups(q, mask, EB, ER); 648 qfq_move_groups(q, mask, IB, IR); 649 } 650 651 /* 652 * perhaps 653 * 654 old_V ^= q->V; 655 old_V >>= QFQ_MIN_SLOT_SHIFT; 656 if (old_V) { 657 ... 658 } 659 * 660 */ 661 static void qfq_make_eligible(struct qfq_sched *q, u64 old_V) 662 { 663 unsigned long vslot = q->V >> QFQ_MIN_SLOT_SHIFT; 664 unsigned long old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT; 665 666 if (vslot != old_vslot) { 667 unsigned long mask = (1UL << fls(vslot ^ old_vslot)) - 1; 668 qfq_move_groups(q, mask, IR, ER); 669 qfq_move_groups(q, mask, IB, EB); 670 } 671 } 672 673 674 /* 675 * If the weight and lmax (max_pkt_size) of the classes do not change, 676 * then QFQ guarantees that the slot index is never higher than 677 * 2 + ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * (QFQ_MAX_WEIGHT/QFQ_MAX_WSUM). 678 * 679 * With the current values of the above constants, the index is 680 * then guaranteed to never be higher than 2 + 256 * (1 / 16) = 18. 681 * 682 * When the weight of a class is increased or the lmax of the class is 683 * decreased, a new class with smaller slot size may happen to be 684 * activated. The activation of this class should be properly delayed 685 * to when the service of the class has finished in the ideal system 686 * tracked by QFQ. If the activation of the class is not delayed to 687 * this reference time instant, then this class may be unjustly served 688 * before other classes waiting for service. This may cause 689 * (unfrequently) the above bound to the slot index to be violated for 690 * some of these unlucky classes. 691 * 692 * Instead of delaying the activation of the new class, which is quite 693 * complex, the following inaccurate but simple solution is used: if 694 * the slot index is higher than QFQ_MAX_SLOTS-2, then the timestamps 695 * of the class are shifted backward so as to let the slot index 696 * become equal to QFQ_MAX_SLOTS-2. This threshold is used because, if 697 * the slot index is above it, then the data structure implementing 698 * the bucket list either gets immediately corrupted or may get 699 * corrupted on a possible next packet arrival that causes the start 700 * time of the group to be shifted backward. 701 */ 702 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, 703 u64 roundedS) 704 { 705 u64 slot = (roundedS - grp->S) >> grp->slot_shift; 706 unsigned int i; /* slot index in the bucket list */ 707 708 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) { 709 u64 deltaS = roundedS - grp->S - 710 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift); 711 cl->S -= deltaS; 712 cl->F -= deltaS; 713 slot = QFQ_MAX_SLOTS - 2; 714 } 715 716 i = (grp->front + slot) % QFQ_MAX_SLOTS; 717 718 hlist_add_head(&cl->next, &grp->slots[i]); 719 __set_bit(slot, &grp->full_slots); 720 } 721 722 /* Maybe introduce hlist_first_entry?? */ 723 static struct qfq_class *qfq_slot_head(struct qfq_group *grp) 724 { 725 return hlist_entry(grp->slots[grp->front].first, 726 struct qfq_class, next); 727 } 728 729 /* 730 * remove the entry from the slot 731 */ 732 static void qfq_front_slot_remove(struct qfq_group *grp) 733 { 734 struct qfq_class *cl = qfq_slot_head(grp); 735 736 BUG_ON(!cl); 737 hlist_del(&cl->next); 738 if (hlist_empty(&grp->slots[grp->front])) 739 __clear_bit(0, &grp->full_slots); 740 } 741 742 /* 743 * Returns the first full queue in a group. As a side effect, 744 * adjust the bucket list so the first non-empty bucket is at 745 * position 0 in full_slots. 746 */ 747 static struct qfq_class *qfq_slot_scan(struct qfq_group *grp) 748 { 749 unsigned int i; 750 751 pr_debug("qfq slot_scan: grp %u full %#lx\n", 752 grp->index, grp->full_slots); 753 754 if (grp->full_slots == 0) 755 return NULL; 756 757 i = __ffs(grp->full_slots); /* zero based */ 758 if (i > 0) { 759 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 760 grp->full_slots >>= i; 761 } 762 763 return qfq_slot_head(grp); 764 } 765 766 /* 767 * adjust the bucket list. When the start time of a group decreases, 768 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 769 * move the objects. The mask of occupied slots must be shifted 770 * because we use ffs() to find the first non-empty slot. 771 * This covers decreases in the group's start time, but what about 772 * increases of the start time ? 773 * Here too we should make sure that i is less than 32 774 */ 775 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS) 776 { 777 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 778 779 grp->full_slots <<= i; 780 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 781 } 782 783 static void qfq_update_eligible(struct qfq_sched *q, u64 old_V) 784 { 785 struct qfq_group *grp; 786 unsigned long ineligible; 787 788 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 789 if (ineligible) { 790 if (!q->bitmaps[ER]) { 791 grp = qfq_ffs(q, ineligible); 792 if (qfq_gt(grp->S, q->V)) 793 q->V = grp->S; 794 } 795 qfq_make_eligible(q, old_V); 796 } 797 } 798 799 /* 800 * Updates the class, returns true if also the group needs to be updated. 801 */ 802 static bool qfq_update_class(struct qfq_group *grp, struct qfq_class *cl) 803 { 804 unsigned int len = qdisc_peek_len(cl->qdisc); 805 806 cl->S = cl->F; 807 if (!len) 808 qfq_front_slot_remove(grp); /* queue is empty */ 809 else { 810 u64 roundedS; 811 812 cl->F = cl->S + (u64)len * cl->inv_w; 813 roundedS = qfq_round_down(cl->S, grp->slot_shift); 814 if (roundedS == grp->S) 815 return false; 816 817 qfq_front_slot_remove(grp); 818 qfq_slot_insert(grp, cl, roundedS); 819 } 820 821 return true; 822 } 823 824 static struct sk_buff *qfq_dequeue(struct Qdisc *sch) 825 { 826 struct qfq_sched *q = qdisc_priv(sch); 827 struct qfq_group *grp; 828 struct qfq_class *cl; 829 struct sk_buff *skb; 830 unsigned int len; 831 u64 old_V; 832 833 if (!q->bitmaps[ER]) 834 return NULL; 835 836 grp = qfq_ffs(q, q->bitmaps[ER]); 837 838 cl = qfq_slot_head(grp); 839 skb = qdisc_dequeue_peeked(cl->qdisc); 840 if (!skb) { 841 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n"); 842 return NULL; 843 } 844 845 sch->q.qlen--; 846 qdisc_bstats_update(sch, skb); 847 848 old_V = q->V; 849 len = qdisc_pkt_len(skb); 850 q->V += (u64)len * IWSUM; 851 pr_debug("qfq dequeue: len %u F %lld now %lld\n", 852 len, (unsigned long long) cl->F, (unsigned long long) q->V); 853 854 if (qfq_update_class(grp, cl)) { 855 u64 old_F = grp->F; 856 857 cl = qfq_slot_scan(grp); 858 if (!cl) 859 __clear_bit(grp->index, &q->bitmaps[ER]); 860 else { 861 u64 roundedS = qfq_round_down(cl->S, grp->slot_shift); 862 unsigned int s; 863 864 if (grp->S == roundedS) 865 goto skip_unblock; 866 grp->S = roundedS; 867 grp->F = roundedS + (2ULL << grp->slot_shift); 868 __clear_bit(grp->index, &q->bitmaps[ER]); 869 s = qfq_calc_state(q, grp); 870 __set_bit(grp->index, &q->bitmaps[s]); 871 } 872 873 qfq_unblock_groups(q, grp->index, old_F); 874 } 875 876 skip_unblock: 877 qfq_update_eligible(q, old_V); 878 879 return skb; 880 } 881 882 /* 883 * Assign a reasonable start time for a new flow k in group i. 884 * Admissible values for \hat(F) are multiples of \sigma_i 885 * no greater than V+\sigma_i . Larger values mean that 886 * we had a wraparound so we consider the timestamp to be stale. 887 * 888 * If F is not stale and F >= V then we set S = F. 889 * Otherwise we should assign S = V, but this may violate 890 * the ordering in ER. So, if we have groups in ER, set S to 891 * the F_j of the first group j which would be blocking us. 892 * We are guaranteed not to move S backward because 893 * otherwise our group i would still be blocked. 894 */ 895 static void qfq_update_start(struct qfq_sched *q, struct qfq_class *cl) 896 { 897 unsigned long mask; 898 u64 limit, roundedF; 899 int slot_shift = cl->grp->slot_shift; 900 901 roundedF = qfq_round_down(cl->F, slot_shift); 902 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 903 904 if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) { 905 /* timestamp was stale */ 906 mask = mask_from(q->bitmaps[ER], cl->grp->index); 907 if (mask) { 908 struct qfq_group *next = qfq_ffs(q, mask); 909 if (qfq_gt(roundedF, next->F)) { 910 if (qfq_gt(limit, next->F)) 911 cl->S = next->F; 912 else /* preserve timestamp correctness */ 913 cl->S = limit; 914 return; 915 } 916 } 917 cl->S = q->V; 918 } else /* timestamp is not stale */ 919 cl->S = cl->F; 920 } 921 922 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch) 923 { 924 struct qfq_sched *q = qdisc_priv(sch); 925 struct qfq_class *cl; 926 int err = 0; 927 928 cl = qfq_classify(skb, sch, &err); 929 if (cl == NULL) { 930 if (err & __NET_XMIT_BYPASS) 931 sch->qstats.drops++; 932 kfree_skb(skb); 933 return err; 934 } 935 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid); 936 937 if (unlikely(cl->lmax < qdisc_pkt_len(skb))) { 938 pr_debug("qfq: increasing maxpkt from %u to %u for class %u", 939 cl->lmax, qdisc_pkt_len(skb), cl->common.classid); 940 qfq_update_reactivate_class(q, cl, cl->inv_w, 941 qdisc_pkt_len(skb), 0); 942 } 943 944 err = qdisc_enqueue(skb, cl->qdisc); 945 if (unlikely(err != NET_XMIT_SUCCESS)) { 946 pr_debug("qfq_enqueue: enqueue failed %d\n", err); 947 if (net_xmit_drop_count(err)) { 948 cl->qstats.drops++; 949 sch->qstats.drops++; 950 } 951 return err; 952 } 953 954 bstats_update(&cl->bstats, skb); 955 ++sch->q.qlen; 956 957 /* If the new skb is not the head of queue, then done here. */ 958 if (cl->qdisc->q.qlen != 1) 959 return err; 960 961 /* If reach this point, queue q was idle */ 962 qfq_activate_class(q, cl, qdisc_pkt_len(skb)); 963 964 return err; 965 } 966 967 /* 968 * Handle class switch from idle to backlogged. 969 */ 970 static void qfq_activate_class(struct qfq_sched *q, struct qfq_class *cl, 971 unsigned int pkt_len) 972 { 973 struct qfq_group *grp = cl->grp; 974 u64 roundedS; 975 int s; 976 977 qfq_update_start(q, cl); 978 979 /* compute new finish time and rounded start. */ 980 cl->F = cl->S + (u64)pkt_len * cl->inv_w; 981 roundedS = qfq_round_down(cl->S, grp->slot_shift); 982 983 /* 984 * insert cl in the correct bucket. 985 * If cl->S >= grp->S we don't need to adjust the 986 * bucket list and simply go to the insertion phase. 987 * Otherwise grp->S is decreasing, we must make room 988 * in the bucket list, and also recompute the group state. 989 * Finally, if there were no flows in this group and nobody 990 * was in ER make sure to adjust V. 991 */ 992 if (grp->full_slots) { 993 if (!qfq_gt(grp->S, cl->S)) 994 goto skip_update; 995 996 /* create a slot for this cl->S */ 997 qfq_slot_rotate(grp, roundedS); 998 /* group was surely ineligible, remove */ 999 __clear_bit(grp->index, &q->bitmaps[IR]); 1000 __clear_bit(grp->index, &q->bitmaps[IB]); 1001 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V)) 1002 q->V = roundedS; 1003 1004 grp->S = roundedS; 1005 grp->F = roundedS + (2ULL << grp->slot_shift); 1006 s = qfq_calc_state(q, grp); 1007 __set_bit(grp->index, &q->bitmaps[s]); 1008 1009 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n", 1010 s, q->bitmaps[s], 1011 (unsigned long long) cl->S, 1012 (unsigned long long) cl->F, 1013 (unsigned long long) q->V); 1014 1015 skip_update: 1016 qfq_slot_insert(grp, cl, roundedS); 1017 } 1018 1019 1020 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 1021 struct qfq_class *cl) 1022 { 1023 unsigned int i, offset; 1024 u64 roundedS; 1025 1026 roundedS = qfq_round_down(cl->S, grp->slot_shift); 1027 offset = (roundedS - grp->S) >> grp->slot_shift; 1028 i = (grp->front + offset) % QFQ_MAX_SLOTS; 1029 1030 hlist_del(&cl->next); 1031 if (hlist_empty(&grp->slots[i])) 1032 __clear_bit(offset, &grp->full_slots); 1033 } 1034 1035 /* 1036 * called to forcibly destroy a queue. 1037 * If the queue is not in the front bucket, or if it has 1038 * other queues in the front bucket, we can simply remove 1039 * the queue with no other side effects. 1040 * Otherwise we must propagate the event up. 1041 */ 1042 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl) 1043 { 1044 struct qfq_group *grp = cl->grp; 1045 unsigned long mask; 1046 u64 roundedS; 1047 int s; 1048 1049 cl->F = cl->S; 1050 qfq_slot_remove(q, grp, cl); 1051 1052 if (!grp->full_slots) { 1053 __clear_bit(grp->index, &q->bitmaps[IR]); 1054 __clear_bit(grp->index, &q->bitmaps[EB]); 1055 __clear_bit(grp->index, &q->bitmaps[IB]); 1056 1057 if (test_bit(grp->index, &q->bitmaps[ER]) && 1058 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 1059 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 1060 if (mask) 1061 mask = ~((1UL << __fls(mask)) - 1); 1062 else 1063 mask = ~0UL; 1064 qfq_move_groups(q, mask, EB, ER); 1065 qfq_move_groups(q, mask, IB, IR); 1066 } 1067 __clear_bit(grp->index, &q->bitmaps[ER]); 1068 } else if (hlist_empty(&grp->slots[grp->front])) { 1069 cl = qfq_slot_scan(grp); 1070 roundedS = qfq_round_down(cl->S, grp->slot_shift); 1071 if (grp->S != roundedS) { 1072 __clear_bit(grp->index, &q->bitmaps[ER]); 1073 __clear_bit(grp->index, &q->bitmaps[IR]); 1074 __clear_bit(grp->index, &q->bitmaps[EB]); 1075 __clear_bit(grp->index, &q->bitmaps[IB]); 1076 grp->S = roundedS; 1077 grp->F = roundedS + (2ULL << grp->slot_shift); 1078 s = qfq_calc_state(q, grp); 1079 __set_bit(grp->index, &q->bitmaps[s]); 1080 } 1081 } 1082 1083 qfq_update_eligible(q, q->V); 1084 } 1085 1086 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg) 1087 { 1088 struct qfq_sched *q = qdisc_priv(sch); 1089 struct qfq_class *cl = (struct qfq_class *)arg; 1090 1091 if (cl->qdisc->q.qlen == 0) 1092 qfq_deactivate_class(q, cl); 1093 } 1094 1095 static unsigned int qfq_drop(struct Qdisc *sch) 1096 { 1097 struct qfq_sched *q = qdisc_priv(sch); 1098 struct qfq_group *grp; 1099 unsigned int i, j, len; 1100 1101 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1102 grp = &q->groups[i]; 1103 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 1104 struct qfq_class *cl; 1105 struct hlist_node *n; 1106 1107 hlist_for_each_entry(cl, n, &grp->slots[j], next) { 1108 1109 if (!cl->qdisc->ops->drop) 1110 continue; 1111 1112 len = cl->qdisc->ops->drop(cl->qdisc); 1113 if (len > 0) { 1114 sch->q.qlen--; 1115 if (!cl->qdisc->q.qlen) 1116 qfq_deactivate_class(q, cl); 1117 1118 return len; 1119 } 1120 } 1121 } 1122 } 1123 1124 return 0; 1125 } 1126 1127 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt) 1128 { 1129 struct qfq_sched *q = qdisc_priv(sch); 1130 struct qfq_group *grp; 1131 int i, j, err; 1132 1133 err = qdisc_class_hash_init(&q->clhash); 1134 if (err < 0) 1135 return err; 1136 1137 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1138 grp = &q->groups[i]; 1139 grp->index = i; 1140 grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS 1141 - (QFQ_MAX_INDEX - i); 1142 for (j = 0; j < QFQ_MAX_SLOTS; j++) 1143 INIT_HLIST_HEAD(&grp->slots[j]); 1144 } 1145 1146 return 0; 1147 } 1148 1149 static void qfq_reset_qdisc(struct Qdisc *sch) 1150 { 1151 struct qfq_sched *q = qdisc_priv(sch); 1152 struct qfq_group *grp; 1153 struct qfq_class *cl; 1154 struct hlist_node *n, *tmp; 1155 unsigned int i, j; 1156 1157 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 1158 grp = &q->groups[i]; 1159 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 1160 hlist_for_each_entry_safe(cl, n, tmp, 1161 &grp->slots[j], next) { 1162 qfq_deactivate_class(q, cl); 1163 } 1164 } 1165 } 1166 1167 for (i = 0; i < q->clhash.hashsize; i++) { 1168 hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) 1169 qdisc_reset(cl->qdisc); 1170 } 1171 sch->q.qlen = 0; 1172 } 1173 1174 static void qfq_destroy_qdisc(struct Qdisc *sch) 1175 { 1176 struct qfq_sched *q = qdisc_priv(sch); 1177 struct qfq_class *cl; 1178 struct hlist_node *n, *next; 1179 unsigned int i; 1180 1181 tcf_destroy_chain(&q->filter_list); 1182 1183 for (i = 0; i < q->clhash.hashsize; i++) { 1184 hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i], 1185 common.hnode) { 1186 qfq_destroy_class(sch, cl); 1187 } 1188 } 1189 qdisc_class_hash_destroy(&q->clhash); 1190 } 1191 1192 static const struct Qdisc_class_ops qfq_class_ops = { 1193 .change = qfq_change_class, 1194 .delete = qfq_delete_class, 1195 .get = qfq_get_class, 1196 .put = qfq_put_class, 1197 .tcf_chain = qfq_tcf_chain, 1198 .bind_tcf = qfq_bind_tcf, 1199 .unbind_tcf = qfq_unbind_tcf, 1200 .graft = qfq_graft_class, 1201 .leaf = qfq_class_leaf, 1202 .qlen_notify = qfq_qlen_notify, 1203 .dump = qfq_dump_class, 1204 .dump_stats = qfq_dump_class_stats, 1205 .walk = qfq_walk, 1206 }; 1207 1208 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = { 1209 .cl_ops = &qfq_class_ops, 1210 .id = "qfq", 1211 .priv_size = sizeof(struct qfq_sched), 1212 .enqueue = qfq_enqueue, 1213 .dequeue = qfq_dequeue, 1214 .peek = qdisc_peek_dequeued, 1215 .drop = qfq_drop, 1216 .init = qfq_init_qdisc, 1217 .reset = qfq_reset_qdisc, 1218 .destroy = qfq_destroy_qdisc, 1219 .owner = THIS_MODULE, 1220 }; 1221 1222 static int __init qfq_init(void) 1223 { 1224 return register_qdisc(&qfq_qdisc_ops); 1225 } 1226 1227 static void __exit qfq_exit(void) 1228 { 1229 unregister_qdisc(&qfq_qdisc_ops); 1230 } 1231 1232 module_init(qfq_init); 1233 module_exit(qfq_exit); 1234 MODULE_LICENSE("GPL"); 1235