xref: /openbmc/linux/net/sched/sch_qfq.c (revision 05bcf503)
1 /*
2  * net/sched/sch_qfq.c         Quick Fair Queueing Scheduler.
3  *
4  * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * version 2 as published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/bitops.h>
14 #include <linux/errno.h>
15 #include <linux/netdevice.h>
16 #include <linux/pkt_sched.h>
17 #include <net/sch_generic.h>
18 #include <net/pkt_sched.h>
19 #include <net/pkt_cls.h>
20 
21 
22 /*  Quick Fair Queueing
23     ===================
24 
25     Sources:
26 
27     Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
28     Packet Scheduling with Tight Bandwidth Distribution Guarantees."
29 
30     See also:
31     http://retis.sssup.it/~fabio/linux/qfq/
32  */
33 
34 /*
35 
36   Virtual time computations.
37 
38   S, F and V are all computed in fixed point arithmetic with
39   FRAC_BITS decimal bits.
40 
41   QFQ_MAX_INDEX is the maximum index allowed for a group. We need
42 	one bit per index.
43   QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
44 
45   The layout of the bits is as below:
46 
47                    [ MTU_SHIFT ][      FRAC_BITS    ]
48                    [ MAX_INDEX    ][ MIN_SLOT_SHIFT ]
49 				 ^.__grp->index = 0
50 				 *.__grp->slot_shift
51 
52   where MIN_SLOT_SHIFT is derived by difference from the others.
53 
54   The max group index corresponds to Lmax/w_min, where
55   Lmax=1<<MTU_SHIFT, w_min = 1 .
56   From this, and knowing how many groups (MAX_INDEX) we want,
57   we can derive the shift corresponding to each group.
58 
59   Because we often need to compute
60 	F = S + len/w_i  and V = V + len/wsum
61   instead of storing w_i store the value
62 	inv_w = (1<<FRAC_BITS)/w_i
63   so we can do F = S + len * inv_w * wsum.
64   We use W_TOT in the formulas so we can easily move between
65   static and adaptive weight sum.
66 
67   The per-scheduler-instance data contain all the data structures
68   for the scheduler: bitmaps and bucket lists.
69 
70  */
71 
72 /*
73  * Maximum number of consecutive slots occupied by backlogged classes
74  * inside a group.
75  */
76 #define QFQ_MAX_SLOTS	32
77 
78 /*
79  * Shifts used for class<->group mapping.  We allow class weights that are
80  * in the range [1, 2^MAX_WSHIFT], and we try to map each class i to the
81  * group with the smallest index that can support the L_i / r_i configured
82  * for the class.
83  *
84  * grp->index is the index of the group; and grp->slot_shift
85  * is the shift for the corresponding (scaled) sigma_i.
86  */
87 #define QFQ_MAX_INDEX		24
88 #define QFQ_MAX_WSHIFT		12
89 
90 #define	QFQ_MAX_WEIGHT		(1<<QFQ_MAX_WSHIFT)
91 #define QFQ_MAX_WSUM		(16*QFQ_MAX_WEIGHT)
92 
93 #define FRAC_BITS		30	/* fixed point arithmetic */
94 #define ONE_FP			(1UL << FRAC_BITS)
95 #define IWSUM			(ONE_FP/QFQ_MAX_WSUM)
96 
97 #define QFQ_MTU_SHIFT		16	/* to support TSO/GSO */
98 #define QFQ_MIN_SLOT_SHIFT	(FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
99 #define QFQ_MIN_LMAX		256	/* min possible lmax for a class */
100 
101 /*
102  * Possible group states.  These values are used as indexes for the bitmaps
103  * array of struct qfq_queue.
104  */
105 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
106 
107 struct qfq_group;
108 
109 struct qfq_class {
110 	struct Qdisc_class_common common;
111 
112 	unsigned int refcnt;
113 	unsigned int filter_cnt;
114 
115 	struct gnet_stats_basic_packed bstats;
116 	struct gnet_stats_queue qstats;
117 	struct gnet_stats_rate_est rate_est;
118 	struct Qdisc *qdisc;
119 
120 	struct hlist_node next;	/* Link for the slot list. */
121 	u64 S, F;		/* flow timestamps (exact) */
122 
123 	/* group we belong to. In principle we would need the index,
124 	 * which is log_2(lmax/weight), but we never reference it
125 	 * directly, only the group.
126 	 */
127 	struct qfq_group *grp;
128 
129 	/* these are copied from the flowset. */
130 	u32	inv_w;		/* ONE_FP/weight */
131 	u32	lmax;		/* Max packet size for this flow. */
132 };
133 
134 struct qfq_group {
135 	u64 S, F;			/* group timestamps (approx). */
136 	unsigned int slot_shift;	/* Slot shift. */
137 	unsigned int index;		/* Group index. */
138 	unsigned int front;		/* Index of the front slot. */
139 	unsigned long full_slots;	/* non-empty slots */
140 
141 	/* Array of RR lists of active classes. */
142 	struct hlist_head slots[QFQ_MAX_SLOTS];
143 };
144 
145 struct qfq_sched {
146 	struct tcf_proto *filter_list;
147 	struct Qdisc_class_hash clhash;
148 
149 	u64		V;		/* Precise virtual time. */
150 	u32		wsum;		/* weight sum */
151 
152 	unsigned long bitmaps[QFQ_MAX_STATE];	    /* Group bitmaps. */
153 	struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
154 };
155 
156 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
157 {
158 	struct qfq_sched *q = qdisc_priv(sch);
159 	struct Qdisc_class_common *clc;
160 
161 	clc = qdisc_class_find(&q->clhash, classid);
162 	if (clc == NULL)
163 		return NULL;
164 	return container_of(clc, struct qfq_class, common);
165 }
166 
167 static void qfq_purge_queue(struct qfq_class *cl)
168 {
169 	unsigned int len = cl->qdisc->q.qlen;
170 
171 	qdisc_reset(cl->qdisc);
172 	qdisc_tree_decrease_qlen(cl->qdisc, len);
173 }
174 
175 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
176 	[TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
177 	[TCA_QFQ_LMAX] = { .type = NLA_U32 },
178 };
179 
180 /*
181  * Calculate a flow index, given its weight and maximum packet length.
182  * index = log_2(maxlen/weight) but we need to apply the scaling.
183  * This is used only once at flow creation.
184  */
185 static int qfq_calc_index(u32 inv_w, unsigned int maxlen)
186 {
187 	u64 slot_size = (u64)maxlen * inv_w;
188 	unsigned long size_map;
189 	int index = 0;
190 
191 	size_map = slot_size >> QFQ_MIN_SLOT_SHIFT;
192 	if (!size_map)
193 		goto out;
194 
195 	index = __fls(size_map) + 1;	/* basically a log_2 */
196 	index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
197 
198 	if (index < 0)
199 		index = 0;
200 out:
201 	pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
202 		 (unsigned long) ONE_FP/inv_w, maxlen, index);
203 
204 	return index;
205 }
206 
207 /* Length of the next packet (0 if the queue is empty). */
208 static unsigned int qdisc_peek_len(struct Qdisc *sch)
209 {
210 	struct sk_buff *skb;
211 
212 	skb = sch->ops->peek(sch);
213 	return skb ? qdisc_pkt_len(skb) : 0;
214 }
215 
216 static void qfq_deactivate_class(struct qfq_sched *, struct qfq_class *);
217 static void qfq_activate_class(struct qfq_sched *q, struct qfq_class *cl,
218 			       unsigned int len);
219 
220 static void qfq_update_class_params(struct qfq_sched *q, struct qfq_class *cl,
221 				    u32 lmax, u32 inv_w, int delta_w)
222 {
223 	int i;
224 
225 	/* update qfq-specific data */
226 	cl->lmax = lmax;
227 	cl->inv_w = inv_w;
228 	i = qfq_calc_index(cl->inv_w, cl->lmax);
229 
230 	cl->grp = &q->groups[i];
231 
232 	q->wsum += delta_w;
233 }
234 
235 static void qfq_update_reactivate_class(struct qfq_sched *q,
236 					struct qfq_class *cl,
237 					u32 inv_w, u32 lmax, int delta_w)
238 {
239 	bool need_reactivation = false;
240 	int i = qfq_calc_index(inv_w, lmax);
241 
242 	if (&q->groups[i] != cl->grp && cl->qdisc->q.qlen > 0) {
243 		/*
244 		 * shift cl->F back, to not charge the
245 		 * class for the not-yet-served head
246 		 * packet
247 		 */
248 		cl->F = cl->S;
249 		/* remove class from its slot in the old group */
250 		qfq_deactivate_class(q, cl);
251 		need_reactivation = true;
252 	}
253 
254 	qfq_update_class_params(q, cl, lmax, inv_w, delta_w);
255 
256 	if (need_reactivation) /* activate in new group */
257 		qfq_activate_class(q, cl, qdisc_peek_len(cl->qdisc));
258 }
259 
260 
261 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
262 			    struct nlattr **tca, unsigned long *arg)
263 {
264 	struct qfq_sched *q = qdisc_priv(sch);
265 	struct qfq_class *cl = (struct qfq_class *)*arg;
266 	struct nlattr *tb[TCA_QFQ_MAX + 1];
267 	u32 weight, lmax, inv_w;
268 	int err;
269 	int delta_w;
270 
271 	if (tca[TCA_OPTIONS] == NULL) {
272 		pr_notice("qfq: no options\n");
273 		return -EINVAL;
274 	}
275 
276 	err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
277 	if (err < 0)
278 		return err;
279 
280 	if (tb[TCA_QFQ_WEIGHT]) {
281 		weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
282 		if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
283 			pr_notice("qfq: invalid weight %u\n", weight);
284 			return -EINVAL;
285 		}
286 	} else
287 		weight = 1;
288 
289 	inv_w = ONE_FP / weight;
290 	weight = ONE_FP / inv_w;
291 	delta_w = weight - (cl ? ONE_FP / cl->inv_w : 0);
292 	if (q->wsum + delta_w > QFQ_MAX_WSUM) {
293 		pr_notice("qfq: total weight out of range (%u + %u)\n",
294 			  delta_w, q->wsum);
295 		return -EINVAL;
296 	}
297 
298 	if (tb[TCA_QFQ_LMAX]) {
299 		lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
300 		if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
301 			pr_notice("qfq: invalid max length %u\n", lmax);
302 			return -EINVAL;
303 		}
304 	} else
305 		lmax = psched_mtu(qdisc_dev(sch));
306 
307 	if (cl != NULL) {
308 		if (tca[TCA_RATE]) {
309 			err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
310 						    qdisc_root_sleeping_lock(sch),
311 						    tca[TCA_RATE]);
312 			if (err)
313 				return err;
314 		}
315 
316 		if (lmax == cl->lmax && inv_w == cl->inv_w)
317 			return 0; /* nothing to update */
318 
319 		sch_tree_lock(sch);
320 		qfq_update_reactivate_class(q, cl, inv_w, lmax, delta_w);
321 		sch_tree_unlock(sch);
322 
323 		return 0;
324 	}
325 
326 	cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
327 	if (cl == NULL)
328 		return -ENOBUFS;
329 
330 	cl->refcnt = 1;
331 	cl->common.classid = classid;
332 
333 	qfq_update_class_params(q, cl, lmax, inv_w, delta_w);
334 
335 	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
336 				      &pfifo_qdisc_ops, classid);
337 	if (cl->qdisc == NULL)
338 		cl->qdisc = &noop_qdisc;
339 
340 	if (tca[TCA_RATE]) {
341 		err = gen_new_estimator(&cl->bstats, &cl->rate_est,
342 					qdisc_root_sleeping_lock(sch),
343 					tca[TCA_RATE]);
344 		if (err) {
345 			qdisc_destroy(cl->qdisc);
346 			kfree(cl);
347 			return err;
348 		}
349 	}
350 
351 	sch_tree_lock(sch);
352 	qdisc_class_hash_insert(&q->clhash, &cl->common);
353 	sch_tree_unlock(sch);
354 
355 	qdisc_class_hash_grow(sch, &q->clhash);
356 
357 	*arg = (unsigned long)cl;
358 	return 0;
359 }
360 
361 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
362 {
363 	struct qfq_sched *q = qdisc_priv(sch);
364 
365 	if (cl->inv_w) {
366 		q->wsum -= ONE_FP / cl->inv_w;
367 		cl->inv_w = 0;
368 	}
369 
370 	gen_kill_estimator(&cl->bstats, &cl->rate_est);
371 	qdisc_destroy(cl->qdisc);
372 	kfree(cl);
373 }
374 
375 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
376 {
377 	struct qfq_sched *q = qdisc_priv(sch);
378 	struct qfq_class *cl = (struct qfq_class *)arg;
379 
380 	if (cl->filter_cnt > 0)
381 		return -EBUSY;
382 
383 	sch_tree_lock(sch);
384 
385 	qfq_purge_queue(cl);
386 	qdisc_class_hash_remove(&q->clhash, &cl->common);
387 
388 	BUG_ON(--cl->refcnt == 0);
389 	/*
390 	 * This shouldn't happen: we "hold" one cops->get() when called
391 	 * from tc_ctl_tclass; the destroy method is done from cops->put().
392 	 */
393 
394 	sch_tree_unlock(sch);
395 	return 0;
396 }
397 
398 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
399 {
400 	struct qfq_class *cl = qfq_find_class(sch, classid);
401 
402 	if (cl != NULL)
403 		cl->refcnt++;
404 
405 	return (unsigned long)cl;
406 }
407 
408 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
409 {
410 	struct qfq_class *cl = (struct qfq_class *)arg;
411 
412 	if (--cl->refcnt == 0)
413 		qfq_destroy_class(sch, cl);
414 }
415 
416 static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl)
417 {
418 	struct qfq_sched *q = qdisc_priv(sch);
419 
420 	if (cl)
421 		return NULL;
422 
423 	return &q->filter_list;
424 }
425 
426 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
427 				  u32 classid)
428 {
429 	struct qfq_class *cl = qfq_find_class(sch, classid);
430 
431 	if (cl != NULL)
432 		cl->filter_cnt++;
433 
434 	return (unsigned long)cl;
435 }
436 
437 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
438 {
439 	struct qfq_class *cl = (struct qfq_class *)arg;
440 
441 	cl->filter_cnt--;
442 }
443 
444 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
445 			   struct Qdisc *new, struct Qdisc **old)
446 {
447 	struct qfq_class *cl = (struct qfq_class *)arg;
448 
449 	if (new == NULL) {
450 		new = qdisc_create_dflt(sch->dev_queue,
451 					&pfifo_qdisc_ops, cl->common.classid);
452 		if (new == NULL)
453 			new = &noop_qdisc;
454 	}
455 
456 	sch_tree_lock(sch);
457 	qfq_purge_queue(cl);
458 	*old = cl->qdisc;
459 	cl->qdisc = new;
460 	sch_tree_unlock(sch);
461 	return 0;
462 }
463 
464 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
465 {
466 	struct qfq_class *cl = (struct qfq_class *)arg;
467 
468 	return cl->qdisc;
469 }
470 
471 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
472 			  struct sk_buff *skb, struct tcmsg *tcm)
473 {
474 	struct qfq_class *cl = (struct qfq_class *)arg;
475 	struct nlattr *nest;
476 
477 	tcm->tcm_parent	= TC_H_ROOT;
478 	tcm->tcm_handle	= cl->common.classid;
479 	tcm->tcm_info	= cl->qdisc->handle;
480 
481 	nest = nla_nest_start(skb, TCA_OPTIONS);
482 	if (nest == NULL)
483 		goto nla_put_failure;
484 	if (nla_put_u32(skb, TCA_QFQ_WEIGHT, ONE_FP/cl->inv_w) ||
485 	    nla_put_u32(skb, TCA_QFQ_LMAX, cl->lmax))
486 		goto nla_put_failure;
487 	return nla_nest_end(skb, nest);
488 
489 nla_put_failure:
490 	nla_nest_cancel(skb, nest);
491 	return -EMSGSIZE;
492 }
493 
494 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
495 				struct gnet_dump *d)
496 {
497 	struct qfq_class *cl = (struct qfq_class *)arg;
498 	struct tc_qfq_stats xstats;
499 
500 	memset(&xstats, 0, sizeof(xstats));
501 	cl->qdisc->qstats.qlen = cl->qdisc->q.qlen;
502 
503 	xstats.weight = ONE_FP/cl->inv_w;
504 	xstats.lmax = cl->lmax;
505 
506 	if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
507 	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
508 	    gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0)
509 		return -1;
510 
511 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
512 }
513 
514 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
515 {
516 	struct qfq_sched *q = qdisc_priv(sch);
517 	struct qfq_class *cl;
518 	struct hlist_node *n;
519 	unsigned int i;
520 
521 	if (arg->stop)
522 		return;
523 
524 	for (i = 0; i < q->clhash.hashsize; i++) {
525 		hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) {
526 			if (arg->count < arg->skip) {
527 				arg->count++;
528 				continue;
529 			}
530 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
531 				arg->stop = 1;
532 				return;
533 			}
534 			arg->count++;
535 		}
536 	}
537 }
538 
539 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
540 				      int *qerr)
541 {
542 	struct qfq_sched *q = qdisc_priv(sch);
543 	struct qfq_class *cl;
544 	struct tcf_result res;
545 	int result;
546 
547 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
548 		pr_debug("qfq_classify: found %d\n", skb->priority);
549 		cl = qfq_find_class(sch, skb->priority);
550 		if (cl != NULL)
551 			return cl;
552 	}
553 
554 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
555 	result = tc_classify(skb, q->filter_list, &res);
556 	if (result >= 0) {
557 #ifdef CONFIG_NET_CLS_ACT
558 		switch (result) {
559 		case TC_ACT_QUEUED:
560 		case TC_ACT_STOLEN:
561 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
562 		case TC_ACT_SHOT:
563 			return NULL;
564 		}
565 #endif
566 		cl = (struct qfq_class *)res.class;
567 		if (cl == NULL)
568 			cl = qfq_find_class(sch, res.classid);
569 		return cl;
570 	}
571 
572 	return NULL;
573 }
574 
575 /* Generic comparison function, handling wraparound. */
576 static inline int qfq_gt(u64 a, u64 b)
577 {
578 	return (s64)(a - b) > 0;
579 }
580 
581 /* Round a precise timestamp to its slotted value. */
582 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
583 {
584 	return ts & ~((1ULL << shift) - 1);
585 }
586 
587 /* return the pointer to the group with lowest index in the bitmap */
588 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
589 					unsigned long bitmap)
590 {
591 	int index = __ffs(bitmap);
592 	return &q->groups[index];
593 }
594 /* Calculate a mask to mimic what would be ffs_from(). */
595 static inline unsigned long mask_from(unsigned long bitmap, int from)
596 {
597 	return bitmap & ~((1UL << from) - 1);
598 }
599 
600 /*
601  * The state computation relies on ER=0, IR=1, EB=2, IB=3
602  * First compute eligibility comparing grp->S, q->V,
603  * then check if someone is blocking us and possibly add EB
604  */
605 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
606 {
607 	/* if S > V we are not eligible */
608 	unsigned int state = qfq_gt(grp->S, q->V);
609 	unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
610 	struct qfq_group *next;
611 
612 	if (mask) {
613 		next = qfq_ffs(q, mask);
614 		if (qfq_gt(grp->F, next->F))
615 			state |= EB;
616 	}
617 
618 	return state;
619 }
620 
621 
622 /*
623  * In principle
624  *	q->bitmaps[dst] |= q->bitmaps[src] & mask;
625  *	q->bitmaps[src] &= ~mask;
626  * but we should make sure that src != dst
627  */
628 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
629 				   int src, int dst)
630 {
631 	q->bitmaps[dst] |= q->bitmaps[src] & mask;
632 	q->bitmaps[src] &= ~mask;
633 }
634 
635 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
636 {
637 	unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
638 	struct qfq_group *next;
639 
640 	if (mask) {
641 		next = qfq_ffs(q, mask);
642 		if (!qfq_gt(next->F, old_F))
643 			return;
644 	}
645 
646 	mask = (1UL << index) - 1;
647 	qfq_move_groups(q, mask, EB, ER);
648 	qfq_move_groups(q, mask, IB, IR);
649 }
650 
651 /*
652  * perhaps
653  *
654 	old_V ^= q->V;
655 	old_V >>= QFQ_MIN_SLOT_SHIFT;
656 	if (old_V) {
657 		...
658 	}
659  *
660  */
661 static void qfq_make_eligible(struct qfq_sched *q, u64 old_V)
662 {
663 	unsigned long vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
664 	unsigned long old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
665 
666 	if (vslot != old_vslot) {
667 		unsigned long mask = (1UL << fls(vslot ^ old_vslot)) - 1;
668 		qfq_move_groups(q, mask, IR, ER);
669 		qfq_move_groups(q, mask, IB, EB);
670 	}
671 }
672 
673 
674 /*
675  * If the weight and lmax (max_pkt_size) of the classes do not change,
676  * then QFQ guarantees that the slot index is never higher than
677  * 2 + ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * (QFQ_MAX_WEIGHT/QFQ_MAX_WSUM).
678  *
679  * With the current values of the above constants, the index is
680  * then guaranteed to never be higher than 2 + 256 * (1 / 16) = 18.
681  *
682  * When the weight of a class is increased or the lmax of the class is
683  * decreased, a new class with smaller slot size may happen to be
684  * activated. The activation of this class should be properly delayed
685  * to when the service of the class has finished in the ideal system
686  * tracked by QFQ. If the activation of the class is not delayed to
687  * this reference time instant, then this class may be unjustly served
688  * before other classes waiting for service. This may cause
689  * (unfrequently) the above bound to the slot index to be violated for
690  * some of these unlucky classes.
691  *
692  * Instead of delaying the activation of the new class, which is quite
693  * complex, the following inaccurate but simple solution is used: if
694  * the slot index is higher than QFQ_MAX_SLOTS-2, then the timestamps
695  * of the class are shifted backward so as to let the slot index
696  * become equal to QFQ_MAX_SLOTS-2. This threshold is used because, if
697  * the slot index is above it, then the data structure implementing
698  * the bucket list either gets immediately corrupted or may get
699  * corrupted on a possible next packet arrival that causes the start
700  * time of the group to be shifted backward.
701  */
702 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl,
703 			    u64 roundedS)
704 {
705 	u64 slot = (roundedS - grp->S) >> grp->slot_shift;
706 	unsigned int i; /* slot index in the bucket list */
707 
708 	if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
709 		u64 deltaS = roundedS - grp->S -
710 			((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
711 		cl->S -= deltaS;
712 		cl->F -= deltaS;
713 		slot = QFQ_MAX_SLOTS - 2;
714 	}
715 
716 	i = (grp->front + slot) % QFQ_MAX_SLOTS;
717 
718 	hlist_add_head(&cl->next, &grp->slots[i]);
719 	__set_bit(slot, &grp->full_slots);
720 }
721 
722 /* Maybe introduce hlist_first_entry?? */
723 static struct qfq_class *qfq_slot_head(struct qfq_group *grp)
724 {
725 	return hlist_entry(grp->slots[grp->front].first,
726 			   struct qfq_class, next);
727 }
728 
729 /*
730  * remove the entry from the slot
731  */
732 static void qfq_front_slot_remove(struct qfq_group *grp)
733 {
734 	struct qfq_class *cl = qfq_slot_head(grp);
735 
736 	BUG_ON(!cl);
737 	hlist_del(&cl->next);
738 	if (hlist_empty(&grp->slots[grp->front]))
739 		__clear_bit(0, &grp->full_slots);
740 }
741 
742 /*
743  * Returns the first full queue in a group. As a side effect,
744  * adjust the bucket list so the first non-empty bucket is at
745  * position 0 in full_slots.
746  */
747 static struct qfq_class *qfq_slot_scan(struct qfq_group *grp)
748 {
749 	unsigned int i;
750 
751 	pr_debug("qfq slot_scan: grp %u full %#lx\n",
752 		 grp->index, grp->full_slots);
753 
754 	if (grp->full_slots == 0)
755 		return NULL;
756 
757 	i = __ffs(grp->full_slots);  /* zero based */
758 	if (i > 0) {
759 		grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
760 		grp->full_slots >>= i;
761 	}
762 
763 	return qfq_slot_head(grp);
764 }
765 
766 /*
767  * adjust the bucket list. When the start time of a group decreases,
768  * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
769  * move the objects. The mask of occupied slots must be shifted
770  * because we use ffs() to find the first non-empty slot.
771  * This covers decreases in the group's start time, but what about
772  * increases of the start time ?
773  * Here too we should make sure that i is less than 32
774  */
775 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
776 {
777 	unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
778 
779 	grp->full_slots <<= i;
780 	grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
781 }
782 
783 static void qfq_update_eligible(struct qfq_sched *q, u64 old_V)
784 {
785 	struct qfq_group *grp;
786 	unsigned long ineligible;
787 
788 	ineligible = q->bitmaps[IR] | q->bitmaps[IB];
789 	if (ineligible) {
790 		if (!q->bitmaps[ER]) {
791 			grp = qfq_ffs(q, ineligible);
792 			if (qfq_gt(grp->S, q->V))
793 				q->V = grp->S;
794 		}
795 		qfq_make_eligible(q, old_V);
796 	}
797 }
798 
799 /*
800  * Updates the class, returns true if also the group needs to be updated.
801  */
802 static bool qfq_update_class(struct qfq_group *grp, struct qfq_class *cl)
803 {
804 	unsigned int len = qdisc_peek_len(cl->qdisc);
805 
806 	cl->S = cl->F;
807 	if (!len)
808 		qfq_front_slot_remove(grp);	/* queue is empty */
809 	else {
810 		u64 roundedS;
811 
812 		cl->F = cl->S + (u64)len * cl->inv_w;
813 		roundedS = qfq_round_down(cl->S, grp->slot_shift);
814 		if (roundedS == grp->S)
815 			return false;
816 
817 		qfq_front_slot_remove(grp);
818 		qfq_slot_insert(grp, cl, roundedS);
819 	}
820 
821 	return true;
822 }
823 
824 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
825 {
826 	struct qfq_sched *q = qdisc_priv(sch);
827 	struct qfq_group *grp;
828 	struct qfq_class *cl;
829 	struct sk_buff *skb;
830 	unsigned int len;
831 	u64 old_V;
832 
833 	if (!q->bitmaps[ER])
834 		return NULL;
835 
836 	grp = qfq_ffs(q, q->bitmaps[ER]);
837 
838 	cl = qfq_slot_head(grp);
839 	skb = qdisc_dequeue_peeked(cl->qdisc);
840 	if (!skb) {
841 		WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
842 		return NULL;
843 	}
844 
845 	sch->q.qlen--;
846 	qdisc_bstats_update(sch, skb);
847 
848 	old_V = q->V;
849 	len = qdisc_pkt_len(skb);
850 	q->V += (u64)len * IWSUM;
851 	pr_debug("qfq dequeue: len %u F %lld now %lld\n",
852 		 len, (unsigned long long) cl->F, (unsigned long long) q->V);
853 
854 	if (qfq_update_class(grp, cl)) {
855 		u64 old_F = grp->F;
856 
857 		cl = qfq_slot_scan(grp);
858 		if (!cl)
859 			__clear_bit(grp->index, &q->bitmaps[ER]);
860 		else {
861 			u64 roundedS = qfq_round_down(cl->S, grp->slot_shift);
862 			unsigned int s;
863 
864 			if (grp->S == roundedS)
865 				goto skip_unblock;
866 			grp->S = roundedS;
867 			grp->F = roundedS + (2ULL << grp->slot_shift);
868 			__clear_bit(grp->index, &q->bitmaps[ER]);
869 			s = qfq_calc_state(q, grp);
870 			__set_bit(grp->index, &q->bitmaps[s]);
871 		}
872 
873 		qfq_unblock_groups(q, grp->index, old_F);
874 	}
875 
876 skip_unblock:
877 	qfq_update_eligible(q, old_V);
878 
879 	return skb;
880 }
881 
882 /*
883  * Assign a reasonable start time for a new flow k in group i.
884  * Admissible values for \hat(F) are multiples of \sigma_i
885  * no greater than V+\sigma_i . Larger values mean that
886  * we had a wraparound so we consider the timestamp to be stale.
887  *
888  * If F is not stale and F >= V then we set S = F.
889  * Otherwise we should assign S = V, but this may violate
890  * the ordering in ER. So, if we have groups in ER, set S to
891  * the F_j of the first group j which would be blocking us.
892  * We are guaranteed not to move S backward because
893  * otherwise our group i would still be blocked.
894  */
895 static void qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
896 {
897 	unsigned long mask;
898 	u64 limit, roundedF;
899 	int slot_shift = cl->grp->slot_shift;
900 
901 	roundedF = qfq_round_down(cl->F, slot_shift);
902 	limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
903 
904 	if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
905 		/* timestamp was stale */
906 		mask = mask_from(q->bitmaps[ER], cl->grp->index);
907 		if (mask) {
908 			struct qfq_group *next = qfq_ffs(q, mask);
909 			if (qfq_gt(roundedF, next->F)) {
910 				if (qfq_gt(limit, next->F))
911 					cl->S = next->F;
912 				else /* preserve timestamp correctness */
913 					cl->S = limit;
914 				return;
915 			}
916 		}
917 		cl->S = q->V;
918 	} else  /* timestamp is not stale */
919 		cl->S = cl->F;
920 }
921 
922 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
923 {
924 	struct qfq_sched *q = qdisc_priv(sch);
925 	struct qfq_class *cl;
926 	int err = 0;
927 
928 	cl = qfq_classify(skb, sch, &err);
929 	if (cl == NULL) {
930 		if (err & __NET_XMIT_BYPASS)
931 			sch->qstats.drops++;
932 		kfree_skb(skb);
933 		return err;
934 	}
935 	pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
936 
937 	if (unlikely(cl->lmax < qdisc_pkt_len(skb))) {
938 		pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
939 			  cl->lmax, qdisc_pkt_len(skb), cl->common.classid);
940 		qfq_update_reactivate_class(q, cl, cl->inv_w,
941 					    qdisc_pkt_len(skb), 0);
942 	}
943 
944 	err = qdisc_enqueue(skb, cl->qdisc);
945 	if (unlikely(err != NET_XMIT_SUCCESS)) {
946 		pr_debug("qfq_enqueue: enqueue failed %d\n", err);
947 		if (net_xmit_drop_count(err)) {
948 			cl->qstats.drops++;
949 			sch->qstats.drops++;
950 		}
951 		return err;
952 	}
953 
954 	bstats_update(&cl->bstats, skb);
955 	++sch->q.qlen;
956 
957 	/* If the new skb is not the head of queue, then done here. */
958 	if (cl->qdisc->q.qlen != 1)
959 		return err;
960 
961 	/* If reach this point, queue q was idle */
962 	qfq_activate_class(q, cl, qdisc_pkt_len(skb));
963 
964 	return err;
965 }
966 
967 /*
968  * Handle class switch from idle to backlogged.
969  */
970 static void qfq_activate_class(struct qfq_sched *q, struct qfq_class *cl,
971 			       unsigned int pkt_len)
972 {
973 	struct qfq_group *grp = cl->grp;
974 	u64 roundedS;
975 	int s;
976 
977 	qfq_update_start(q, cl);
978 
979 	/* compute new finish time and rounded start. */
980 	cl->F = cl->S + (u64)pkt_len * cl->inv_w;
981 	roundedS = qfq_round_down(cl->S, grp->slot_shift);
982 
983 	/*
984 	 * insert cl in the correct bucket.
985 	 * If cl->S >= grp->S we don't need to adjust the
986 	 * bucket list and simply go to the insertion phase.
987 	 * Otherwise grp->S is decreasing, we must make room
988 	 * in the bucket list, and also recompute the group state.
989 	 * Finally, if there were no flows in this group and nobody
990 	 * was in ER make sure to adjust V.
991 	 */
992 	if (grp->full_slots) {
993 		if (!qfq_gt(grp->S, cl->S))
994 			goto skip_update;
995 
996 		/* create a slot for this cl->S */
997 		qfq_slot_rotate(grp, roundedS);
998 		/* group was surely ineligible, remove */
999 		__clear_bit(grp->index, &q->bitmaps[IR]);
1000 		__clear_bit(grp->index, &q->bitmaps[IB]);
1001 	} else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
1002 		q->V = roundedS;
1003 
1004 	grp->S = roundedS;
1005 	grp->F = roundedS + (2ULL << grp->slot_shift);
1006 	s = qfq_calc_state(q, grp);
1007 	__set_bit(grp->index, &q->bitmaps[s]);
1008 
1009 	pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1010 		 s, q->bitmaps[s],
1011 		 (unsigned long long) cl->S,
1012 		 (unsigned long long) cl->F,
1013 		 (unsigned long long) q->V);
1014 
1015 skip_update:
1016 	qfq_slot_insert(grp, cl, roundedS);
1017 }
1018 
1019 
1020 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1021 			    struct qfq_class *cl)
1022 {
1023 	unsigned int i, offset;
1024 	u64 roundedS;
1025 
1026 	roundedS = qfq_round_down(cl->S, grp->slot_shift);
1027 	offset = (roundedS - grp->S) >> grp->slot_shift;
1028 	i = (grp->front + offset) % QFQ_MAX_SLOTS;
1029 
1030 	hlist_del(&cl->next);
1031 	if (hlist_empty(&grp->slots[i]))
1032 		__clear_bit(offset, &grp->full_slots);
1033 }
1034 
1035 /*
1036  * called to forcibly destroy a queue.
1037  * If the queue is not in the front bucket, or if it has
1038  * other queues in the front bucket, we can simply remove
1039  * the queue with no other side effects.
1040  * Otherwise we must propagate the event up.
1041  */
1042 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
1043 {
1044 	struct qfq_group *grp = cl->grp;
1045 	unsigned long mask;
1046 	u64 roundedS;
1047 	int s;
1048 
1049 	cl->F = cl->S;
1050 	qfq_slot_remove(q, grp, cl);
1051 
1052 	if (!grp->full_slots) {
1053 		__clear_bit(grp->index, &q->bitmaps[IR]);
1054 		__clear_bit(grp->index, &q->bitmaps[EB]);
1055 		__clear_bit(grp->index, &q->bitmaps[IB]);
1056 
1057 		if (test_bit(grp->index, &q->bitmaps[ER]) &&
1058 		    !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1059 			mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1060 			if (mask)
1061 				mask = ~((1UL << __fls(mask)) - 1);
1062 			else
1063 				mask = ~0UL;
1064 			qfq_move_groups(q, mask, EB, ER);
1065 			qfq_move_groups(q, mask, IB, IR);
1066 		}
1067 		__clear_bit(grp->index, &q->bitmaps[ER]);
1068 	} else if (hlist_empty(&grp->slots[grp->front])) {
1069 		cl = qfq_slot_scan(grp);
1070 		roundedS = qfq_round_down(cl->S, grp->slot_shift);
1071 		if (grp->S != roundedS) {
1072 			__clear_bit(grp->index, &q->bitmaps[ER]);
1073 			__clear_bit(grp->index, &q->bitmaps[IR]);
1074 			__clear_bit(grp->index, &q->bitmaps[EB]);
1075 			__clear_bit(grp->index, &q->bitmaps[IB]);
1076 			grp->S = roundedS;
1077 			grp->F = roundedS + (2ULL << grp->slot_shift);
1078 			s = qfq_calc_state(q, grp);
1079 			__set_bit(grp->index, &q->bitmaps[s]);
1080 		}
1081 	}
1082 
1083 	qfq_update_eligible(q, q->V);
1084 }
1085 
1086 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1087 {
1088 	struct qfq_sched *q = qdisc_priv(sch);
1089 	struct qfq_class *cl = (struct qfq_class *)arg;
1090 
1091 	if (cl->qdisc->q.qlen == 0)
1092 		qfq_deactivate_class(q, cl);
1093 }
1094 
1095 static unsigned int qfq_drop(struct Qdisc *sch)
1096 {
1097 	struct qfq_sched *q = qdisc_priv(sch);
1098 	struct qfq_group *grp;
1099 	unsigned int i, j, len;
1100 
1101 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1102 		grp = &q->groups[i];
1103 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1104 			struct qfq_class *cl;
1105 			struct hlist_node *n;
1106 
1107 			hlist_for_each_entry(cl, n, &grp->slots[j], next) {
1108 
1109 				if (!cl->qdisc->ops->drop)
1110 					continue;
1111 
1112 				len = cl->qdisc->ops->drop(cl->qdisc);
1113 				if (len > 0) {
1114 					sch->q.qlen--;
1115 					if (!cl->qdisc->q.qlen)
1116 						qfq_deactivate_class(q, cl);
1117 
1118 					return len;
1119 				}
1120 			}
1121 		}
1122 	}
1123 
1124 	return 0;
1125 }
1126 
1127 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1128 {
1129 	struct qfq_sched *q = qdisc_priv(sch);
1130 	struct qfq_group *grp;
1131 	int i, j, err;
1132 
1133 	err = qdisc_class_hash_init(&q->clhash);
1134 	if (err < 0)
1135 		return err;
1136 
1137 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1138 		grp = &q->groups[i];
1139 		grp->index = i;
1140 		grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS
1141 				   - (QFQ_MAX_INDEX - i);
1142 		for (j = 0; j < QFQ_MAX_SLOTS; j++)
1143 			INIT_HLIST_HEAD(&grp->slots[j]);
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 static void qfq_reset_qdisc(struct Qdisc *sch)
1150 {
1151 	struct qfq_sched *q = qdisc_priv(sch);
1152 	struct qfq_group *grp;
1153 	struct qfq_class *cl;
1154 	struct hlist_node *n, *tmp;
1155 	unsigned int i, j;
1156 
1157 	for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1158 		grp = &q->groups[i];
1159 		for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1160 			hlist_for_each_entry_safe(cl, n, tmp,
1161 						  &grp->slots[j], next) {
1162 				qfq_deactivate_class(q, cl);
1163 			}
1164 		}
1165 	}
1166 
1167 	for (i = 0; i < q->clhash.hashsize; i++) {
1168 		hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode)
1169 			qdisc_reset(cl->qdisc);
1170 	}
1171 	sch->q.qlen = 0;
1172 }
1173 
1174 static void qfq_destroy_qdisc(struct Qdisc *sch)
1175 {
1176 	struct qfq_sched *q = qdisc_priv(sch);
1177 	struct qfq_class *cl;
1178 	struct hlist_node *n, *next;
1179 	unsigned int i;
1180 
1181 	tcf_destroy_chain(&q->filter_list);
1182 
1183 	for (i = 0; i < q->clhash.hashsize; i++) {
1184 		hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i],
1185 					  common.hnode) {
1186 			qfq_destroy_class(sch, cl);
1187 		}
1188 	}
1189 	qdisc_class_hash_destroy(&q->clhash);
1190 }
1191 
1192 static const struct Qdisc_class_ops qfq_class_ops = {
1193 	.change		= qfq_change_class,
1194 	.delete		= qfq_delete_class,
1195 	.get		= qfq_get_class,
1196 	.put		= qfq_put_class,
1197 	.tcf_chain	= qfq_tcf_chain,
1198 	.bind_tcf	= qfq_bind_tcf,
1199 	.unbind_tcf	= qfq_unbind_tcf,
1200 	.graft		= qfq_graft_class,
1201 	.leaf		= qfq_class_leaf,
1202 	.qlen_notify	= qfq_qlen_notify,
1203 	.dump		= qfq_dump_class,
1204 	.dump_stats	= qfq_dump_class_stats,
1205 	.walk		= qfq_walk,
1206 };
1207 
1208 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1209 	.cl_ops		= &qfq_class_ops,
1210 	.id		= "qfq",
1211 	.priv_size	= sizeof(struct qfq_sched),
1212 	.enqueue	= qfq_enqueue,
1213 	.dequeue	= qfq_dequeue,
1214 	.peek		= qdisc_peek_dequeued,
1215 	.drop		= qfq_drop,
1216 	.init		= qfq_init_qdisc,
1217 	.reset		= qfq_reset_qdisc,
1218 	.destroy	= qfq_destroy_qdisc,
1219 	.owner		= THIS_MODULE,
1220 };
1221 
1222 static int __init qfq_init(void)
1223 {
1224 	return register_qdisc(&qfq_qdisc_ops);
1225 }
1226 
1227 static void __exit qfq_exit(void)
1228 {
1229 	unregister_qdisc(&qfq_qdisc_ops);
1230 }
1231 
1232 module_init(qfq_init);
1233 module_exit(qfq_exit);
1234 MODULE_LICENSE("GPL");
1235