1 /* 2 * net/sched/sch_netem.c Network emulator 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License. 8 * 9 * Many of the algorithms and ideas for this came from 10 * NIST Net which is not copyrighted. 11 * 12 * Authors: Stephen Hemminger <shemminger@osdl.org> 13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro> 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/kernel.h> 21 #include <linux/errno.h> 22 #include <linux/skbuff.h> 23 #include <linux/vmalloc.h> 24 #include <linux/rtnetlink.h> 25 #include <linux/reciprocal_div.h> 26 #include <linux/rbtree.h> 27 28 #include <net/netlink.h> 29 #include <net/pkt_sched.h> 30 #include <net/inet_ecn.h> 31 32 #define VERSION "1.3" 33 34 /* Network Emulation Queuing algorithm. 35 ==================================== 36 37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based 38 Network Emulation Tool 39 [2] Luigi Rizzo, DummyNet for FreeBSD 40 41 ---------------------------------------------------------------- 42 43 This started out as a simple way to delay outgoing packets to 44 test TCP but has grown to include most of the functionality 45 of a full blown network emulator like NISTnet. It can delay 46 packets and add random jitter (and correlation). The random 47 distribution can be loaded from a table as well to provide 48 normal, Pareto, or experimental curves. Packet loss, 49 duplication, and reordering can also be emulated. 50 51 This qdisc does not do classification that can be handled in 52 layering other disciplines. It does not need to do bandwidth 53 control either since that can be handled by using token 54 bucket or other rate control. 55 56 Correlated Loss Generator models 57 58 Added generation of correlated loss according to the 59 "Gilbert-Elliot" model, a 4-state markov model. 60 61 References: 62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG 63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general 64 and intuitive loss model for packet networks and its implementation 65 in the Netem module in the Linux kernel", available in [1] 66 67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it 68 Fabio Ludovici <fabio.ludovici at yahoo.it> 69 */ 70 71 struct netem_sched_data { 72 /* internal t(ime)fifo qdisc uses t_root and sch->limit */ 73 struct rb_root t_root; 74 75 /* optional qdisc for classful handling (NULL at netem init) */ 76 struct Qdisc *qdisc; 77 78 struct qdisc_watchdog watchdog; 79 80 psched_tdiff_t latency; 81 psched_tdiff_t jitter; 82 83 u32 loss; 84 u32 ecn; 85 u32 limit; 86 u32 counter; 87 u32 gap; 88 u32 duplicate; 89 u32 reorder; 90 u32 corrupt; 91 u64 rate; 92 s32 packet_overhead; 93 u32 cell_size; 94 struct reciprocal_value cell_size_reciprocal; 95 s32 cell_overhead; 96 97 struct crndstate { 98 u32 last; 99 u32 rho; 100 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor; 101 102 struct disttable { 103 u32 size; 104 s16 table[0]; 105 } *delay_dist; 106 107 enum { 108 CLG_RANDOM, 109 CLG_4_STATES, 110 CLG_GILB_ELL, 111 } loss_model; 112 113 enum { 114 TX_IN_GAP_PERIOD = 1, 115 TX_IN_BURST_PERIOD, 116 LOST_IN_GAP_PERIOD, 117 LOST_IN_BURST_PERIOD, 118 } _4_state_model; 119 120 enum { 121 GOOD_STATE = 1, 122 BAD_STATE, 123 } GE_state_model; 124 125 /* Correlated Loss Generation models */ 126 struct clgstate { 127 /* state of the Markov chain */ 128 u8 state; 129 130 /* 4-states and Gilbert-Elliot models */ 131 u32 a1; /* p13 for 4-states or p for GE */ 132 u32 a2; /* p31 for 4-states or r for GE */ 133 u32 a3; /* p32 for 4-states or h for GE */ 134 u32 a4; /* p14 for 4-states or 1-k for GE */ 135 u32 a5; /* p23 used only in 4-states */ 136 } clg; 137 138 }; 139 140 /* Time stamp put into socket buffer control block 141 * Only valid when skbs are in our internal t(ime)fifo queue. 142 */ 143 struct netem_skb_cb { 144 psched_time_t time_to_send; 145 ktime_t tstamp_save; 146 }; 147 148 /* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp 149 * to hold a rb_node structure. 150 * 151 * If struct sk_buff layout is changed, the following checks will complain. 152 */ 153 static struct rb_node *netem_rb_node(struct sk_buff *skb) 154 { 155 BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0); 156 BUILD_BUG_ON(offsetof(struct sk_buff, prev) != 157 offsetof(struct sk_buff, next) + sizeof(skb->next)); 158 BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) != 159 offsetof(struct sk_buff, prev) + sizeof(skb->prev)); 160 BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) + 161 sizeof(skb->prev) + 162 sizeof(skb->tstamp)); 163 return (struct rb_node *)&skb->next; 164 } 165 166 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb) 167 { 168 return (struct sk_buff *)rb; 169 } 170 171 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb) 172 { 173 /* we assume we can use skb next/prev/tstamp as storage for rb_node */ 174 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb)); 175 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data; 176 } 177 178 /* init_crandom - initialize correlated random number generator 179 * Use entropy source for initial seed. 180 */ 181 static void init_crandom(struct crndstate *state, unsigned long rho) 182 { 183 state->rho = rho; 184 state->last = prandom_u32(); 185 } 186 187 /* get_crandom - correlated random number generator 188 * Next number depends on last value. 189 * rho is scaled to avoid floating point. 190 */ 191 static u32 get_crandom(struct crndstate *state) 192 { 193 u64 value, rho; 194 unsigned long answer; 195 196 if (state->rho == 0) /* no correlation */ 197 return prandom_u32(); 198 199 value = prandom_u32(); 200 rho = (u64)state->rho + 1; 201 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32; 202 state->last = answer; 203 return answer; 204 } 205 206 /* loss_4state - 4-state model loss generator 207 * Generates losses according to the 4-state Markov chain adopted in 208 * the GI (General and Intuitive) loss model. 209 */ 210 static bool loss_4state(struct netem_sched_data *q) 211 { 212 struct clgstate *clg = &q->clg; 213 u32 rnd = prandom_u32(); 214 215 /* 216 * Makes a comparison between rnd and the transition 217 * probabilities outgoing from the current state, then decides the 218 * next state and if the next packet has to be transmitted or lost. 219 * The four states correspond to: 220 * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period 221 * LOST_IN_BURST_PERIOD => isolated losses within a gap period 222 * LOST_IN_GAP_PERIOD => lost packets within a burst period 223 * TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period 224 */ 225 switch (clg->state) { 226 case TX_IN_GAP_PERIOD: 227 if (rnd < clg->a4) { 228 clg->state = LOST_IN_BURST_PERIOD; 229 return true; 230 } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) { 231 clg->state = LOST_IN_GAP_PERIOD; 232 return true; 233 } else if (clg->a1 + clg->a4 < rnd) { 234 clg->state = TX_IN_GAP_PERIOD; 235 } 236 237 break; 238 case TX_IN_BURST_PERIOD: 239 if (rnd < clg->a5) { 240 clg->state = LOST_IN_GAP_PERIOD; 241 return true; 242 } else { 243 clg->state = TX_IN_BURST_PERIOD; 244 } 245 246 break; 247 case LOST_IN_GAP_PERIOD: 248 if (rnd < clg->a3) 249 clg->state = TX_IN_BURST_PERIOD; 250 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) { 251 clg->state = TX_IN_GAP_PERIOD; 252 } else if (clg->a2 + clg->a3 < rnd) { 253 clg->state = LOST_IN_GAP_PERIOD; 254 return true; 255 } 256 break; 257 case LOST_IN_BURST_PERIOD: 258 clg->state = TX_IN_GAP_PERIOD; 259 break; 260 } 261 262 return false; 263 } 264 265 /* loss_gilb_ell - Gilbert-Elliot model loss generator 266 * Generates losses according to the Gilbert-Elliot loss model or 267 * its special cases (Gilbert or Simple Gilbert) 268 * 269 * Makes a comparison between random number and the transition 270 * probabilities outgoing from the current state, then decides the 271 * next state. A second random number is extracted and the comparison 272 * with the loss probability of the current state decides if the next 273 * packet will be transmitted or lost. 274 */ 275 static bool loss_gilb_ell(struct netem_sched_data *q) 276 { 277 struct clgstate *clg = &q->clg; 278 279 switch (clg->state) { 280 case GOOD_STATE: 281 if (prandom_u32() < clg->a1) 282 clg->state = BAD_STATE; 283 if (prandom_u32() < clg->a4) 284 return true; 285 break; 286 case BAD_STATE: 287 if (prandom_u32() < clg->a2) 288 clg->state = GOOD_STATE; 289 if (prandom_u32() > clg->a3) 290 return true; 291 } 292 293 return false; 294 } 295 296 static bool loss_event(struct netem_sched_data *q) 297 { 298 switch (q->loss_model) { 299 case CLG_RANDOM: 300 /* Random packet drop 0 => none, ~0 => all */ 301 return q->loss && q->loss >= get_crandom(&q->loss_cor); 302 303 case CLG_4_STATES: 304 /* 4state loss model algorithm (used also for GI model) 305 * Extracts a value from the markov 4 state loss generator, 306 * if it is 1 drops a packet and if needed writes the event in 307 * the kernel logs 308 */ 309 return loss_4state(q); 310 311 case CLG_GILB_ELL: 312 /* Gilbert-Elliot loss model algorithm 313 * Extracts a value from the Gilbert-Elliot loss generator, 314 * if it is 1 drops a packet and if needed writes the event in 315 * the kernel logs 316 */ 317 return loss_gilb_ell(q); 318 } 319 320 return false; /* not reached */ 321 } 322 323 324 /* tabledist - return a pseudo-randomly distributed value with mean mu and 325 * std deviation sigma. Uses table lookup to approximate the desired 326 * distribution, and a uniformly-distributed pseudo-random source. 327 */ 328 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma, 329 struct crndstate *state, 330 const struct disttable *dist) 331 { 332 psched_tdiff_t x; 333 long t; 334 u32 rnd; 335 336 if (sigma == 0) 337 return mu; 338 339 rnd = get_crandom(state); 340 341 /* default uniform distribution */ 342 if (dist == NULL) 343 return (rnd % (2*sigma)) - sigma + mu; 344 345 t = dist->table[rnd % dist->size]; 346 x = (sigma % NETEM_DIST_SCALE) * t; 347 if (x >= 0) 348 x += NETEM_DIST_SCALE/2; 349 else 350 x -= NETEM_DIST_SCALE/2; 351 352 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu; 353 } 354 355 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q) 356 { 357 u64 ticks; 358 359 len += q->packet_overhead; 360 361 if (q->cell_size) { 362 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal); 363 364 if (len > cells * q->cell_size) /* extra cell needed for remainder */ 365 cells++; 366 len = cells * (q->cell_size + q->cell_overhead); 367 } 368 369 ticks = (u64)len * NSEC_PER_SEC; 370 371 do_div(ticks, q->rate); 372 return PSCHED_NS2TICKS(ticks); 373 } 374 375 static void tfifo_reset(struct Qdisc *sch) 376 { 377 struct netem_sched_data *q = qdisc_priv(sch); 378 struct rb_node *p; 379 380 while ((p = rb_first(&q->t_root))) { 381 struct sk_buff *skb = netem_rb_to_skb(p); 382 383 rb_erase(p, &q->t_root); 384 skb->next = NULL; 385 skb->prev = NULL; 386 kfree_skb(skb); 387 } 388 } 389 390 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch) 391 { 392 struct netem_sched_data *q = qdisc_priv(sch); 393 psched_time_t tnext = netem_skb_cb(nskb)->time_to_send; 394 struct rb_node **p = &q->t_root.rb_node, *parent = NULL; 395 396 while (*p) { 397 struct sk_buff *skb; 398 399 parent = *p; 400 skb = netem_rb_to_skb(parent); 401 if (tnext >= netem_skb_cb(skb)->time_to_send) 402 p = &parent->rb_right; 403 else 404 p = &parent->rb_left; 405 } 406 rb_link_node(netem_rb_node(nskb), parent, p); 407 rb_insert_color(netem_rb_node(nskb), &q->t_root); 408 sch->q.qlen++; 409 } 410 411 /* 412 * Insert one skb into qdisc. 413 * Note: parent depends on return value to account for queue length. 414 * NET_XMIT_DROP: queue length didn't change. 415 * NET_XMIT_SUCCESS: one skb was queued. 416 */ 417 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch) 418 { 419 struct netem_sched_data *q = qdisc_priv(sch); 420 /* We don't fill cb now as skb_unshare() may invalidate it */ 421 struct netem_skb_cb *cb; 422 struct sk_buff *skb2; 423 int count = 1; 424 425 /* Random duplication */ 426 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor)) 427 ++count; 428 429 /* Drop packet? */ 430 if (loss_event(q)) { 431 if (q->ecn && INET_ECN_set_ce(skb)) 432 sch->qstats.drops++; /* mark packet */ 433 else 434 --count; 435 } 436 if (count == 0) { 437 sch->qstats.drops++; 438 kfree_skb(skb); 439 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 440 } 441 442 /* If a delay is expected, orphan the skb. (orphaning usually takes 443 * place at TX completion time, so _before_ the link transit delay) 444 */ 445 if (q->latency || q->jitter) 446 skb_orphan_partial(skb); 447 448 /* 449 * If we need to duplicate packet, then re-insert at top of the 450 * qdisc tree, since parent queuer expects that only one 451 * skb will be queued. 452 */ 453 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) { 454 struct Qdisc *rootq = qdisc_root(sch); 455 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */ 456 q->duplicate = 0; 457 458 qdisc_enqueue_root(skb2, rootq); 459 q->duplicate = dupsave; 460 } 461 462 /* 463 * Randomized packet corruption. 464 * Make copy if needed since we are modifying 465 * If packet is going to be hardware checksummed, then 466 * do it now in software before we mangle it. 467 */ 468 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) { 469 if (!(skb = skb_unshare(skb, GFP_ATOMIC)) || 470 (skb->ip_summed == CHECKSUM_PARTIAL && 471 skb_checksum_help(skb))) 472 return qdisc_drop(skb, sch); 473 474 skb->data[prandom_u32() % skb_headlen(skb)] ^= 475 1<<(prandom_u32() % 8); 476 } 477 478 if (unlikely(skb_queue_len(&sch->q) >= sch->limit)) 479 return qdisc_reshape_fail(skb, sch); 480 481 sch->qstats.backlog += qdisc_pkt_len(skb); 482 483 cb = netem_skb_cb(skb); 484 if (q->gap == 0 || /* not doing reordering */ 485 q->counter < q->gap - 1 || /* inside last reordering gap */ 486 q->reorder < get_crandom(&q->reorder_cor)) { 487 psched_time_t now; 488 psched_tdiff_t delay; 489 490 delay = tabledist(q->latency, q->jitter, 491 &q->delay_cor, q->delay_dist); 492 493 now = psched_get_time(); 494 495 if (q->rate) { 496 struct sk_buff *last; 497 498 if (!skb_queue_empty(&sch->q)) 499 last = skb_peek_tail(&sch->q); 500 else 501 last = netem_rb_to_skb(rb_last(&q->t_root)); 502 if (last) { 503 /* 504 * Last packet in queue is reference point (now), 505 * calculate this time bonus and subtract 506 * from delay. 507 */ 508 delay -= netem_skb_cb(last)->time_to_send - now; 509 delay = max_t(psched_tdiff_t, 0, delay); 510 now = netem_skb_cb(last)->time_to_send; 511 } 512 513 delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q); 514 } 515 516 cb->time_to_send = now + delay; 517 cb->tstamp_save = skb->tstamp; 518 ++q->counter; 519 tfifo_enqueue(skb, sch); 520 } else { 521 /* 522 * Do re-ordering by putting one out of N packets at the front 523 * of the queue. 524 */ 525 cb->time_to_send = psched_get_time(); 526 q->counter = 0; 527 528 __skb_queue_head(&sch->q, skb); 529 sch->qstats.requeues++; 530 } 531 532 return NET_XMIT_SUCCESS; 533 } 534 535 static unsigned int netem_drop(struct Qdisc *sch) 536 { 537 struct netem_sched_data *q = qdisc_priv(sch); 538 unsigned int len; 539 540 len = qdisc_queue_drop(sch); 541 542 if (!len) { 543 struct rb_node *p = rb_first(&q->t_root); 544 545 if (p) { 546 struct sk_buff *skb = netem_rb_to_skb(p); 547 548 rb_erase(p, &q->t_root); 549 sch->q.qlen--; 550 skb->next = NULL; 551 skb->prev = NULL; 552 len = qdisc_pkt_len(skb); 553 sch->qstats.backlog -= len; 554 kfree_skb(skb); 555 } 556 } 557 if (!len && q->qdisc && q->qdisc->ops->drop) 558 len = q->qdisc->ops->drop(q->qdisc); 559 if (len) 560 sch->qstats.drops++; 561 562 return len; 563 } 564 565 static struct sk_buff *netem_dequeue(struct Qdisc *sch) 566 { 567 struct netem_sched_data *q = qdisc_priv(sch); 568 struct sk_buff *skb; 569 struct rb_node *p; 570 571 if (qdisc_is_throttled(sch)) 572 return NULL; 573 574 tfifo_dequeue: 575 skb = __skb_dequeue(&sch->q); 576 if (skb) { 577 deliver: 578 sch->qstats.backlog -= qdisc_pkt_len(skb); 579 qdisc_unthrottled(sch); 580 qdisc_bstats_update(sch, skb); 581 return skb; 582 } 583 p = rb_first(&q->t_root); 584 if (p) { 585 psched_time_t time_to_send; 586 587 skb = netem_rb_to_skb(p); 588 589 /* if more time remaining? */ 590 time_to_send = netem_skb_cb(skb)->time_to_send; 591 if (time_to_send <= psched_get_time()) { 592 rb_erase(p, &q->t_root); 593 594 sch->q.qlen--; 595 skb->next = NULL; 596 skb->prev = NULL; 597 skb->tstamp = netem_skb_cb(skb)->tstamp_save; 598 599 #ifdef CONFIG_NET_CLS_ACT 600 /* 601 * If it's at ingress let's pretend the delay is 602 * from the network (tstamp will be updated). 603 */ 604 if (G_TC_FROM(skb->tc_verd) & AT_INGRESS) 605 skb->tstamp.tv64 = 0; 606 #endif 607 608 if (q->qdisc) { 609 int err = qdisc_enqueue(skb, q->qdisc); 610 611 if (unlikely(err != NET_XMIT_SUCCESS)) { 612 if (net_xmit_drop_count(err)) { 613 sch->qstats.drops++; 614 qdisc_tree_decrease_qlen(sch, 1); 615 } 616 } 617 goto tfifo_dequeue; 618 } 619 goto deliver; 620 } 621 622 if (q->qdisc) { 623 skb = q->qdisc->ops->dequeue(q->qdisc); 624 if (skb) 625 goto deliver; 626 } 627 qdisc_watchdog_schedule(&q->watchdog, time_to_send); 628 } 629 630 if (q->qdisc) { 631 skb = q->qdisc->ops->dequeue(q->qdisc); 632 if (skb) 633 goto deliver; 634 } 635 return NULL; 636 } 637 638 static void netem_reset(struct Qdisc *sch) 639 { 640 struct netem_sched_data *q = qdisc_priv(sch); 641 642 qdisc_reset_queue(sch); 643 tfifo_reset(sch); 644 if (q->qdisc) 645 qdisc_reset(q->qdisc); 646 qdisc_watchdog_cancel(&q->watchdog); 647 } 648 649 static void dist_free(struct disttable *d) 650 { 651 if (d) { 652 if (is_vmalloc_addr(d)) 653 vfree(d); 654 else 655 kfree(d); 656 } 657 } 658 659 /* 660 * Distribution data is a variable size payload containing 661 * signed 16 bit values. 662 */ 663 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr) 664 { 665 struct netem_sched_data *q = qdisc_priv(sch); 666 size_t n = nla_len(attr)/sizeof(__s16); 667 const __s16 *data = nla_data(attr); 668 spinlock_t *root_lock; 669 struct disttable *d; 670 int i; 671 size_t s; 672 673 if (n > NETEM_DIST_MAX) 674 return -EINVAL; 675 676 s = sizeof(struct disttable) + n * sizeof(s16); 677 d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN); 678 if (!d) 679 d = vmalloc(s); 680 if (!d) 681 return -ENOMEM; 682 683 d->size = n; 684 for (i = 0; i < n; i++) 685 d->table[i] = data[i]; 686 687 root_lock = qdisc_root_sleeping_lock(sch); 688 689 spin_lock_bh(root_lock); 690 swap(q->delay_dist, d); 691 spin_unlock_bh(root_lock); 692 693 dist_free(d); 694 return 0; 695 } 696 697 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr) 698 { 699 const struct tc_netem_corr *c = nla_data(attr); 700 701 init_crandom(&q->delay_cor, c->delay_corr); 702 init_crandom(&q->loss_cor, c->loss_corr); 703 init_crandom(&q->dup_cor, c->dup_corr); 704 } 705 706 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr) 707 { 708 const struct tc_netem_reorder *r = nla_data(attr); 709 710 q->reorder = r->probability; 711 init_crandom(&q->reorder_cor, r->correlation); 712 } 713 714 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr) 715 { 716 const struct tc_netem_corrupt *r = nla_data(attr); 717 718 q->corrupt = r->probability; 719 init_crandom(&q->corrupt_cor, r->correlation); 720 } 721 722 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr) 723 { 724 const struct tc_netem_rate *r = nla_data(attr); 725 726 q->rate = r->rate; 727 q->packet_overhead = r->packet_overhead; 728 q->cell_size = r->cell_size; 729 q->cell_overhead = r->cell_overhead; 730 if (q->cell_size) 731 q->cell_size_reciprocal = reciprocal_value(q->cell_size); 732 else 733 q->cell_size_reciprocal = (struct reciprocal_value) { 0 }; 734 } 735 736 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr) 737 { 738 const struct nlattr *la; 739 int rem; 740 741 nla_for_each_nested(la, attr, rem) { 742 u16 type = nla_type(la); 743 744 switch (type) { 745 case NETEM_LOSS_GI: { 746 const struct tc_netem_gimodel *gi = nla_data(la); 747 748 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) { 749 pr_info("netem: incorrect gi model size\n"); 750 return -EINVAL; 751 } 752 753 q->loss_model = CLG_4_STATES; 754 755 q->clg.state = TX_IN_GAP_PERIOD; 756 q->clg.a1 = gi->p13; 757 q->clg.a2 = gi->p31; 758 q->clg.a3 = gi->p32; 759 q->clg.a4 = gi->p14; 760 q->clg.a5 = gi->p23; 761 break; 762 } 763 764 case NETEM_LOSS_GE: { 765 const struct tc_netem_gemodel *ge = nla_data(la); 766 767 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) { 768 pr_info("netem: incorrect ge model size\n"); 769 return -EINVAL; 770 } 771 772 q->loss_model = CLG_GILB_ELL; 773 q->clg.state = GOOD_STATE; 774 q->clg.a1 = ge->p; 775 q->clg.a2 = ge->r; 776 q->clg.a3 = ge->h; 777 q->clg.a4 = ge->k1; 778 break; 779 } 780 781 default: 782 pr_info("netem: unknown loss type %u\n", type); 783 return -EINVAL; 784 } 785 } 786 787 return 0; 788 } 789 790 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = { 791 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) }, 792 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) }, 793 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) }, 794 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) }, 795 [TCA_NETEM_LOSS] = { .type = NLA_NESTED }, 796 [TCA_NETEM_ECN] = { .type = NLA_U32 }, 797 [TCA_NETEM_RATE64] = { .type = NLA_U64 }, 798 }; 799 800 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla, 801 const struct nla_policy *policy, int len) 802 { 803 int nested_len = nla_len(nla) - NLA_ALIGN(len); 804 805 if (nested_len < 0) { 806 pr_info("netem: invalid attributes len %d\n", nested_len); 807 return -EINVAL; 808 } 809 810 if (nested_len >= nla_attr_size(0)) 811 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len), 812 nested_len, policy); 813 814 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1)); 815 return 0; 816 } 817 818 /* Parse netlink message to set options */ 819 static int netem_change(struct Qdisc *sch, struct nlattr *opt) 820 { 821 struct netem_sched_data *q = qdisc_priv(sch); 822 struct nlattr *tb[TCA_NETEM_MAX + 1]; 823 struct tc_netem_qopt *qopt; 824 struct clgstate old_clg; 825 int old_loss_model = CLG_RANDOM; 826 int ret; 827 828 if (opt == NULL) 829 return -EINVAL; 830 831 qopt = nla_data(opt); 832 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt)); 833 if (ret < 0) 834 return ret; 835 836 /* backup q->clg and q->loss_model */ 837 old_clg = q->clg; 838 old_loss_model = q->loss_model; 839 840 if (tb[TCA_NETEM_LOSS]) { 841 ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]); 842 if (ret) { 843 q->loss_model = old_loss_model; 844 return ret; 845 } 846 } else { 847 q->loss_model = CLG_RANDOM; 848 } 849 850 if (tb[TCA_NETEM_DELAY_DIST]) { 851 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]); 852 if (ret) { 853 /* recover clg and loss_model, in case of 854 * q->clg and q->loss_model were modified 855 * in get_loss_clg() 856 */ 857 q->clg = old_clg; 858 q->loss_model = old_loss_model; 859 return ret; 860 } 861 } 862 863 sch->limit = qopt->limit; 864 865 q->latency = qopt->latency; 866 q->jitter = qopt->jitter; 867 q->limit = qopt->limit; 868 q->gap = qopt->gap; 869 q->counter = 0; 870 q->loss = qopt->loss; 871 q->duplicate = qopt->duplicate; 872 873 /* for compatibility with earlier versions. 874 * if gap is set, need to assume 100% probability 875 */ 876 if (q->gap) 877 q->reorder = ~0; 878 879 if (tb[TCA_NETEM_CORR]) 880 get_correlation(q, tb[TCA_NETEM_CORR]); 881 882 if (tb[TCA_NETEM_REORDER]) 883 get_reorder(q, tb[TCA_NETEM_REORDER]); 884 885 if (tb[TCA_NETEM_CORRUPT]) 886 get_corrupt(q, tb[TCA_NETEM_CORRUPT]); 887 888 if (tb[TCA_NETEM_RATE]) 889 get_rate(q, tb[TCA_NETEM_RATE]); 890 891 if (tb[TCA_NETEM_RATE64]) 892 q->rate = max_t(u64, q->rate, 893 nla_get_u64(tb[TCA_NETEM_RATE64])); 894 895 if (tb[TCA_NETEM_ECN]) 896 q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]); 897 898 return ret; 899 } 900 901 static int netem_init(struct Qdisc *sch, struct nlattr *opt) 902 { 903 struct netem_sched_data *q = qdisc_priv(sch); 904 int ret; 905 906 if (!opt) 907 return -EINVAL; 908 909 qdisc_watchdog_init(&q->watchdog, sch); 910 911 q->loss_model = CLG_RANDOM; 912 ret = netem_change(sch, opt); 913 if (ret) 914 pr_info("netem: change failed\n"); 915 return ret; 916 } 917 918 static void netem_destroy(struct Qdisc *sch) 919 { 920 struct netem_sched_data *q = qdisc_priv(sch); 921 922 qdisc_watchdog_cancel(&q->watchdog); 923 if (q->qdisc) 924 qdisc_destroy(q->qdisc); 925 dist_free(q->delay_dist); 926 } 927 928 static int dump_loss_model(const struct netem_sched_data *q, 929 struct sk_buff *skb) 930 { 931 struct nlattr *nest; 932 933 nest = nla_nest_start(skb, TCA_NETEM_LOSS); 934 if (nest == NULL) 935 goto nla_put_failure; 936 937 switch (q->loss_model) { 938 case CLG_RANDOM: 939 /* legacy loss model */ 940 nla_nest_cancel(skb, nest); 941 return 0; /* no data */ 942 943 case CLG_4_STATES: { 944 struct tc_netem_gimodel gi = { 945 .p13 = q->clg.a1, 946 .p31 = q->clg.a2, 947 .p32 = q->clg.a3, 948 .p14 = q->clg.a4, 949 .p23 = q->clg.a5, 950 }; 951 952 if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi)) 953 goto nla_put_failure; 954 break; 955 } 956 case CLG_GILB_ELL: { 957 struct tc_netem_gemodel ge = { 958 .p = q->clg.a1, 959 .r = q->clg.a2, 960 .h = q->clg.a3, 961 .k1 = q->clg.a4, 962 }; 963 964 if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge)) 965 goto nla_put_failure; 966 break; 967 } 968 } 969 970 nla_nest_end(skb, nest); 971 return 0; 972 973 nla_put_failure: 974 nla_nest_cancel(skb, nest); 975 return -1; 976 } 977 978 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb) 979 { 980 const struct netem_sched_data *q = qdisc_priv(sch); 981 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb); 982 struct tc_netem_qopt qopt; 983 struct tc_netem_corr cor; 984 struct tc_netem_reorder reorder; 985 struct tc_netem_corrupt corrupt; 986 struct tc_netem_rate rate; 987 988 qopt.latency = q->latency; 989 qopt.jitter = q->jitter; 990 qopt.limit = q->limit; 991 qopt.loss = q->loss; 992 qopt.gap = q->gap; 993 qopt.duplicate = q->duplicate; 994 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt)) 995 goto nla_put_failure; 996 997 cor.delay_corr = q->delay_cor.rho; 998 cor.loss_corr = q->loss_cor.rho; 999 cor.dup_corr = q->dup_cor.rho; 1000 if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor)) 1001 goto nla_put_failure; 1002 1003 reorder.probability = q->reorder; 1004 reorder.correlation = q->reorder_cor.rho; 1005 if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder)) 1006 goto nla_put_failure; 1007 1008 corrupt.probability = q->corrupt; 1009 corrupt.correlation = q->corrupt_cor.rho; 1010 if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt)) 1011 goto nla_put_failure; 1012 1013 if (q->rate >= (1ULL << 32)) { 1014 if (nla_put_u64(skb, TCA_NETEM_RATE64, q->rate)) 1015 goto nla_put_failure; 1016 rate.rate = ~0U; 1017 } else { 1018 rate.rate = q->rate; 1019 } 1020 rate.packet_overhead = q->packet_overhead; 1021 rate.cell_size = q->cell_size; 1022 rate.cell_overhead = q->cell_overhead; 1023 if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate)) 1024 goto nla_put_failure; 1025 1026 if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn)) 1027 goto nla_put_failure; 1028 1029 if (dump_loss_model(q, skb) != 0) 1030 goto nla_put_failure; 1031 1032 return nla_nest_end(skb, nla); 1033 1034 nla_put_failure: 1035 nlmsg_trim(skb, nla); 1036 return -1; 1037 } 1038 1039 static int netem_dump_class(struct Qdisc *sch, unsigned long cl, 1040 struct sk_buff *skb, struct tcmsg *tcm) 1041 { 1042 struct netem_sched_data *q = qdisc_priv(sch); 1043 1044 if (cl != 1 || !q->qdisc) /* only one class */ 1045 return -ENOENT; 1046 1047 tcm->tcm_handle |= TC_H_MIN(1); 1048 tcm->tcm_info = q->qdisc->handle; 1049 1050 return 0; 1051 } 1052 1053 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 1054 struct Qdisc **old) 1055 { 1056 struct netem_sched_data *q = qdisc_priv(sch); 1057 1058 sch_tree_lock(sch); 1059 *old = q->qdisc; 1060 q->qdisc = new; 1061 if (*old) { 1062 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen); 1063 qdisc_reset(*old); 1064 } 1065 sch_tree_unlock(sch); 1066 1067 return 0; 1068 } 1069 1070 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg) 1071 { 1072 struct netem_sched_data *q = qdisc_priv(sch); 1073 return q->qdisc; 1074 } 1075 1076 static unsigned long netem_get(struct Qdisc *sch, u32 classid) 1077 { 1078 return 1; 1079 } 1080 1081 static void netem_put(struct Qdisc *sch, unsigned long arg) 1082 { 1083 } 1084 1085 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker) 1086 { 1087 if (!walker->stop) { 1088 if (walker->count >= walker->skip) 1089 if (walker->fn(sch, 1, walker) < 0) { 1090 walker->stop = 1; 1091 return; 1092 } 1093 walker->count++; 1094 } 1095 } 1096 1097 static const struct Qdisc_class_ops netem_class_ops = { 1098 .graft = netem_graft, 1099 .leaf = netem_leaf, 1100 .get = netem_get, 1101 .put = netem_put, 1102 .walk = netem_walk, 1103 .dump = netem_dump_class, 1104 }; 1105 1106 static struct Qdisc_ops netem_qdisc_ops __read_mostly = { 1107 .id = "netem", 1108 .cl_ops = &netem_class_ops, 1109 .priv_size = sizeof(struct netem_sched_data), 1110 .enqueue = netem_enqueue, 1111 .dequeue = netem_dequeue, 1112 .peek = qdisc_peek_dequeued, 1113 .drop = netem_drop, 1114 .init = netem_init, 1115 .reset = netem_reset, 1116 .destroy = netem_destroy, 1117 .change = netem_change, 1118 .dump = netem_dump, 1119 .owner = THIS_MODULE, 1120 }; 1121 1122 1123 static int __init netem_module_init(void) 1124 { 1125 pr_info("netem: version " VERSION "\n"); 1126 return register_qdisc(&netem_qdisc_ops); 1127 } 1128 static void __exit netem_module_exit(void) 1129 { 1130 unregister_qdisc(&netem_qdisc_ops); 1131 } 1132 module_init(netem_module_init) 1133 module_exit(netem_module_exit) 1134 MODULE_LICENSE("GPL"); 1135