xref: /openbmc/linux/net/sched/sch_netem.c (revision b34e08d5)
1 /*
2  * net/sched/sch_netem.c	Network emulator
3  *
4  * 		This program is free software; you can redistribute it and/or
5  * 		modify it under the terms of the GNU General Public License
6  * 		as published by the Free Software Foundation; either version
7  * 		2 of the License.
8  *
9  *  		Many of the algorithms and ideas for this came from
10  *		NIST Net which is not copyrighted.
11  *
12  * Authors:	Stephen Hemminger <shemminger@osdl.org>
13  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
27 
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
31 
32 #define VERSION "1.3"
33 
34 /*	Network Emulation Queuing algorithm.
35 	====================================
36 
37 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 		 Network Emulation Tool
39 		 [2] Luigi Rizzo, DummyNet for FreeBSD
40 
41 	 ----------------------------------------------------------------
42 
43 	 This started out as a simple way to delay outgoing packets to
44 	 test TCP but has grown to include most of the functionality
45 	 of a full blown network emulator like NISTnet. It can delay
46 	 packets and add random jitter (and correlation). The random
47 	 distribution can be loaded from a table as well to provide
48 	 normal, Pareto, or experimental curves. Packet loss,
49 	 duplication, and reordering can also be emulated.
50 
51 	 This qdisc does not do classification that can be handled in
52 	 layering other disciplines.  It does not need to do bandwidth
53 	 control either since that can be handled by using token
54 	 bucket or other rate control.
55 
56      Correlated Loss Generator models
57 
58 	Added generation of correlated loss according to the
59 	"Gilbert-Elliot" model, a 4-state markov model.
60 
61 	References:
62 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 	and intuitive loss model for packet networks and its implementation
65 	in the Netem module in the Linux kernel", available in [1]
66 
67 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
69 */
70 
71 struct netem_sched_data {
72 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 	struct rb_root t_root;
74 
75 	/* optional qdisc for classful handling (NULL at netem init) */
76 	struct Qdisc	*qdisc;
77 
78 	struct qdisc_watchdog watchdog;
79 
80 	psched_tdiff_t latency;
81 	psched_tdiff_t jitter;
82 
83 	u32 loss;
84 	u32 ecn;
85 	u32 limit;
86 	u32 counter;
87 	u32 gap;
88 	u32 duplicate;
89 	u32 reorder;
90 	u32 corrupt;
91 	u64 rate;
92 	s32 packet_overhead;
93 	u32 cell_size;
94 	struct reciprocal_value cell_size_reciprocal;
95 	s32 cell_overhead;
96 
97 	struct crndstate {
98 		u32 last;
99 		u32 rho;
100 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
101 
102 	struct disttable {
103 		u32  size;
104 		s16 table[0];
105 	} *delay_dist;
106 
107 	enum  {
108 		CLG_RANDOM,
109 		CLG_4_STATES,
110 		CLG_GILB_ELL,
111 	} loss_model;
112 
113 	enum {
114 		TX_IN_GAP_PERIOD = 1,
115 		TX_IN_BURST_PERIOD,
116 		LOST_IN_GAP_PERIOD,
117 		LOST_IN_BURST_PERIOD,
118 	} _4_state_model;
119 
120 	enum {
121 		GOOD_STATE = 1,
122 		BAD_STATE,
123 	} GE_state_model;
124 
125 	/* Correlated Loss Generation models */
126 	struct clgstate {
127 		/* state of the Markov chain */
128 		u8 state;
129 
130 		/* 4-states and Gilbert-Elliot models */
131 		u32 a1;	/* p13 for 4-states or p for GE */
132 		u32 a2;	/* p31 for 4-states or r for GE */
133 		u32 a3;	/* p32 for 4-states or h for GE */
134 		u32 a4;	/* p14 for 4-states or 1-k for GE */
135 		u32 a5; /* p23 used only in 4-states */
136 	} clg;
137 
138 };
139 
140 /* Time stamp put into socket buffer control block
141  * Only valid when skbs are in our internal t(ime)fifo queue.
142  */
143 struct netem_skb_cb {
144 	psched_time_t	time_to_send;
145 	ktime_t		tstamp_save;
146 };
147 
148 /* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp
149  * to hold a rb_node structure.
150  *
151  * If struct sk_buff layout is changed, the following checks will complain.
152  */
153 static struct rb_node *netem_rb_node(struct sk_buff *skb)
154 {
155 	BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0);
156 	BUILD_BUG_ON(offsetof(struct sk_buff, prev) !=
157 		     offsetof(struct sk_buff, next) + sizeof(skb->next));
158 	BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) !=
159 		     offsetof(struct sk_buff, prev) + sizeof(skb->prev));
160 	BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) +
161 					      sizeof(skb->prev) +
162 					      sizeof(skb->tstamp));
163 	return (struct rb_node *)&skb->next;
164 }
165 
166 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
167 {
168 	return (struct sk_buff *)rb;
169 }
170 
171 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
172 {
173 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
174 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
175 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
176 }
177 
178 /* init_crandom - initialize correlated random number generator
179  * Use entropy source for initial seed.
180  */
181 static void init_crandom(struct crndstate *state, unsigned long rho)
182 {
183 	state->rho = rho;
184 	state->last = prandom_u32();
185 }
186 
187 /* get_crandom - correlated random number generator
188  * Next number depends on last value.
189  * rho is scaled to avoid floating point.
190  */
191 static u32 get_crandom(struct crndstate *state)
192 {
193 	u64 value, rho;
194 	unsigned long answer;
195 
196 	if (state->rho == 0)	/* no correlation */
197 		return prandom_u32();
198 
199 	value = prandom_u32();
200 	rho = (u64)state->rho + 1;
201 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
202 	state->last = answer;
203 	return answer;
204 }
205 
206 /* loss_4state - 4-state model loss generator
207  * Generates losses according to the 4-state Markov chain adopted in
208  * the GI (General and Intuitive) loss model.
209  */
210 static bool loss_4state(struct netem_sched_data *q)
211 {
212 	struct clgstate *clg = &q->clg;
213 	u32 rnd = prandom_u32();
214 
215 	/*
216 	 * Makes a comparison between rnd and the transition
217 	 * probabilities outgoing from the current state, then decides the
218 	 * next state and if the next packet has to be transmitted or lost.
219 	 * The four states correspond to:
220 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
221 	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
222 	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
223 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
224 	 */
225 	switch (clg->state) {
226 	case TX_IN_GAP_PERIOD:
227 		if (rnd < clg->a4) {
228 			clg->state = LOST_IN_BURST_PERIOD;
229 			return true;
230 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
231 			clg->state = LOST_IN_GAP_PERIOD;
232 			return true;
233 		} else if (clg->a1 + clg->a4 < rnd) {
234 			clg->state = TX_IN_GAP_PERIOD;
235 		}
236 
237 		break;
238 	case TX_IN_BURST_PERIOD:
239 		if (rnd < clg->a5) {
240 			clg->state = LOST_IN_GAP_PERIOD;
241 			return true;
242 		} else {
243 			clg->state = TX_IN_BURST_PERIOD;
244 		}
245 
246 		break;
247 	case LOST_IN_GAP_PERIOD:
248 		if (rnd < clg->a3)
249 			clg->state = TX_IN_BURST_PERIOD;
250 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
251 			clg->state = TX_IN_GAP_PERIOD;
252 		} else if (clg->a2 + clg->a3 < rnd) {
253 			clg->state = LOST_IN_GAP_PERIOD;
254 			return true;
255 		}
256 		break;
257 	case LOST_IN_BURST_PERIOD:
258 		clg->state = TX_IN_GAP_PERIOD;
259 		break;
260 	}
261 
262 	return false;
263 }
264 
265 /* loss_gilb_ell - Gilbert-Elliot model loss generator
266  * Generates losses according to the Gilbert-Elliot loss model or
267  * its special cases  (Gilbert or Simple Gilbert)
268  *
269  * Makes a comparison between random number and the transition
270  * probabilities outgoing from the current state, then decides the
271  * next state. A second random number is extracted and the comparison
272  * with the loss probability of the current state decides if the next
273  * packet will be transmitted or lost.
274  */
275 static bool loss_gilb_ell(struct netem_sched_data *q)
276 {
277 	struct clgstate *clg = &q->clg;
278 
279 	switch (clg->state) {
280 	case GOOD_STATE:
281 		if (prandom_u32() < clg->a1)
282 			clg->state = BAD_STATE;
283 		if (prandom_u32() < clg->a4)
284 			return true;
285 		break;
286 	case BAD_STATE:
287 		if (prandom_u32() < clg->a2)
288 			clg->state = GOOD_STATE;
289 		if (prandom_u32() > clg->a3)
290 			return true;
291 	}
292 
293 	return false;
294 }
295 
296 static bool loss_event(struct netem_sched_data *q)
297 {
298 	switch (q->loss_model) {
299 	case CLG_RANDOM:
300 		/* Random packet drop 0 => none, ~0 => all */
301 		return q->loss && q->loss >= get_crandom(&q->loss_cor);
302 
303 	case CLG_4_STATES:
304 		/* 4state loss model algorithm (used also for GI model)
305 		* Extracts a value from the markov 4 state loss generator,
306 		* if it is 1 drops a packet and if needed writes the event in
307 		* the kernel logs
308 		*/
309 		return loss_4state(q);
310 
311 	case CLG_GILB_ELL:
312 		/* Gilbert-Elliot loss model algorithm
313 		* Extracts a value from the Gilbert-Elliot loss generator,
314 		* if it is 1 drops a packet and if needed writes the event in
315 		* the kernel logs
316 		*/
317 		return loss_gilb_ell(q);
318 	}
319 
320 	return false;	/* not reached */
321 }
322 
323 
324 /* tabledist - return a pseudo-randomly distributed value with mean mu and
325  * std deviation sigma.  Uses table lookup to approximate the desired
326  * distribution, and a uniformly-distributed pseudo-random source.
327  */
328 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
329 				struct crndstate *state,
330 				const struct disttable *dist)
331 {
332 	psched_tdiff_t x;
333 	long t;
334 	u32 rnd;
335 
336 	if (sigma == 0)
337 		return mu;
338 
339 	rnd = get_crandom(state);
340 
341 	/* default uniform distribution */
342 	if (dist == NULL)
343 		return (rnd % (2*sigma)) - sigma + mu;
344 
345 	t = dist->table[rnd % dist->size];
346 	x = (sigma % NETEM_DIST_SCALE) * t;
347 	if (x >= 0)
348 		x += NETEM_DIST_SCALE/2;
349 	else
350 		x -= NETEM_DIST_SCALE/2;
351 
352 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
353 }
354 
355 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
356 {
357 	u64 ticks;
358 
359 	len += q->packet_overhead;
360 
361 	if (q->cell_size) {
362 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
363 
364 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
365 			cells++;
366 		len = cells * (q->cell_size + q->cell_overhead);
367 	}
368 
369 	ticks = (u64)len * NSEC_PER_SEC;
370 
371 	do_div(ticks, q->rate);
372 	return PSCHED_NS2TICKS(ticks);
373 }
374 
375 static void tfifo_reset(struct Qdisc *sch)
376 {
377 	struct netem_sched_data *q = qdisc_priv(sch);
378 	struct rb_node *p;
379 
380 	while ((p = rb_first(&q->t_root))) {
381 		struct sk_buff *skb = netem_rb_to_skb(p);
382 
383 		rb_erase(p, &q->t_root);
384 		skb->next = NULL;
385 		skb->prev = NULL;
386 		kfree_skb(skb);
387 	}
388 }
389 
390 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
391 {
392 	struct netem_sched_data *q = qdisc_priv(sch);
393 	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
394 	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
395 
396 	while (*p) {
397 		struct sk_buff *skb;
398 
399 		parent = *p;
400 		skb = netem_rb_to_skb(parent);
401 		if (tnext >= netem_skb_cb(skb)->time_to_send)
402 			p = &parent->rb_right;
403 		else
404 			p = &parent->rb_left;
405 	}
406 	rb_link_node(netem_rb_node(nskb), parent, p);
407 	rb_insert_color(netem_rb_node(nskb), &q->t_root);
408 	sch->q.qlen++;
409 }
410 
411 /*
412  * Insert one skb into qdisc.
413  * Note: parent depends on return value to account for queue length.
414  * 	NET_XMIT_DROP: queue length didn't change.
415  *      NET_XMIT_SUCCESS: one skb was queued.
416  */
417 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
418 {
419 	struct netem_sched_data *q = qdisc_priv(sch);
420 	/* We don't fill cb now as skb_unshare() may invalidate it */
421 	struct netem_skb_cb *cb;
422 	struct sk_buff *skb2;
423 	int count = 1;
424 
425 	/* Random duplication */
426 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
427 		++count;
428 
429 	/* Drop packet? */
430 	if (loss_event(q)) {
431 		if (q->ecn && INET_ECN_set_ce(skb))
432 			sch->qstats.drops++; /* mark packet */
433 		else
434 			--count;
435 	}
436 	if (count == 0) {
437 		sch->qstats.drops++;
438 		kfree_skb(skb);
439 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
440 	}
441 
442 	/* If a delay is expected, orphan the skb. (orphaning usually takes
443 	 * place at TX completion time, so _before_ the link transit delay)
444 	 */
445 	if (q->latency || q->jitter)
446 		skb_orphan_partial(skb);
447 
448 	/*
449 	 * If we need to duplicate packet, then re-insert at top of the
450 	 * qdisc tree, since parent queuer expects that only one
451 	 * skb will be queued.
452 	 */
453 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
454 		struct Qdisc *rootq = qdisc_root(sch);
455 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
456 		q->duplicate = 0;
457 
458 		qdisc_enqueue_root(skb2, rootq);
459 		q->duplicate = dupsave;
460 	}
461 
462 	/*
463 	 * Randomized packet corruption.
464 	 * Make copy if needed since we are modifying
465 	 * If packet is going to be hardware checksummed, then
466 	 * do it now in software before we mangle it.
467 	 */
468 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
469 		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
470 		    (skb->ip_summed == CHECKSUM_PARTIAL &&
471 		     skb_checksum_help(skb)))
472 			return qdisc_drop(skb, sch);
473 
474 		skb->data[prandom_u32() % skb_headlen(skb)] ^=
475 			1<<(prandom_u32() % 8);
476 	}
477 
478 	if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
479 		return qdisc_reshape_fail(skb, sch);
480 
481 	sch->qstats.backlog += qdisc_pkt_len(skb);
482 
483 	cb = netem_skb_cb(skb);
484 	if (q->gap == 0 ||		/* not doing reordering */
485 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
486 	    q->reorder < get_crandom(&q->reorder_cor)) {
487 		psched_time_t now;
488 		psched_tdiff_t delay;
489 
490 		delay = tabledist(q->latency, q->jitter,
491 				  &q->delay_cor, q->delay_dist);
492 
493 		now = psched_get_time();
494 
495 		if (q->rate) {
496 			struct sk_buff *last;
497 
498 			if (!skb_queue_empty(&sch->q))
499 				last = skb_peek_tail(&sch->q);
500 			else
501 				last = netem_rb_to_skb(rb_last(&q->t_root));
502 			if (last) {
503 				/*
504 				 * Last packet in queue is reference point (now),
505 				 * calculate this time bonus and subtract
506 				 * from delay.
507 				 */
508 				delay -= netem_skb_cb(last)->time_to_send - now;
509 				delay = max_t(psched_tdiff_t, 0, delay);
510 				now = netem_skb_cb(last)->time_to_send;
511 			}
512 
513 			delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
514 		}
515 
516 		cb->time_to_send = now + delay;
517 		cb->tstamp_save = skb->tstamp;
518 		++q->counter;
519 		tfifo_enqueue(skb, sch);
520 	} else {
521 		/*
522 		 * Do re-ordering by putting one out of N packets at the front
523 		 * of the queue.
524 		 */
525 		cb->time_to_send = psched_get_time();
526 		q->counter = 0;
527 
528 		__skb_queue_head(&sch->q, skb);
529 		sch->qstats.requeues++;
530 	}
531 
532 	return NET_XMIT_SUCCESS;
533 }
534 
535 static unsigned int netem_drop(struct Qdisc *sch)
536 {
537 	struct netem_sched_data *q = qdisc_priv(sch);
538 	unsigned int len;
539 
540 	len = qdisc_queue_drop(sch);
541 
542 	if (!len) {
543 		struct rb_node *p = rb_first(&q->t_root);
544 
545 		if (p) {
546 			struct sk_buff *skb = netem_rb_to_skb(p);
547 
548 			rb_erase(p, &q->t_root);
549 			sch->q.qlen--;
550 			skb->next = NULL;
551 			skb->prev = NULL;
552 			len = qdisc_pkt_len(skb);
553 			sch->qstats.backlog -= len;
554 			kfree_skb(skb);
555 		}
556 	}
557 	if (!len && q->qdisc && q->qdisc->ops->drop)
558 	    len = q->qdisc->ops->drop(q->qdisc);
559 	if (len)
560 		sch->qstats.drops++;
561 
562 	return len;
563 }
564 
565 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
566 {
567 	struct netem_sched_data *q = qdisc_priv(sch);
568 	struct sk_buff *skb;
569 	struct rb_node *p;
570 
571 	if (qdisc_is_throttled(sch))
572 		return NULL;
573 
574 tfifo_dequeue:
575 	skb = __skb_dequeue(&sch->q);
576 	if (skb) {
577 deliver:
578 		sch->qstats.backlog -= qdisc_pkt_len(skb);
579 		qdisc_unthrottled(sch);
580 		qdisc_bstats_update(sch, skb);
581 		return skb;
582 	}
583 	p = rb_first(&q->t_root);
584 	if (p) {
585 		psched_time_t time_to_send;
586 
587 		skb = netem_rb_to_skb(p);
588 
589 		/* if more time remaining? */
590 		time_to_send = netem_skb_cb(skb)->time_to_send;
591 		if (time_to_send <= psched_get_time()) {
592 			rb_erase(p, &q->t_root);
593 
594 			sch->q.qlen--;
595 			skb->next = NULL;
596 			skb->prev = NULL;
597 			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
598 
599 #ifdef CONFIG_NET_CLS_ACT
600 			/*
601 			 * If it's at ingress let's pretend the delay is
602 			 * from the network (tstamp will be updated).
603 			 */
604 			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
605 				skb->tstamp.tv64 = 0;
606 #endif
607 
608 			if (q->qdisc) {
609 				int err = qdisc_enqueue(skb, q->qdisc);
610 
611 				if (unlikely(err != NET_XMIT_SUCCESS)) {
612 					if (net_xmit_drop_count(err)) {
613 						sch->qstats.drops++;
614 						qdisc_tree_decrease_qlen(sch, 1);
615 					}
616 				}
617 				goto tfifo_dequeue;
618 			}
619 			goto deliver;
620 		}
621 
622 		if (q->qdisc) {
623 			skb = q->qdisc->ops->dequeue(q->qdisc);
624 			if (skb)
625 				goto deliver;
626 		}
627 		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
628 	}
629 
630 	if (q->qdisc) {
631 		skb = q->qdisc->ops->dequeue(q->qdisc);
632 		if (skb)
633 			goto deliver;
634 	}
635 	return NULL;
636 }
637 
638 static void netem_reset(struct Qdisc *sch)
639 {
640 	struct netem_sched_data *q = qdisc_priv(sch);
641 
642 	qdisc_reset_queue(sch);
643 	tfifo_reset(sch);
644 	if (q->qdisc)
645 		qdisc_reset(q->qdisc);
646 	qdisc_watchdog_cancel(&q->watchdog);
647 }
648 
649 static void dist_free(struct disttable *d)
650 {
651 	if (d) {
652 		if (is_vmalloc_addr(d))
653 			vfree(d);
654 		else
655 			kfree(d);
656 	}
657 }
658 
659 /*
660  * Distribution data is a variable size payload containing
661  * signed 16 bit values.
662  */
663 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
664 {
665 	struct netem_sched_data *q = qdisc_priv(sch);
666 	size_t n = nla_len(attr)/sizeof(__s16);
667 	const __s16 *data = nla_data(attr);
668 	spinlock_t *root_lock;
669 	struct disttable *d;
670 	int i;
671 	size_t s;
672 
673 	if (n > NETEM_DIST_MAX)
674 		return -EINVAL;
675 
676 	s = sizeof(struct disttable) + n * sizeof(s16);
677 	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
678 	if (!d)
679 		d = vmalloc(s);
680 	if (!d)
681 		return -ENOMEM;
682 
683 	d->size = n;
684 	for (i = 0; i < n; i++)
685 		d->table[i] = data[i];
686 
687 	root_lock = qdisc_root_sleeping_lock(sch);
688 
689 	spin_lock_bh(root_lock);
690 	swap(q->delay_dist, d);
691 	spin_unlock_bh(root_lock);
692 
693 	dist_free(d);
694 	return 0;
695 }
696 
697 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
698 {
699 	const struct tc_netem_corr *c = nla_data(attr);
700 
701 	init_crandom(&q->delay_cor, c->delay_corr);
702 	init_crandom(&q->loss_cor, c->loss_corr);
703 	init_crandom(&q->dup_cor, c->dup_corr);
704 }
705 
706 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
707 {
708 	const struct tc_netem_reorder *r = nla_data(attr);
709 
710 	q->reorder = r->probability;
711 	init_crandom(&q->reorder_cor, r->correlation);
712 }
713 
714 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
715 {
716 	const struct tc_netem_corrupt *r = nla_data(attr);
717 
718 	q->corrupt = r->probability;
719 	init_crandom(&q->corrupt_cor, r->correlation);
720 }
721 
722 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
723 {
724 	const struct tc_netem_rate *r = nla_data(attr);
725 
726 	q->rate = r->rate;
727 	q->packet_overhead = r->packet_overhead;
728 	q->cell_size = r->cell_size;
729 	q->cell_overhead = r->cell_overhead;
730 	if (q->cell_size)
731 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
732 	else
733 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
734 }
735 
736 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
737 {
738 	const struct nlattr *la;
739 	int rem;
740 
741 	nla_for_each_nested(la, attr, rem) {
742 		u16 type = nla_type(la);
743 
744 		switch (type) {
745 		case NETEM_LOSS_GI: {
746 			const struct tc_netem_gimodel *gi = nla_data(la);
747 
748 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
749 				pr_info("netem: incorrect gi model size\n");
750 				return -EINVAL;
751 			}
752 
753 			q->loss_model = CLG_4_STATES;
754 
755 			q->clg.state = TX_IN_GAP_PERIOD;
756 			q->clg.a1 = gi->p13;
757 			q->clg.a2 = gi->p31;
758 			q->clg.a3 = gi->p32;
759 			q->clg.a4 = gi->p14;
760 			q->clg.a5 = gi->p23;
761 			break;
762 		}
763 
764 		case NETEM_LOSS_GE: {
765 			const struct tc_netem_gemodel *ge = nla_data(la);
766 
767 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
768 				pr_info("netem: incorrect ge model size\n");
769 				return -EINVAL;
770 			}
771 
772 			q->loss_model = CLG_GILB_ELL;
773 			q->clg.state = GOOD_STATE;
774 			q->clg.a1 = ge->p;
775 			q->clg.a2 = ge->r;
776 			q->clg.a3 = ge->h;
777 			q->clg.a4 = ge->k1;
778 			break;
779 		}
780 
781 		default:
782 			pr_info("netem: unknown loss type %u\n", type);
783 			return -EINVAL;
784 		}
785 	}
786 
787 	return 0;
788 }
789 
790 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
791 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
792 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
793 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
794 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
795 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
796 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
797 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
798 };
799 
800 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
801 		      const struct nla_policy *policy, int len)
802 {
803 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
804 
805 	if (nested_len < 0) {
806 		pr_info("netem: invalid attributes len %d\n", nested_len);
807 		return -EINVAL;
808 	}
809 
810 	if (nested_len >= nla_attr_size(0))
811 		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
812 				 nested_len, policy);
813 
814 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
815 	return 0;
816 }
817 
818 /* Parse netlink message to set options */
819 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
820 {
821 	struct netem_sched_data *q = qdisc_priv(sch);
822 	struct nlattr *tb[TCA_NETEM_MAX + 1];
823 	struct tc_netem_qopt *qopt;
824 	struct clgstate old_clg;
825 	int old_loss_model = CLG_RANDOM;
826 	int ret;
827 
828 	if (opt == NULL)
829 		return -EINVAL;
830 
831 	qopt = nla_data(opt);
832 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
833 	if (ret < 0)
834 		return ret;
835 
836 	/* backup q->clg and q->loss_model */
837 	old_clg = q->clg;
838 	old_loss_model = q->loss_model;
839 
840 	if (tb[TCA_NETEM_LOSS]) {
841 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
842 		if (ret) {
843 			q->loss_model = old_loss_model;
844 			return ret;
845 		}
846 	} else {
847 		q->loss_model = CLG_RANDOM;
848 	}
849 
850 	if (tb[TCA_NETEM_DELAY_DIST]) {
851 		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
852 		if (ret) {
853 			/* recover clg and loss_model, in case of
854 			 * q->clg and q->loss_model were modified
855 			 * in get_loss_clg()
856 			 */
857 			q->clg = old_clg;
858 			q->loss_model = old_loss_model;
859 			return ret;
860 		}
861 	}
862 
863 	sch->limit = qopt->limit;
864 
865 	q->latency = qopt->latency;
866 	q->jitter = qopt->jitter;
867 	q->limit = qopt->limit;
868 	q->gap = qopt->gap;
869 	q->counter = 0;
870 	q->loss = qopt->loss;
871 	q->duplicate = qopt->duplicate;
872 
873 	/* for compatibility with earlier versions.
874 	 * if gap is set, need to assume 100% probability
875 	 */
876 	if (q->gap)
877 		q->reorder = ~0;
878 
879 	if (tb[TCA_NETEM_CORR])
880 		get_correlation(q, tb[TCA_NETEM_CORR]);
881 
882 	if (tb[TCA_NETEM_REORDER])
883 		get_reorder(q, tb[TCA_NETEM_REORDER]);
884 
885 	if (tb[TCA_NETEM_CORRUPT])
886 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
887 
888 	if (tb[TCA_NETEM_RATE])
889 		get_rate(q, tb[TCA_NETEM_RATE]);
890 
891 	if (tb[TCA_NETEM_RATE64])
892 		q->rate = max_t(u64, q->rate,
893 				nla_get_u64(tb[TCA_NETEM_RATE64]));
894 
895 	if (tb[TCA_NETEM_ECN])
896 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
897 
898 	return ret;
899 }
900 
901 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
902 {
903 	struct netem_sched_data *q = qdisc_priv(sch);
904 	int ret;
905 
906 	if (!opt)
907 		return -EINVAL;
908 
909 	qdisc_watchdog_init(&q->watchdog, sch);
910 
911 	q->loss_model = CLG_RANDOM;
912 	ret = netem_change(sch, opt);
913 	if (ret)
914 		pr_info("netem: change failed\n");
915 	return ret;
916 }
917 
918 static void netem_destroy(struct Qdisc *sch)
919 {
920 	struct netem_sched_data *q = qdisc_priv(sch);
921 
922 	qdisc_watchdog_cancel(&q->watchdog);
923 	if (q->qdisc)
924 		qdisc_destroy(q->qdisc);
925 	dist_free(q->delay_dist);
926 }
927 
928 static int dump_loss_model(const struct netem_sched_data *q,
929 			   struct sk_buff *skb)
930 {
931 	struct nlattr *nest;
932 
933 	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
934 	if (nest == NULL)
935 		goto nla_put_failure;
936 
937 	switch (q->loss_model) {
938 	case CLG_RANDOM:
939 		/* legacy loss model */
940 		nla_nest_cancel(skb, nest);
941 		return 0;	/* no data */
942 
943 	case CLG_4_STATES: {
944 		struct tc_netem_gimodel gi = {
945 			.p13 = q->clg.a1,
946 			.p31 = q->clg.a2,
947 			.p32 = q->clg.a3,
948 			.p14 = q->clg.a4,
949 			.p23 = q->clg.a5,
950 		};
951 
952 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
953 			goto nla_put_failure;
954 		break;
955 	}
956 	case CLG_GILB_ELL: {
957 		struct tc_netem_gemodel ge = {
958 			.p = q->clg.a1,
959 			.r = q->clg.a2,
960 			.h = q->clg.a3,
961 			.k1 = q->clg.a4,
962 		};
963 
964 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
965 			goto nla_put_failure;
966 		break;
967 	}
968 	}
969 
970 	nla_nest_end(skb, nest);
971 	return 0;
972 
973 nla_put_failure:
974 	nla_nest_cancel(skb, nest);
975 	return -1;
976 }
977 
978 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
979 {
980 	const struct netem_sched_data *q = qdisc_priv(sch);
981 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
982 	struct tc_netem_qopt qopt;
983 	struct tc_netem_corr cor;
984 	struct tc_netem_reorder reorder;
985 	struct tc_netem_corrupt corrupt;
986 	struct tc_netem_rate rate;
987 
988 	qopt.latency = q->latency;
989 	qopt.jitter = q->jitter;
990 	qopt.limit = q->limit;
991 	qopt.loss = q->loss;
992 	qopt.gap = q->gap;
993 	qopt.duplicate = q->duplicate;
994 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
995 		goto nla_put_failure;
996 
997 	cor.delay_corr = q->delay_cor.rho;
998 	cor.loss_corr = q->loss_cor.rho;
999 	cor.dup_corr = q->dup_cor.rho;
1000 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1001 		goto nla_put_failure;
1002 
1003 	reorder.probability = q->reorder;
1004 	reorder.correlation = q->reorder_cor.rho;
1005 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1006 		goto nla_put_failure;
1007 
1008 	corrupt.probability = q->corrupt;
1009 	corrupt.correlation = q->corrupt_cor.rho;
1010 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1011 		goto nla_put_failure;
1012 
1013 	if (q->rate >= (1ULL << 32)) {
1014 		if (nla_put_u64(skb, TCA_NETEM_RATE64, q->rate))
1015 			goto nla_put_failure;
1016 		rate.rate = ~0U;
1017 	} else {
1018 		rate.rate = q->rate;
1019 	}
1020 	rate.packet_overhead = q->packet_overhead;
1021 	rate.cell_size = q->cell_size;
1022 	rate.cell_overhead = q->cell_overhead;
1023 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1024 		goto nla_put_failure;
1025 
1026 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1027 		goto nla_put_failure;
1028 
1029 	if (dump_loss_model(q, skb) != 0)
1030 		goto nla_put_failure;
1031 
1032 	return nla_nest_end(skb, nla);
1033 
1034 nla_put_failure:
1035 	nlmsg_trim(skb, nla);
1036 	return -1;
1037 }
1038 
1039 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1040 			  struct sk_buff *skb, struct tcmsg *tcm)
1041 {
1042 	struct netem_sched_data *q = qdisc_priv(sch);
1043 
1044 	if (cl != 1 || !q->qdisc) 	/* only one class */
1045 		return -ENOENT;
1046 
1047 	tcm->tcm_handle |= TC_H_MIN(1);
1048 	tcm->tcm_info = q->qdisc->handle;
1049 
1050 	return 0;
1051 }
1052 
1053 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1054 		     struct Qdisc **old)
1055 {
1056 	struct netem_sched_data *q = qdisc_priv(sch);
1057 
1058 	sch_tree_lock(sch);
1059 	*old = q->qdisc;
1060 	q->qdisc = new;
1061 	if (*old) {
1062 		qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
1063 		qdisc_reset(*old);
1064 	}
1065 	sch_tree_unlock(sch);
1066 
1067 	return 0;
1068 }
1069 
1070 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1071 {
1072 	struct netem_sched_data *q = qdisc_priv(sch);
1073 	return q->qdisc;
1074 }
1075 
1076 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1077 {
1078 	return 1;
1079 }
1080 
1081 static void netem_put(struct Qdisc *sch, unsigned long arg)
1082 {
1083 }
1084 
1085 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1086 {
1087 	if (!walker->stop) {
1088 		if (walker->count >= walker->skip)
1089 			if (walker->fn(sch, 1, walker) < 0) {
1090 				walker->stop = 1;
1091 				return;
1092 			}
1093 		walker->count++;
1094 	}
1095 }
1096 
1097 static const struct Qdisc_class_ops netem_class_ops = {
1098 	.graft		=	netem_graft,
1099 	.leaf		=	netem_leaf,
1100 	.get		=	netem_get,
1101 	.put		=	netem_put,
1102 	.walk		=	netem_walk,
1103 	.dump		=	netem_dump_class,
1104 };
1105 
1106 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1107 	.id		=	"netem",
1108 	.cl_ops		=	&netem_class_ops,
1109 	.priv_size	=	sizeof(struct netem_sched_data),
1110 	.enqueue	=	netem_enqueue,
1111 	.dequeue	=	netem_dequeue,
1112 	.peek		=	qdisc_peek_dequeued,
1113 	.drop		=	netem_drop,
1114 	.init		=	netem_init,
1115 	.reset		=	netem_reset,
1116 	.destroy	=	netem_destroy,
1117 	.change		=	netem_change,
1118 	.dump		=	netem_dump,
1119 	.owner		=	THIS_MODULE,
1120 };
1121 
1122 
1123 static int __init netem_module_init(void)
1124 {
1125 	pr_info("netem: version " VERSION "\n");
1126 	return register_qdisc(&netem_qdisc_ops);
1127 }
1128 static void __exit netem_module_exit(void)
1129 {
1130 	unregister_qdisc(&netem_qdisc_ops);
1131 }
1132 module_init(netem_module_init)
1133 module_exit(netem_module_exit)
1134 MODULE_LICENSE("GPL");
1135