xref: /openbmc/linux/net/sched/sch_netem.c (revision a8a28aff)
1 /*
2  * net/sched/sch_netem.c	Network emulator
3  *
4  * 		This program is free software; you can redistribute it and/or
5  * 		modify it under the terms of the GNU General Public License
6  * 		as published by the Free Software Foundation; either version
7  * 		2 of the License.
8  *
9  *  		Many of the algorithms and ideas for this came from
10  *		NIST Net which is not copyrighted.
11  *
12  * Authors:	Stephen Hemminger <shemminger@osdl.org>
13  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
27 
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
31 
32 #define VERSION "1.3"
33 
34 /*	Network Emulation Queuing algorithm.
35 	====================================
36 
37 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 		 Network Emulation Tool
39 		 [2] Luigi Rizzo, DummyNet for FreeBSD
40 
41 	 ----------------------------------------------------------------
42 
43 	 This started out as a simple way to delay outgoing packets to
44 	 test TCP but has grown to include most of the functionality
45 	 of a full blown network emulator like NISTnet. It can delay
46 	 packets and add random jitter (and correlation). The random
47 	 distribution can be loaded from a table as well to provide
48 	 normal, Pareto, or experimental curves. Packet loss,
49 	 duplication, and reordering can also be emulated.
50 
51 	 This qdisc does not do classification that can be handled in
52 	 layering other disciplines.  It does not need to do bandwidth
53 	 control either since that can be handled by using token
54 	 bucket or other rate control.
55 
56      Correlated Loss Generator models
57 
58 	Added generation of correlated loss according to the
59 	"Gilbert-Elliot" model, a 4-state markov model.
60 
61 	References:
62 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 	and intuitive loss model for packet networks and its implementation
65 	in the Netem module in the Linux kernel", available in [1]
66 
67 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
69 */
70 
71 struct netem_sched_data {
72 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 	struct rb_root t_root;
74 
75 	/* optional qdisc for classful handling (NULL at netem init) */
76 	struct Qdisc	*qdisc;
77 
78 	struct qdisc_watchdog watchdog;
79 
80 	psched_tdiff_t latency;
81 	psched_tdiff_t jitter;
82 
83 	u32 loss;
84 	u32 ecn;
85 	u32 limit;
86 	u32 counter;
87 	u32 gap;
88 	u32 duplicate;
89 	u32 reorder;
90 	u32 corrupt;
91 	u64 rate;
92 	s32 packet_overhead;
93 	u32 cell_size;
94 	struct reciprocal_value cell_size_reciprocal;
95 	s32 cell_overhead;
96 
97 	struct crndstate {
98 		u32 last;
99 		u32 rho;
100 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
101 
102 	struct disttable {
103 		u32  size;
104 		s16 table[0];
105 	} *delay_dist;
106 
107 	enum  {
108 		CLG_RANDOM,
109 		CLG_4_STATES,
110 		CLG_GILB_ELL,
111 	} loss_model;
112 
113 	enum {
114 		TX_IN_GAP_PERIOD = 1,
115 		TX_IN_BURST_PERIOD,
116 		LOST_IN_GAP_PERIOD,
117 		LOST_IN_BURST_PERIOD,
118 	} _4_state_model;
119 
120 	enum {
121 		GOOD_STATE = 1,
122 		BAD_STATE,
123 	} GE_state_model;
124 
125 	/* Correlated Loss Generation models */
126 	struct clgstate {
127 		/* state of the Markov chain */
128 		u8 state;
129 
130 		/* 4-states and Gilbert-Elliot models */
131 		u32 a1;	/* p13 for 4-states or p for GE */
132 		u32 a2;	/* p31 for 4-states or r for GE */
133 		u32 a3;	/* p32 for 4-states or h for GE */
134 		u32 a4;	/* p14 for 4-states or 1-k for GE */
135 		u32 a5; /* p23 used only in 4-states */
136 	} clg;
137 
138 };
139 
140 /* Time stamp put into socket buffer control block
141  * Only valid when skbs are in our internal t(ime)fifo queue.
142  */
143 struct netem_skb_cb {
144 	psched_time_t	time_to_send;
145 	ktime_t		tstamp_save;
146 };
147 
148 /* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp
149  * to hold a rb_node structure.
150  *
151  * If struct sk_buff layout is changed, the following checks will complain.
152  */
153 static struct rb_node *netem_rb_node(struct sk_buff *skb)
154 {
155 	BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0);
156 	BUILD_BUG_ON(offsetof(struct sk_buff, prev) !=
157 		     offsetof(struct sk_buff, next) + sizeof(skb->next));
158 	BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) !=
159 		     offsetof(struct sk_buff, prev) + sizeof(skb->prev));
160 	BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) +
161 					      sizeof(skb->prev) +
162 					      sizeof(skb->tstamp));
163 	return (struct rb_node *)&skb->next;
164 }
165 
166 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
167 {
168 	return (struct sk_buff *)rb;
169 }
170 
171 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
172 {
173 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
174 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
175 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
176 }
177 
178 /* init_crandom - initialize correlated random number generator
179  * Use entropy source for initial seed.
180  */
181 static void init_crandom(struct crndstate *state, unsigned long rho)
182 {
183 	state->rho = rho;
184 	state->last = prandom_u32();
185 }
186 
187 /* get_crandom - correlated random number generator
188  * Next number depends on last value.
189  * rho is scaled to avoid floating point.
190  */
191 static u32 get_crandom(struct crndstate *state)
192 {
193 	u64 value, rho;
194 	unsigned long answer;
195 
196 	if (state->rho == 0)	/* no correlation */
197 		return prandom_u32();
198 
199 	value = prandom_u32();
200 	rho = (u64)state->rho + 1;
201 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
202 	state->last = answer;
203 	return answer;
204 }
205 
206 /* loss_4state - 4-state model loss generator
207  * Generates losses according to the 4-state Markov chain adopted in
208  * the GI (General and Intuitive) loss model.
209  */
210 static bool loss_4state(struct netem_sched_data *q)
211 {
212 	struct clgstate *clg = &q->clg;
213 	u32 rnd = prandom_u32();
214 
215 	/*
216 	 * Makes a comparison between rnd and the transition
217 	 * probabilities outgoing from the current state, then decides the
218 	 * next state and if the next packet has to be transmitted or lost.
219 	 * The four states correspond to:
220 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
221 	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
222 	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
223 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
224 	 */
225 	switch (clg->state) {
226 	case TX_IN_GAP_PERIOD:
227 		if (rnd < clg->a4) {
228 			clg->state = LOST_IN_BURST_PERIOD;
229 			return true;
230 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
231 			clg->state = LOST_IN_GAP_PERIOD;
232 			return true;
233 		} else if (clg->a1 + clg->a4 < rnd) {
234 			clg->state = TX_IN_GAP_PERIOD;
235 		}
236 
237 		break;
238 	case TX_IN_BURST_PERIOD:
239 		if (rnd < clg->a5) {
240 			clg->state = LOST_IN_GAP_PERIOD;
241 			return true;
242 		} else {
243 			clg->state = TX_IN_BURST_PERIOD;
244 		}
245 
246 		break;
247 	case LOST_IN_GAP_PERIOD:
248 		if (rnd < clg->a3)
249 			clg->state = TX_IN_BURST_PERIOD;
250 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
251 			clg->state = TX_IN_GAP_PERIOD;
252 		} else if (clg->a2 + clg->a3 < rnd) {
253 			clg->state = LOST_IN_GAP_PERIOD;
254 			return true;
255 		}
256 		break;
257 	case LOST_IN_BURST_PERIOD:
258 		clg->state = TX_IN_GAP_PERIOD;
259 		break;
260 	}
261 
262 	return false;
263 }
264 
265 /* loss_gilb_ell - Gilbert-Elliot model loss generator
266  * Generates losses according to the Gilbert-Elliot loss model or
267  * its special cases  (Gilbert or Simple Gilbert)
268  *
269  * Makes a comparison between random number and the transition
270  * probabilities outgoing from the current state, then decides the
271  * next state. A second random number is extracted and the comparison
272  * with the loss probability of the current state decides if the next
273  * packet will be transmitted or lost.
274  */
275 static bool loss_gilb_ell(struct netem_sched_data *q)
276 {
277 	struct clgstate *clg = &q->clg;
278 
279 	switch (clg->state) {
280 	case GOOD_STATE:
281 		if (prandom_u32() < clg->a1)
282 			clg->state = BAD_STATE;
283 		if (prandom_u32() < clg->a4)
284 			return true;
285 		break;
286 	case BAD_STATE:
287 		if (prandom_u32() < clg->a2)
288 			clg->state = GOOD_STATE;
289 		if (prandom_u32() > clg->a3)
290 			return true;
291 	}
292 
293 	return false;
294 }
295 
296 static bool loss_event(struct netem_sched_data *q)
297 {
298 	switch (q->loss_model) {
299 	case CLG_RANDOM:
300 		/* Random packet drop 0 => none, ~0 => all */
301 		return q->loss && q->loss >= get_crandom(&q->loss_cor);
302 
303 	case CLG_4_STATES:
304 		/* 4state loss model algorithm (used also for GI model)
305 		* Extracts a value from the markov 4 state loss generator,
306 		* if it is 1 drops a packet and if needed writes the event in
307 		* the kernel logs
308 		*/
309 		return loss_4state(q);
310 
311 	case CLG_GILB_ELL:
312 		/* Gilbert-Elliot loss model algorithm
313 		* Extracts a value from the Gilbert-Elliot loss generator,
314 		* if it is 1 drops a packet and if needed writes the event in
315 		* the kernel logs
316 		*/
317 		return loss_gilb_ell(q);
318 	}
319 
320 	return false;	/* not reached */
321 }
322 
323 
324 /* tabledist - return a pseudo-randomly distributed value with mean mu and
325  * std deviation sigma.  Uses table lookup to approximate the desired
326  * distribution, and a uniformly-distributed pseudo-random source.
327  */
328 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
329 				struct crndstate *state,
330 				const struct disttable *dist)
331 {
332 	psched_tdiff_t x;
333 	long t;
334 	u32 rnd;
335 
336 	if (sigma == 0)
337 		return mu;
338 
339 	rnd = get_crandom(state);
340 
341 	/* default uniform distribution */
342 	if (dist == NULL)
343 		return (rnd % (2*sigma)) - sigma + mu;
344 
345 	t = dist->table[rnd % dist->size];
346 	x = (sigma % NETEM_DIST_SCALE) * t;
347 	if (x >= 0)
348 		x += NETEM_DIST_SCALE/2;
349 	else
350 		x -= NETEM_DIST_SCALE/2;
351 
352 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
353 }
354 
355 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
356 {
357 	u64 ticks;
358 
359 	len += q->packet_overhead;
360 
361 	if (q->cell_size) {
362 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
363 
364 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
365 			cells++;
366 		len = cells * (q->cell_size + q->cell_overhead);
367 	}
368 
369 	ticks = (u64)len * NSEC_PER_SEC;
370 
371 	do_div(ticks, q->rate);
372 	return PSCHED_NS2TICKS(ticks);
373 }
374 
375 static void tfifo_reset(struct Qdisc *sch)
376 {
377 	struct netem_sched_data *q = qdisc_priv(sch);
378 	struct rb_node *p;
379 
380 	while ((p = rb_first(&q->t_root))) {
381 		struct sk_buff *skb = netem_rb_to_skb(p);
382 
383 		rb_erase(p, &q->t_root);
384 		skb->next = NULL;
385 		skb->prev = NULL;
386 		kfree_skb(skb);
387 	}
388 }
389 
390 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
391 {
392 	struct netem_sched_data *q = qdisc_priv(sch);
393 	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
394 	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
395 
396 	while (*p) {
397 		struct sk_buff *skb;
398 
399 		parent = *p;
400 		skb = netem_rb_to_skb(parent);
401 		if (tnext >= netem_skb_cb(skb)->time_to_send)
402 			p = &parent->rb_right;
403 		else
404 			p = &parent->rb_left;
405 	}
406 	rb_link_node(netem_rb_node(nskb), parent, p);
407 	rb_insert_color(netem_rb_node(nskb), &q->t_root);
408 	sch->q.qlen++;
409 }
410 
411 /*
412  * Insert one skb into qdisc.
413  * Note: parent depends on return value to account for queue length.
414  * 	NET_XMIT_DROP: queue length didn't change.
415  *      NET_XMIT_SUCCESS: one skb was queued.
416  */
417 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
418 {
419 	struct netem_sched_data *q = qdisc_priv(sch);
420 	/* We don't fill cb now as skb_unshare() may invalidate it */
421 	struct netem_skb_cb *cb;
422 	struct sk_buff *skb2;
423 	int count = 1;
424 
425 	/* Random duplication */
426 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
427 		++count;
428 
429 	/* Drop packet? */
430 	if (loss_event(q)) {
431 		if (q->ecn && INET_ECN_set_ce(skb))
432 			sch->qstats.drops++; /* mark packet */
433 		else
434 			--count;
435 	}
436 	if (count == 0) {
437 		sch->qstats.drops++;
438 		kfree_skb(skb);
439 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
440 	}
441 
442 	/* If a delay is expected, orphan the skb. (orphaning usually takes
443 	 * place at TX completion time, so _before_ the link transit delay)
444 	 */
445 	if (q->latency || q->jitter)
446 		skb_orphan_partial(skb);
447 
448 	/*
449 	 * If we need to duplicate packet, then re-insert at top of the
450 	 * qdisc tree, since parent queuer expects that only one
451 	 * skb will be queued.
452 	 */
453 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
454 		struct Qdisc *rootq = qdisc_root(sch);
455 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
456 		q->duplicate = 0;
457 
458 		qdisc_enqueue_root(skb2, rootq);
459 		q->duplicate = dupsave;
460 	}
461 
462 	/*
463 	 * Randomized packet corruption.
464 	 * Make copy if needed since we are modifying
465 	 * If packet is going to be hardware checksummed, then
466 	 * do it now in software before we mangle it.
467 	 */
468 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
469 		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
470 		    (skb->ip_summed == CHECKSUM_PARTIAL &&
471 		     skb_checksum_help(skb)))
472 			return qdisc_drop(skb, sch);
473 
474 		skb->data[prandom_u32() % skb_headlen(skb)] ^=
475 			1<<(prandom_u32() % 8);
476 	}
477 
478 	if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
479 		return qdisc_reshape_fail(skb, sch);
480 
481 	sch->qstats.backlog += qdisc_pkt_len(skb);
482 
483 	cb = netem_skb_cb(skb);
484 	if (q->gap == 0 ||		/* not doing reordering */
485 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
486 	    q->reorder < get_crandom(&q->reorder_cor)) {
487 		psched_time_t now;
488 		psched_tdiff_t delay;
489 
490 		delay = tabledist(q->latency, q->jitter,
491 				  &q->delay_cor, q->delay_dist);
492 
493 		now = psched_get_time();
494 
495 		if (q->rate) {
496 			struct sk_buff *last;
497 
498 			if (!skb_queue_empty(&sch->q))
499 				last = skb_peek_tail(&sch->q);
500 			else
501 				last = netem_rb_to_skb(rb_last(&q->t_root));
502 			if (last) {
503 				/*
504 				 * Last packet in queue is reference point (now),
505 				 * calculate this time bonus and subtract
506 				 * from delay.
507 				 */
508 				delay -= netem_skb_cb(last)->time_to_send - now;
509 				delay = max_t(psched_tdiff_t, 0, delay);
510 				now = netem_skb_cb(last)->time_to_send;
511 			}
512 
513 			delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
514 		}
515 
516 		cb->time_to_send = now + delay;
517 		cb->tstamp_save = skb->tstamp;
518 		++q->counter;
519 		tfifo_enqueue(skb, sch);
520 	} else {
521 		/*
522 		 * Do re-ordering by putting one out of N packets at the front
523 		 * of the queue.
524 		 */
525 		cb->time_to_send = psched_get_time();
526 		q->counter = 0;
527 
528 		__skb_queue_head(&sch->q, skb);
529 		sch->qstats.requeues++;
530 	}
531 
532 	return NET_XMIT_SUCCESS;
533 }
534 
535 static unsigned int netem_drop(struct Qdisc *sch)
536 {
537 	struct netem_sched_data *q = qdisc_priv(sch);
538 	unsigned int len;
539 
540 	len = qdisc_queue_drop(sch);
541 
542 	if (!len) {
543 		struct rb_node *p = rb_first(&q->t_root);
544 
545 		if (p) {
546 			struct sk_buff *skb = netem_rb_to_skb(p);
547 
548 			rb_erase(p, &q->t_root);
549 			sch->q.qlen--;
550 			skb->next = NULL;
551 			skb->prev = NULL;
552 			len = qdisc_pkt_len(skb);
553 			sch->qstats.backlog -= len;
554 			kfree_skb(skb);
555 		}
556 	}
557 	if (!len && q->qdisc && q->qdisc->ops->drop)
558 	    len = q->qdisc->ops->drop(q->qdisc);
559 	if (len)
560 		sch->qstats.drops++;
561 
562 	return len;
563 }
564 
565 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
566 {
567 	struct netem_sched_data *q = qdisc_priv(sch);
568 	struct sk_buff *skb;
569 	struct rb_node *p;
570 
571 	if (qdisc_is_throttled(sch))
572 		return NULL;
573 
574 tfifo_dequeue:
575 	skb = __skb_dequeue(&sch->q);
576 	if (skb) {
577 deliver:
578 		sch->qstats.backlog -= qdisc_pkt_len(skb);
579 		qdisc_unthrottled(sch);
580 		qdisc_bstats_update(sch, skb);
581 		return skb;
582 	}
583 	p = rb_first(&q->t_root);
584 	if (p) {
585 		psched_time_t time_to_send;
586 
587 		skb = netem_rb_to_skb(p);
588 
589 		/* if more time remaining? */
590 		time_to_send = netem_skb_cb(skb)->time_to_send;
591 		if (time_to_send <= psched_get_time()) {
592 			rb_erase(p, &q->t_root);
593 
594 			sch->q.qlen--;
595 			skb->next = NULL;
596 			skb->prev = NULL;
597 			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
598 
599 #ifdef CONFIG_NET_CLS_ACT
600 			/*
601 			 * If it's at ingress let's pretend the delay is
602 			 * from the network (tstamp will be updated).
603 			 */
604 			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
605 				skb->tstamp.tv64 = 0;
606 #endif
607 
608 			if (q->qdisc) {
609 				int err = qdisc_enqueue(skb, q->qdisc);
610 
611 				if (unlikely(err != NET_XMIT_SUCCESS)) {
612 					if (net_xmit_drop_count(err)) {
613 						sch->qstats.drops++;
614 						qdisc_tree_decrease_qlen(sch, 1);
615 					}
616 				}
617 				goto tfifo_dequeue;
618 			}
619 			goto deliver;
620 		}
621 
622 		if (q->qdisc) {
623 			skb = q->qdisc->ops->dequeue(q->qdisc);
624 			if (skb)
625 				goto deliver;
626 		}
627 		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
628 	}
629 
630 	if (q->qdisc) {
631 		skb = q->qdisc->ops->dequeue(q->qdisc);
632 		if (skb)
633 			goto deliver;
634 	}
635 	return NULL;
636 }
637 
638 static void netem_reset(struct Qdisc *sch)
639 {
640 	struct netem_sched_data *q = qdisc_priv(sch);
641 
642 	qdisc_reset_queue(sch);
643 	tfifo_reset(sch);
644 	if (q->qdisc)
645 		qdisc_reset(q->qdisc);
646 	qdisc_watchdog_cancel(&q->watchdog);
647 }
648 
649 static void dist_free(struct disttable *d)
650 {
651 	kvfree(d);
652 }
653 
654 /*
655  * Distribution data is a variable size payload containing
656  * signed 16 bit values.
657  */
658 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
659 {
660 	struct netem_sched_data *q = qdisc_priv(sch);
661 	size_t n = nla_len(attr)/sizeof(__s16);
662 	const __s16 *data = nla_data(attr);
663 	spinlock_t *root_lock;
664 	struct disttable *d;
665 	int i;
666 	size_t s;
667 
668 	if (n > NETEM_DIST_MAX)
669 		return -EINVAL;
670 
671 	s = sizeof(struct disttable) + n * sizeof(s16);
672 	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
673 	if (!d)
674 		d = vmalloc(s);
675 	if (!d)
676 		return -ENOMEM;
677 
678 	d->size = n;
679 	for (i = 0; i < n; i++)
680 		d->table[i] = data[i];
681 
682 	root_lock = qdisc_root_sleeping_lock(sch);
683 
684 	spin_lock_bh(root_lock);
685 	swap(q->delay_dist, d);
686 	spin_unlock_bh(root_lock);
687 
688 	dist_free(d);
689 	return 0;
690 }
691 
692 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
693 {
694 	const struct tc_netem_corr *c = nla_data(attr);
695 
696 	init_crandom(&q->delay_cor, c->delay_corr);
697 	init_crandom(&q->loss_cor, c->loss_corr);
698 	init_crandom(&q->dup_cor, c->dup_corr);
699 }
700 
701 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
702 {
703 	const struct tc_netem_reorder *r = nla_data(attr);
704 
705 	q->reorder = r->probability;
706 	init_crandom(&q->reorder_cor, r->correlation);
707 }
708 
709 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
710 {
711 	const struct tc_netem_corrupt *r = nla_data(attr);
712 
713 	q->corrupt = r->probability;
714 	init_crandom(&q->corrupt_cor, r->correlation);
715 }
716 
717 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
718 {
719 	const struct tc_netem_rate *r = nla_data(attr);
720 
721 	q->rate = r->rate;
722 	q->packet_overhead = r->packet_overhead;
723 	q->cell_size = r->cell_size;
724 	q->cell_overhead = r->cell_overhead;
725 	if (q->cell_size)
726 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
727 	else
728 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
729 }
730 
731 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
732 {
733 	const struct nlattr *la;
734 	int rem;
735 
736 	nla_for_each_nested(la, attr, rem) {
737 		u16 type = nla_type(la);
738 
739 		switch (type) {
740 		case NETEM_LOSS_GI: {
741 			const struct tc_netem_gimodel *gi = nla_data(la);
742 
743 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
744 				pr_info("netem: incorrect gi model size\n");
745 				return -EINVAL;
746 			}
747 
748 			q->loss_model = CLG_4_STATES;
749 
750 			q->clg.state = TX_IN_GAP_PERIOD;
751 			q->clg.a1 = gi->p13;
752 			q->clg.a2 = gi->p31;
753 			q->clg.a3 = gi->p32;
754 			q->clg.a4 = gi->p14;
755 			q->clg.a5 = gi->p23;
756 			break;
757 		}
758 
759 		case NETEM_LOSS_GE: {
760 			const struct tc_netem_gemodel *ge = nla_data(la);
761 
762 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
763 				pr_info("netem: incorrect ge model size\n");
764 				return -EINVAL;
765 			}
766 
767 			q->loss_model = CLG_GILB_ELL;
768 			q->clg.state = GOOD_STATE;
769 			q->clg.a1 = ge->p;
770 			q->clg.a2 = ge->r;
771 			q->clg.a3 = ge->h;
772 			q->clg.a4 = ge->k1;
773 			break;
774 		}
775 
776 		default:
777 			pr_info("netem: unknown loss type %u\n", type);
778 			return -EINVAL;
779 		}
780 	}
781 
782 	return 0;
783 }
784 
785 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
786 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
787 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
788 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
789 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
790 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
791 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
792 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
793 };
794 
795 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
796 		      const struct nla_policy *policy, int len)
797 {
798 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
799 
800 	if (nested_len < 0) {
801 		pr_info("netem: invalid attributes len %d\n", nested_len);
802 		return -EINVAL;
803 	}
804 
805 	if (nested_len >= nla_attr_size(0))
806 		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
807 				 nested_len, policy);
808 
809 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
810 	return 0;
811 }
812 
813 /* Parse netlink message to set options */
814 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
815 {
816 	struct netem_sched_data *q = qdisc_priv(sch);
817 	struct nlattr *tb[TCA_NETEM_MAX + 1];
818 	struct tc_netem_qopt *qopt;
819 	struct clgstate old_clg;
820 	int old_loss_model = CLG_RANDOM;
821 	int ret;
822 
823 	if (opt == NULL)
824 		return -EINVAL;
825 
826 	qopt = nla_data(opt);
827 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
828 	if (ret < 0)
829 		return ret;
830 
831 	/* backup q->clg and q->loss_model */
832 	old_clg = q->clg;
833 	old_loss_model = q->loss_model;
834 
835 	if (tb[TCA_NETEM_LOSS]) {
836 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
837 		if (ret) {
838 			q->loss_model = old_loss_model;
839 			return ret;
840 		}
841 	} else {
842 		q->loss_model = CLG_RANDOM;
843 	}
844 
845 	if (tb[TCA_NETEM_DELAY_DIST]) {
846 		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
847 		if (ret) {
848 			/* recover clg and loss_model, in case of
849 			 * q->clg and q->loss_model were modified
850 			 * in get_loss_clg()
851 			 */
852 			q->clg = old_clg;
853 			q->loss_model = old_loss_model;
854 			return ret;
855 		}
856 	}
857 
858 	sch->limit = qopt->limit;
859 
860 	q->latency = qopt->latency;
861 	q->jitter = qopt->jitter;
862 	q->limit = qopt->limit;
863 	q->gap = qopt->gap;
864 	q->counter = 0;
865 	q->loss = qopt->loss;
866 	q->duplicate = qopt->duplicate;
867 
868 	/* for compatibility with earlier versions.
869 	 * if gap is set, need to assume 100% probability
870 	 */
871 	if (q->gap)
872 		q->reorder = ~0;
873 
874 	if (tb[TCA_NETEM_CORR])
875 		get_correlation(q, tb[TCA_NETEM_CORR]);
876 
877 	if (tb[TCA_NETEM_REORDER])
878 		get_reorder(q, tb[TCA_NETEM_REORDER]);
879 
880 	if (tb[TCA_NETEM_CORRUPT])
881 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
882 
883 	if (tb[TCA_NETEM_RATE])
884 		get_rate(q, tb[TCA_NETEM_RATE]);
885 
886 	if (tb[TCA_NETEM_RATE64])
887 		q->rate = max_t(u64, q->rate,
888 				nla_get_u64(tb[TCA_NETEM_RATE64]));
889 
890 	if (tb[TCA_NETEM_ECN])
891 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
892 
893 	return ret;
894 }
895 
896 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
897 {
898 	struct netem_sched_data *q = qdisc_priv(sch);
899 	int ret;
900 
901 	if (!opt)
902 		return -EINVAL;
903 
904 	qdisc_watchdog_init(&q->watchdog, sch);
905 
906 	q->loss_model = CLG_RANDOM;
907 	ret = netem_change(sch, opt);
908 	if (ret)
909 		pr_info("netem: change failed\n");
910 	return ret;
911 }
912 
913 static void netem_destroy(struct Qdisc *sch)
914 {
915 	struct netem_sched_data *q = qdisc_priv(sch);
916 
917 	qdisc_watchdog_cancel(&q->watchdog);
918 	if (q->qdisc)
919 		qdisc_destroy(q->qdisc);
920 	dist_free(q->delay_dist);
921 }
922 
923 static int dump_loss_model(const struct netem_sched_data *q,
924 			   struct sk_buff *skb)
925 {
926 	struct nlattr *nest;
927 
928 	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
929 	if (nest == NULL)
930 		goto nla_put_failure;
931 
932 	switch (q->loss_model) {
933 	case CLG_RANDOM:
934 		/* legacy loss model */
935 		nla_nest_cancel(skb, nest);
936 		return 0;	/* no data */
937 
938 	case CLG_4_STATES: {
939 		struct tc_netem_gimodel gi = {
940 			.p13 = q->clg.a1,
941 			.p31 = q->clg.a2,
942 			.p32 = q->clg.a3,
943 			.p14 = q->clg.a4,
944 			.p23 = q->clg.a5,
945 		};
946 
947 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
948 			goto nla_put_failure;
949 		break;
950 	}
951 	case CLG_GILB_ELL: {
952 		struct tc_netem_gemodel ge = {
953 			.p = q->clg.a1,
954 			.r = q->clg.a2,
955 			.h = q->clg.a3,
956 			.k1 = q->clg.a4,
957 		};
958 
959 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
960 			goto nla_put_failure;
961 		break;
962 	}
963 	}
964 
965 	nla_nest_end(skb, nest);
966 	return 0;
967 
968 nla_put_failure:
969 	nla_nest_cancel(skb, nest);
970 	return -1;
971 }
972 
973 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
974 {
975 	const struct netem_sched_data *q = qdisc_priv(sch);
976 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
977 	struct tc_netem_qopt qopt;
978 	struct tc_netem_corr cor;
979 	struct tc_netem_reorder reorder;
980 	struct tc_netem_corrupt corrupt;
981 	struct tc_netem_rate rate;
982 
983 	qopt.latency = q->latency;
984 	qopt.jitter = q->jitter;
985 	qopt.limit = q->limit;
986 	qopt.loss = q->loss;
987 	qopt.gap = q->gap;
988 	qopt.duplicate = q->duplicate;
989 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
990 		goto nla_put_failure;
991 
992 	cor.delay_corr = q->delay_cor.rho;
993 	cor.loss_corr = q->loss_cor.rho;
994 	cor.dup_corr = q->dup_cor.rho;
995 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
996 		goto nla_put_failure;
997 
998 	reorder.probability = q->reorder;
999 	reorder.correlation = q->reorder_cor.rho;
1000 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1001 		goto nla_put_failure;
1002 
1003 	corrupt.probability = q->corrupt;
1004 	corrupt.correlation = q->corrupt_cor.rho;
1005 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1006 		goto nla_put_failure;
1007 
1008 	if (q->rate >= (1ULL << 32)) {
1009 		if (nla_put_u64(skb, TCA_NETEM_RATE64, q->rate))
1010 			goto nla_put_failure;
1011 		rate.rate = ~0U;
1012 	} else {
1013 		rate.rate = q->rate;
1014 	}
1015 	rate.packet_overhead = q->packet_overhead;
1016 	rate.cell_size = q->cell_size;
1017 	rate.cell_overhead = q->cell_overhead;
1018 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1019 		goto nla_put_failure;
1020 
1021 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1022 		goto nla_put_failure;
1023 
1024 	if (dump_loss_model(q, skb) != 0)
1025 		goto nla_put_failure;
1026 
1027 	return nla_nest_end(skb, nla);
1028 
1029 nla_put_failure:
1030 	nlmsg_trim(skb, nla);
1031 	return -1;
1032 }
1033 
1034 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1035 			  struct sk_buff *skb, struct tcmsg *tcm)
1036 {
1037 	struct netem_sched_data *q = qdisc_priv(sch);
1038 
1039 	if (cl != 1 || !q->qdisc) 	/* only one class */
1040 		return -ENOENT;
1041 
1042 	tcm->tcm_handle |= TC_H_MIN(1);
1043 	tcm->tcm_info = q->qdisc->handle;
1044 
1045 	return 0;
1046 }
1047 
1048 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1049 		     struct Qdisc **old)
1050 {
1051 	struct netem_sched_data *q = qdisc_priv(sch);
1052 
1053 	sch_tree_lock(sch);
1054 	*old = q->qdisc;
1055 	q->qdisc = new;
1056 	if (*old) {
1057 		qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
1058 		qdisc_reset(*old);
1059 	}
1060 	sch_tree_unlock(sch);
1061 
1062 	return 0;
1063 }
1064 
1065 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1066 {
1067 	struct netem_sched_data *q = qdisc_priv(sch);
1068 	return q->qdisc;
1069 }
1070 
1071 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1072 {
1073 	return 1;
1074 }
1075 
1076 static void netem_put(struct Qdisc *sch, unsigned long arg)
1077 {
1078 }
1079 
1080 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1081 {
1082 	if (!walker->stop) {
1083 		if (walker->count >= walker->skip)
1084 			if (walker->fn(sch, 1, walker) < 0) {
1085 				walker->stop = 1;
1086 				return;
1087 			}
1088 		walker->count++;
1089 	}
1090 }
1091 
1092 static const struct Qdisc_class_ops netem_class_ops = {
1093 	.graft		=	netem_graft,
1094 	.leaf		=	netem_leaf,
1095 	.get		=	netem_get,
1096 	.put		=	netem_put,
1097 	.walk		=	netem_walk,
1098 	.dump		=	netem_dump_class,
1099 };
1100 
1101 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1102 	.id		=	"netem",
1103 	.cl_ops		=	&netem_class_ops,
1104 	.priv_size	=	sizeof(struct netem_sched_data),
1105 	.enqueue	=	netem_enqueue,
1106 	.dequeue	=	netem_dequeue,
1107 	.peek		=	qdisc_peek_dequeued,
1108 	.drop		=	netem_drop,
1109 	.init		=	netem_init,
1110 	.reset		=	netem_reset,
1111 	.destroy	=	netem_destroy,
1112 	.change		=	netem_change,
1113 	.dump		=	netem_dump,
1114 	.owner		=	THIS_MODULE,
1115 };
1116 
1117 
1118 static int __init netem_module_init(void)
1119 {
1120 	pr_info("netem: version " VERSION "\n");
1121 	return register_qdisc(&netem_qdisc_ops);
1122 }
1123 static void __exit netem_module_exit(void)
1124 {
1125 	unregister_qdisc(&netem_qdisc_ops);
1126 }
1127 module_init(netem_module_init)
1128 module_exit(netem_module_exit)
1129 MODULE_LICENSE("GPL");
1130