xref: /openbmc/linux/net/sched/sch_netem.c (revision 9dbbc3b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sched/sch_netem.c	Network emulator
4  *
5  *  		Many of the algorithms and ideas for this came from
6  *		NIST Net which is not copyrighted.
7  *
8  * Authors:	Stephen Hemminger <shemminger@osdl.org>
9  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/skbuff.h>
19 #include <linux/vmalloc.h>
20 #include <linux/rtnetlink.h>
21 #include <linux/reciprocal_div.h>
22 #include <linux/rbtree.h>
23 
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
26 #include <net/inet_ecn.h>
27 
28 #define VERSION "1.3"
29 
30 /*	Network Emulation Queuing algorithm.
31 	====================================
32 
33 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
34 		 Network Emulation Tool
35 		 [2] Luigi Rizzo, DummyNet for FreeBSD
36 
37 	 ----------------------------------------------------------------
38 
39 	 This started out as a simple way to delay outgoing packets to
40 	 test TCP but has grown to include most of the functionality
41 	 of a full blown network emulator like NISTnet. It can delay
42 	 packets and add random jitter (and correlation). The random
43 	 distribution can be loaded from a table as well to provide
44 	 normal, Pareto, or experimental curves. Packet loss,
45 	 duplication, and reordering can also be emulated.
46 
47 	 This qdisc does not do classification that can be handled in
48 	 layering other disciplines.  It does not need to do bandwidth
49 	 control either since that can be handled by using token
50 	 bucket or other rate control.
51 
52      Correlated Loss Generator models
53 
54 	Added generation of correlated loss according to the
55 	"Gilbert-Elliot" model, a 4-state markov model.
56 
57 	References:
58 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
59 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
60 	and intuitive loss model for packet networks and its implementation
61 	in the Netem module in the Linux kernel", available in [1]
62 
63 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
64 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
65 */
66 
67 struct disttable {
68 	u32  size;
69 	s16 table[];
70 };
71 
72 struct netem_sched_data {
73 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
74 	struct rb_root t_root;
75 
76 	/* a linear queue; reduces rbtree rebalancing when jitter is low */
77 	struct sk_buff	*t_head;
78 	struct sk_buff	*t_tail;
79 
80 	/* optional qdisc for classful handling (NULL at netem init) */
81 	struct Qdisc	*qdisc;
82 
83 	struct qdisc_watchdog watchdog;
84 
85 	s64 latency;
86 	s64 jitter;
87 
88 	u32 loss;
89 	u32 ecn;
90 	u32 limit;
91 	u32 counter;
92 	u32 gap;
93 	u32 duplicate;
94 	u32 reorder;
95 	u32 corrupt;
96 	u64 rate;
97 	s32 packet_overhead;
98 	u32 cell_size;
99 	struct reciprocal_value cell_size_reciprocal;
100 	s32 cell_overhead;
101 
102 	struct crndstate {
103 		u32 last;
104 		u32 rho;
105 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
106 
107 	struct disttable *delay_dist;
108 
109 	enum  {
110 		CLG_RANDOM,
111 		CLG_4_STATES,
112 		CLG_GILB_ELL,
113 	} loss_model;
114 
115 	enum {
116 		TX_IN_GAP_PERIOD = 1,
117 		TX_IN_BURST_PERIOD,
118 		LOST_IN_GAP_PERIOD,
119 		LOST_IN_BURST_PERIOD,
120 	} _4_state_model;
121 
122 	enum {
123 		GOOD_STATE = 1,
124 		BAD_STATE,
125 	} GE_state_model;
126 
127 	/* Correlated Loss Generation models */
128 	struct clgstate {
129 		/* state of the Markov chain */
130 		u8 state;
131 
132 		/* 4-states and Gilbert-Elliot models */
133 		u32 a1;	/* p13 for 4-states or p for GE */
134 		u32 a2;	/* p31 for 4-states or r for GE */
135 		u32 a3;	/* p32 for 4-states or h for GE */
136 		u32 a4;	/* p14 for 4-states or 1-k for GE */
137 		u32 a5; /* p23 used only in 4-states */
138 	} clg;
139 
140 	struct tc_netem_slot slot_config;
141 	struct slotstate {
142 		u64 slot_next;
143 		s32 packets_left;
144 		s32 bytes_left;
145 	} slot;
146 
147 	struct disttable *slot_dist;
148 };
149 
150 /* Time stamp put into socket buffer control block
151  * Only valid when skbs are in our internal t(ime)fifo queue.
152  *
153  * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
154  * and skb->next & skb->prev are scratch space for a qdisc,
155  * we save skb->tstamp value in skb->cb[] before destroying it.
156  */
157 struct netem_skb_cb {
158 	u64	        time_to_send;
159 };
160 
161 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
162 {
163 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
164 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
165 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
166 }
167 
168 /* init_crandom - initialize correlated random number generator
169  * Use entropy source for initial seed.
170  */
171 static void init_crandom(struct crndstate *state, unsigned long rho)
172 {
173 	state->rho = rho;
174 	state->last = prandom_u32();
175 }
176 
177 /* get_crandom - correlated random number generator
178  * Next number depends on last value.
179  * rho is scaled to avoid floating point.
180  */
181 static u32 get_crandom(struct crndstate *state)
182 {
183 	u64 value, rho;
184 	unsigned long answer;
185 
186 	if (!state || state->rho == 0)	/* no correlation */
187 		return prandom_u32();
188 
189 	value = prandom_u32();
190 	rho = (u64)state->rho + 1;
191 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
192 	state->last = answer;
193 	return answer;
194 }
195 
196 /* loss_4state - 4-state model loss generator
197  * Generates losses according to the 4-state Markov chain adopted in
198  * the GI (General and Intuitive) loss model.
199  */
200 static bool loss_4state(struct netem_sched_data *q)
201 {
202 	struct clgstate *clg = &q->clg;
203 	u32 rnd = prandom_u32();
204 
205 	/*
206 	 * Makes a comparison between rnd and the transition
207 	 * probabilities outgoing from the current state, then decides the
208 	 * next state and if the next packet has to be transmitted or lost.
209 	 * The four states correspond to:
210 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
211 	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
212 	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
213 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
214 	 */
215 	switch (clg->state) {
216 	case TX_IN_GAP_PERIOD:
217 		if (rnd < clg->a4) {
218 			clg->state = LOST_IN_BURST_PERIOD;
219 			return true;
220 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
221 			clg->state = LOST_IN_GAP_PERIOD;
222 			return true;
223 		} else if (clg->a1 + clg->a4 < rnd) {
224 			clg->state = TX_IN_GAP_PERIOD;
225 		}
226 
227 		break;
228 	case TX_IN_BURST_PERIOD:
229 		if (rnd < clg->a5) {
230 			clg->state = LOST_IN_GAP_PERIOD;
231 			return true;
232 		} else {
233 			clg->state = TX_IN_BURST_PERIOD;
234 		}
235 
236 		break;
237 	case LOST_IN_GAP_PERIOD:
238 		if (rnd < clg->a3)
239 			clg->state = TX_IN_BURST_PERIOD;
240 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
241 			clg->state = TX_IN_GAP_PERIOD;
242 		} else if (clg->a2 + clg->a3 < rnd) {
243 			clg->state = LOST_IN_GAP_PERIOD;
244 			return true;
245 		}
246 		break;
247 	case LOST_IN_BURST_PERIOD:
248 		clg->state = TX_IN_GAP_PERIOD;
249 		break;
250 	}
251 
252 	return false;
253 }
254 
255 /* loss_gilb_ell - Gilbert-Elliot model loss generator
256  * Generates losses according to the Gilbert-Elliot loss model or
257  * its special cases  (Gilbert or Simple Gilbert)
258  *
259  * Makes a comparison between random number and the transition
260  * probabilities outgoing from the current state, then decides the
261  * next state. A second random number is extracted and the comparison
262  * with the loss probability of the current state decides if the next
263  * packet will be transmitted or lost.
264  */
265 static bool loss_gilb_ell(struct netem_sched_data *q)
266 {
267 	struct clgstate *clg = &q->clg;
268 
269 	switch (clg->state) {
270 	case GOOD_STATE:
271 		if (prandom_u32() < clg->a1)
272 			clg->state = BAD_STATE;
273 		if (prandom_u32() < clg->a4)
274 			return true;
275 		break;
276 	case BAD_STATE:
277 		if (prandom_u32() < clg->a2)
278 			clg->state = GOOD_STATE;
279 		if (prandom_u32() > clg->a3)
280 			return true;
281 	}
282 
283 	return false;
284 }
285 
286 static bool loss_event(struct netem_sched_data *q)
287 {
288 	switch (q->loss_model) {
289 	case CLG_RANDOM:
290 		/* Random packet drop 0 => none, ~0 => all */
291 		return q->loss && q->loss >= get_crandom(&q->loss_cor);
292 
293 	case CLG_4_STATES:
294 		/* 4state loss model algorithm (used also for GI model)
295 		* Extracts a value from the markov 4 state loss generator,
296 		* if it is 1 drops a packet and if needed writes the event in
297 		* the kernel logs
298 		*/
299 		return loss_4state(q);
300 
301 	case CLG_GILB_ELL:
302 		/* Gilbert-Elliot loss model algorithm
303 		* Extracts a value from the Gilbert-Elliot loss generator,
304 		* if it is 1 drops a packet and if needed writes the event in
305 		* the kernel logs
306 		*/
307 		return loss_gilb_ell(q);
308 	}
309 
310 	return false;	/* not reached */
311 }
312 
313 
314 /* tabledist - return a pseudo-randomly distributed value with mean mu and
315  * std deviation sigma.  Uses table lookup to approximate the desired
316  * distribution, and a uniformly-distributed pseudo-random source.
317  */
318 static s64 tabledist(s64 mu, s32 sigma,
319 		     struct crndstate *state,
320 		     const struct disttable *dist)
321 {
322 	s64 x;
323 	long t;
324 	u32 rnd;
325 
326 	if (sigma == 0)
327 		return mu;
328 
329 	rnd = get_crandom(state);
330 
331 	/* default uniform distribution */
332 	if (dist == NULL)
333 		return ((rnd % (2 * (u32)sigma)) + mu) - sigma;
334 
335 	t = dist->table[rnd % dist->size];
336 	x = (sigma % NETEM_DIST_SCALE) * t;
337 	if (x >= 0)
338 		x += NETEM_DIST_SCALE/2;
339 	else
340 		x -= NETEM_DIST_SCALE/2;
341 
342 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
343 }
344 
345 static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
346 {
347 	len += q->packet_overhead;
348 
349 	if (q->cell_size) {
350 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
351 
352 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
353 			cells++;
354 		len = cells * (q->cell_size + q->cell_overhead);
355 	}
356 
357 	return div64_u64(len * NSEC_PER_SEC, q->rate);
358 }
359 
360 static void tfifo_reset(struct Qdisc *sch)
361 {
362 	struct netem_sched_data *q = qdisc_priv(sch);
363 	struct rb_node *p = rb_first(&q->t_root);
364 
365 	while (p) {
366 		struct sk_buff *skb = rb_to_skb(p);
367 
368 		p = rb_next(p);
369 		rb_erase(&skb->rbnode, &q->t_root);
370 		rtnl_kfree_skbs(skb, skb);
371 	}
372 
373 	rtnl_kfree_skbs(q->t_head, q->t_tail);
374 	q->t_head = NULL;
375 	q->t_tail = NULL;
376 }
377 
378 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
379 {
380 	struct netem_sched_data *q = qdisc_priv(sch);
381 	u64 tnext = netem_skb_cb(nskb)->time_to_send;
382 
383 	if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
384 		if (q->t_tail)
385 			q->t_tail->next = nskb;
386 		else
387 			q->t_head = nskb;
388 		q->t_tail = nskb;
389 	} else {
390 		struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
391 
392 		while (*p) {
393 			struct sk_buff *skb;
394 
395 			parent = *p;
396 			skb = rb_to_skb(parent);
397 			if (tnext >= netem_skb_cb(skb)->time_to_send)
398 				p = &parent->rb_right;
399 			else
400 				p = &parent->rb_left;
401 		}
402 		rb_link_node(&nskb->rbnode, parent, p);
403 		rb_insert_color(&nskb->rbnode, &q->t_root);
404 	}
405 	sch->q.qlen++;
406 }
407 
408 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
409  * when we statistically choose to corrupt one, we instead segment it, returning
410  * the first packet to be corrupted, and re-enqueue the remaining frames
411  */
412 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
413 				     struct sk_buff **to_free)
414 {
415 	struct sk_buff *segs;
416 	netdev_features_t features = netif_skb_features(skb);
417 
418 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
419 
420 	if (IS_ERR_OR_NULL(segs)) {
421 		qdisc_drop(skb, sch, to_free);
422 		return NULL;
423 	}
424 	consume_skb(skb);
425 	return segs;
426 }
427 
428 /*
429  * Insert one skb into qdisc.
430  * Note: parent depends on return value to account for queue length.
431  * 	NET_XMIT_DROP: queue length didn't change.
432  *      NET_XMIT_SUCCESS: one skb was queued.
433  */
434 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
435 			 struct sk_buff **to_free)
436 {
437 	struct netem_sched_data *q = qdisc_priv(sch);
438 	/* We don't fill cb now as skb_unshare() may invalidate it */
439 	struct netem_skb_cb *cb;
440 	struct sk_buff *skb2;
441 	struct sk_buff *segs = NULL;
442 	unsigned int prev_len = qdisc_pkt_len(skb);
443 	int count = 1;
444 	int rc = NET_XMIT_SUCCESS;
445 	int rc_drop = NET_XMIT_DROP;
446 
447 	/* Do not fool qdisc_drop_all() */
448 	skb->prev = NULL;
449 
450 	/* Random duplication */
451 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
452 		++count;
453 
454 	/* Drop packet? */
455 	if (loss_event(q)) {
456 		if (q->ecn && INET_ECN_set_ce(skb))
457 			qdisc_qstats_drop(sch); /* mark packet */
458 		else
459 			--count;
460 	}
461 	if (count == 0) {
462 		qdisc_qstats_drop(sch);
463 		__qdisc_drop(skb, to_free);
464 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
465 	}
466 
467 	/* If a delay is expected, orphan the skb. (orphaning usually takes
468 	 * place at TX completion time, so _before_ the link transit delay)
469 	 */
470 	if (q->latency || q->jitter || q->rate)
471 		skb_orphan_partial(skb);
472 
473 	/*
474 	 * If we need to duplicate packet, then re-insert at top of the
475 	 * qdisc tree, since parent queuer expects that only one
476 	 * skb will be queued.
477 	 */
478 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
479 		struct Qdisc *rootq = qdisc_root_bh(sch);
480 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
481 
482 		q->duplicate = 0;
483 		rootq->enqueue(skb2, rootq, to_free);
484 		q->duplicate = dupsave;
485 		rc_drop = NET_XMIT_SUCCESS;
486 	}
487 
488 	/*
489 	 * Randomized packet corruption.
490 	 * Make copy if needed since we are modifying
491 	 * If packet is going to be hardware checksummed, then
492 	 * do it now in software before we mangle it.
493 	 */
494 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
495 		if (skb_is_gso(skb)) {
496 			skb = netem_segment(skb, sch, to_free);
497 			if (!skb)
498 				return rc_drop;
499 			segs = skb->next;
500 			skb_mark_not_on_list(skb);
501 			qdisc_skb_cb(skb)->pkt_len = skb->len;
502 		}
503 
504 		skb = skb_unshare(skb, GFP_ATOMIC);
505 		if (unlikely(!skb)) {
506 			qdisc_qstats_drop(sch);
507 			goto finish_segs;
508 		}
509 		if (skb->ip_summed == CHECKSUM_PARTIAL &&
510 		    skb_checksum_help(skb)) {
511 			qdisc_drop(skb, sch, to_free);
512 			skb = NULL;
513 			goto finish_segs;
514 		}
515 
516 		skb->data[prandom_u32() % skb_headlen(skb)] ^=
517 			1<<(prandom_u32() % 8);
518 	}
519 
520 	if (unlikely(sch->q.qlen >= sch->limit)) {
521 		/* re-link segs, so that qdisc_drop_all() frees them all */
522 		skb->next = segs;
523 		qdisc_drop_all(skb, sch, to_free);
524 		return rc_drop;
525 	}
526 
527 	qdisc_qstats_backlog_inc(sch, skb);
528 
529 	cb = netem_skb_cb(skb);
530 	if (q->gap == 0 ||		/* not doing reordering */
531 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
532 	    q->reorder < get_crandom(&q->reorder_cor)) {
533 		u64 now;
534 		s64 delay;
535 
536 		delay = tabledist(q->latency, q->jitter,
537 				  &q->delay_cor, q->delay_dist);
538 
539 		now = ktime_get_ns();
540 
541 		if (q->rate) {
542 			struct netem_skb_cb *last = NULL;
543 
544 			if (sch->q.tail)
545 				last = netem_skb_cb(sch->q.tail);
546 			if (q->t_root.rb_node) {
547 				struct sk_buff *t_skb;
548 				struct netem_skb_cb *t_last;
549 
550 				t_skb = skb_rb_last(&q->t_root);
551 				t_last = netem_skb_cb(t_skb);
552 				if (!last ||
553 				    t_last->time_to_send > last->time_to_send)
554 					last = t_last;
555 			}
556 			if (q->t_tail) {
557 				struct netem_skb_cb *t_last =
558 					netem_skb_cb(q->t_tail);
559 
560 				if (!last ||
561 				    t_last->time_to_send > last->time_to_send)
562 					last = t_last;
563 			}
564 
565 			if (last) {
566 				/*
567 				 * Last packet in queue is reference point (now),
568 				 * calculate this time bonus and subtract
569 				 * from delay.
570 				 */
571 				delay -= last->time_to_send - now;
572 				delay = max_t(s64, 0, delay);
573 				now = last->time_to_send;
574 			}
575 
576 			delay += packet_time_ns(qdisc_pkt_len(skb), q);
577 		}
578 
579 		cb->time_to_send = now + delay;
580 		++q->counter;
581 		tfifo_enqueue(skb, sch);
582 	} else {
583 		/*
584 		 * Do re-ordering by putting one out of N packets at the front
585 		 * of the queue.
586 		 */
587 		cb->time_to_send = ktime_get_ns();
588 		q->counter = 0;
589 
590 		__qdisc_enqueue_head(skb, &sch->q);
591 		sch->qstats.requeues++;
592 	}
593 
594 finish_segs:
595 	if (segs) {
596 		unsigned int len, last_len;
597 		int nb;
598 
599 		len = skb ? skb->len : 0;
600 		nb = skb ? 1 : 0;
601 
602 		while (segs) {
603 			skb2 = segs->next;
604 			skb_mark_not_on_list(segs);
605 			qdisc_skb_cb(segs)->pkt_len = segs->len;
606 			last_len = segs->len;
607 			rc = qdisc_enqueue(segs, sch, to_free);
608 			if (rc != NET_XMIT_SUCCESS) {
609 				if (net_xmit_drop_count(rc))
610 					qdisc_qstats_drop(sch);
611 			} else {
612 				nb++;
613 				len += last_len;
614 			}
615 			segs = skb2;
616 		}
617 		/* Parent qdiscs accounted for 1 skb of size @prev_len */
618 		qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
619 	} else if (!skb) {
620 		return NET_XMIT_DROP;
621 	}
622 	return NET_XMIT_SUCCESS;
623 }
624 
625 /* Delay the next round with a new future slot with a
626  * correct number of bytes and packets.
627  */
628 
629 static void get_slot_next(struct netem_sched_data *q, u64 now)
630 {
631 	s64 next_delay;
632 
633 	if (!q->slot_dist)
634 		next_delay = q->slot_config.min_delay +
635 				(prandom_u32() *
636 				 (q->slot_config.max_delay -
637 				  q->slot_config.min_delay) >> 32);
638 	else
639 		next_delay = tabledist(q->slot_config.dist_delay,
640 				       (s32)(q->slot_config.dist_jitter),
641 				       NULL, q->slot_dist);
642 
643 	q->slot.slot_next = now + next_delay;
644 	q->slot.packets_left = q->slot_config.max_packets;
645 	q->slot.bytes_left = q->slot_config.max_bytes;
646 }
647 
648 static struct sk_buff *netem_peek(struct netem_sched_data *q)
649 {
650 	struct sk_buff *skb = skb_rb_first(&q->t_root);
651 	u64 t1, t2;
652 
653 	if (!skb)
654 		return q->t_head;
655 	if (!q->t_head)
656 		return skb;
657 
658 	t1 = netem_skb_cb(skb)->time_to_send;
659 	t2 = netem_skb_cb(q->t_head)->time_to_send;
660 	if (t1 < t2)
661 		return skb;
662 	return q->t_head;
663 }
664 
665 static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
666 {
667 	if (skb == q->t_head) {
668 		q->t_head = skb->next;
669 		if (!q->t_head)
670 			q->t_tail = NULL;
671 	} else {
672 		rb_erase(&skb->rbnode, &q->t_root);
673 	}
674 }
675 
676 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
677 {
678 	struct netem_sched_data *q = qdisc_priv(sch);
679 	struct sk_buff *skb;
680 
681 tfifo_dequeue:
682 	skb = __qdisc_dequeue_head(&sch->q);
683 	if (skb) {
684 		qdisc_qstats_backlog_dec(sch, skb);
685 deliver:
686 		qdisc_bstats_update(sch, skb);
687 		return skb;
688 	}
689 	skb = netem_peek(q);
690 	if (skb) {
691 		u64 time_to_send;
692 		u64 now = ktime_get_ns();
693 
694 		/* if more time remaining? */
695 		time_to_send = netem_skb_cb(skb)->time_to_send;
696 		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
697 			get_slot_next(q, now);
698 
699 		if (time_to_send <= now && q->slot.slot_next <= now) {
700 			netem_erase_head(q, skb);
701 			sch->q.qlen--;
702 			qdisc_qstats_backlog_dec(sch, skb);
703 			skb->next = NULL;
704 			skb->prev = NULL;
705 			/* skb->dev shares skb->rbnode area,
706 			 * we need to restore its value.
707 			 */
708 			skb->dev = qdisc_dev(sch);
709 
710 			if (q->slot.slot_next) {
711 				q->slot.packets_left--;
712 				q->slot.bytes_left -= qdisc_pkt_len(skb);
713 				if (q->slot.packets_left <= 0 ||
714 				    q->slot.bytes_left <= 0)
715 					get_slot_next(q, now);
716 			}
717 
718 			if (q->qdisc) {
719 				unsigned int pkt_len = qdisc_pkt_len(skb);
720 				struct sk_buff *to_free = NULL;
721 				int err;
722 
723 				err = qdisc_enqueue(skb, q->qdisc, &to_free);
724 				kfree_skb_list(to_free);
725 				if (err != NET_XMIT_SUCCESS &&
726 				    net_xmit_drop_count(err)) {
727 					qdisc_qstats_drop(sch);
728 					qdisc_tree_reduce_backlog(sch, 1,
729 								  pkt_len);
730 				}
731 				goto tfifo_dequeue;
732 			}
733 			goto deliver;
734 		}
735 
736 		if (q->qdisc) {
737 			skb = q->qdisc->ops->dequeue(q->qdisc);
738 			if (skb)
739 				goto deliver;
740 		}
741 
742 		qdisc_watchdog_schedule_ns(&q->watchdog,
743 					   max(time_to_send,
744 					       q->slot.slot_next));
745 	}
746 
747 	if (q->qdisc) {
748 		skb = q->qdisc->ops->dequeue(q->qdisc);
749 		if (skb)
750 			goto deliver;
751 	}
752 	return NULL;
753 }
754 
755 static void netem_reset(struct Qdisc *sch)
756 {
757 	struct netem_sched_data *q = qdisc_priv(sch);
758 
759 	qdisc_reset_queue(sch);
760 	tfifo_reset(sch);
761 	if (q->qdisc)
762 		qdisc_reset(q->qdisc);
763 	qdisc_watchdog_cancel(&q->watchdog);
764 }
765 
766 static void dist_free(struct disttable *d)
767 {
768 	kvfree(d);
769 }
770 
771 /*
772  * Distribution data is a variable size payload containing
773  * signed 16 bit values.
774  */
775 
776 static int get_dist_table(struct Qdisc *sch, struct disttable **tbl,
777 			  const struct nlattr *attr)
778 {
779 	size_t n = nla_len(attr)/sizeof(__s16);
780 	const __s16 *data = nla_data(attr);
781 	spinlock_t *root_lock;
782 	struct disttable *d;
783 	int i;
784 
785 	if (!n || n > NETEM_DIST_MAX)
786 		return -EINVAL;
787 
788 	d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
789 	if (!d)
790 		return -ENOMEM;
791 
792 	d->size = n;
793 	for (i = 0; i < n; i++)
794 		d->table[i] = data[i];
795 
796 	root_lock = qdisc_root_sleeping_lock(sch);
797 
798 	spin_lock_bh(root_lock);
799 	swap(*tbl, d);
800 	spin_unlock_bh(root_lock);
801 
802 	dist_free(d);
803 	return 0;
804 }
805 
806 static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
807 {
808 	const struct tc_netem_slot *c = nla_data(attr);
809 
810 	q->slot_config = *c;
811 	if (q->slot_config.max_packets == 0)
812 		q->slot_config.max_packets = INT_MAX;
813 	if (q->slot_config.max_bytes == 0)
814 		q->slot_config.max_bytes = INT_MAX;
815 
816 	/* capping dist_jitter to the range acceptable by tabledist() */
817 	q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));
818 
819 	q->slot.packets_left = q->slot_config.max_packets;
820 	q->slot.bytes_left = q->slot_config.max_bytes;
821 	if (q->slot_config.min_delay | q->slot_config.max_delay |
822 	    q->slot_config.dist_jitter)
823 		q->slot.slot_next = ktime_get_ns();
824 	else
825 		q->slot.slot_next = 0;
826 }
827 
828 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
829 {
830 	const struct tc_netem_corr *c = nla_data(attr);
831 
832 	init_crandom(&q->delay_cor, c->delay_corr);
833 	init_crandom(&q->loss_cor, c->loss_corr);
834 	init_crandom(&q->dup_cor, c->dup_corr);
835 }
836 
837 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
838 {
839 	const struct tc_netem_reorder *r = nla_data(attr);
840 
841 	q->reorder = r->probability;
842 	init_crandom(&q->reorder_cor, r->correlation);
843 }
844 
845 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
846 {
847 	const struct tc_netem_corrupt *r = nla_data(attr);
848 
849 	q->corrupt = r->probability;
850 	init_crandom(&q->corrupt_cor, r->correlation);
851 }
852 
853 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
854 {
855 	const struct tc_netem_rate *r = nla_data(attr);
856 
857 	q->rate = r->rate;
858 	q->packet_overhead = r->packet_overhead;
859 	q->cell_size = r->cell_size;
860 	q->cell_overhead = r->cell_overhead;
861 	if (q->cell_size)
862 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
863 	else
864 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
865 }
866 
867 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
868 {
869 	const struct nlattr *la;
870 	int rem;
871 
872 	nla_for_each_nested(la, attr, rem) {
873 		u16 type = nla_type(la);
874 
875 		switch (type) {
876 		case NETEM_LOSS_GI: {
877 			const struct tc_netem_gimodel *gi = nla_data(la);
878 
879 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
880 				pr_info("netem: incorrect gi model size\n");
881 				return -EINVAL;
882 			}
883 
884 			q->loss_model = CLG_4_STATES;
885 
886 			q->clg.state = TX_IN_GAP_PERIOD;
887 			q->clg.a1 = gi->p13;
888 			q->clg.a2 = gi->p31;
889 			q->clg.a3 = gi->p32;
890 			q->clg.a4 = gi->p14;
891 			q->clg.a5 = gi->p23;
892 			break;
893 		}
894 
895 		case NETEM_LOSS_GE: {
896 			const struct tc_netem_gemodel *ge = nla_data(la);
897 
898 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
899 				pr_info("netem: incorrect ge model size\n");
900 				return -EINVAL;
901 			}
902 
903 			q->loss_model = CLG_GILB_ELL;
904 			q->clg.state = GOOD_STATE;
905 			q->clg.a1 = ge->p;
906 			q->clg.a2 = ge->r;
907 			q->clg.a3 = ge->h;
908 			q->clg.a4 = ge->k1;
909 			break;
910 		}
911 
912 		default:
913 			pr_info("netem: unknown loss type %u\n", type);
914 			return -EINVAL;
915 		}
916 	}
917 
918 	return 0;
919 }
920 
921 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
922 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
923 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
924 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
925 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
926 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
927 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
928 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
929 	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
930 	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
931 	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
932 };
933 
934 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
935 		      const struct nla_policy *policy, int len)
936 {
937 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
938 
939 	if (nested_len < 0) {
940 		pr_info("netem: invalid attributes len %d\n", nested_len);
941 		return -EINVAL;
942 	}
943 
944 	if (nested_len >= nla_attr_size(0))
945 		return nla_parse_deprecated(tb, maxtype,
946 					    nla_data(nla) + NLA_ALIGN(len),
947 					    nested_len, policy, NULL);
948 
949 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
950 	return 0;
951 }
952 
953 /* Parse netlink message to set options */
954 static int netem_change(struct Qdisc *sch, struct nlattr *opt,
955 			struct netlink_ext_ack *extack)
956 {
957 	struct netem_sched_data *q = qdisc_priv(sch);
958 	struct nlattr *tb[TCA_NETEM_MAX + 1];
959 	struct tc_netem_qopt *qopt;
960 	struct clgstate old_clg;
961 	int old_loss_model = CLG_RANDOM;
962 	int ret;
963 
964 	if (opt == NULL)
965 		return -EINVAL;
966 
967 	qopt = nla_data(opt);
968 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
969 	if (ret < 0)
970 		return ret;
971 
972 	/* backup q->clg and q->loss_model */
973 	old_clg = q->clg;
974 	old_loss_model = q->loss_model;
975 
976 	if (tb[TCA_NETEM_LOSS]) {
977 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
978 		if (ret) {
979 			q->loss_model = old_loss_model;
980 			return ret;
981 		}
982 	} else {
983 		q->loss_model = CLG_RANDOM;
984 	}
985 
986 	if (tb[TCA_NETEM_DELAY_DIST]) {
987 		ret = get_dist_table(sch, &q->delay_dist,
988 				     tb[TCA_NETEM_DELAY_DIST]);
989 		if (ret)
990 			goto get_table_failure;
991 	}
992 
993 	if (tb[TCA_NETEM_SLOT_DIST]) {
994 		ret = get_dist_table(sch, &q->slot_dist,
995 				     tb[TCA_NETEM_SLOT_DIST]);
996 		if (ret)
997 			goto get_table_failure;
998 	}
999 
1000 	sch->limit = qopt->limit;
1001 
1002 	q->latency = PSCHED_TICKS2NS(qopt->latency);
1003 	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
1004 	q->limit = qopt->limit;
1005 	q->gap = qopt->gap;
1006 	q->counter = 0;
1007 	q->loss = qopt->loss;
1008 	q->duplicate = qopt->duplicate;
1009 
1010 	/* for compatibility with earlier versions.
1011 	 * if gap is set, need to assume 100% probability
1012 	 */
1013 	if (q->gap)
1014 		q->reorder = ~0;
1015 
1016 	if (tb[TCA_NETEM_CORR])
1017 		get_correlation(q, tb[TCA_NETEM_CORR]);
1018 
1019 	if (tb[TCA_NETEM_REORDER])
1020 		get_reorder(q, tb[TCA_NETEM_REORDER]);
1021 
1022 	if (tb[TCA_NETEM_CORRUPT])
1023 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
1024 
1025 	if (tb[TCA_NETEM_RATE])
1026 		get_rate(q, tb[TCA_NETEM_RATE]);
1027 
1028 	if (tb[TCA_NETEM_RATE64])
1029 		q->rate = max_t(u64, q->rate,
1030 				nla_get_u64(tb[TCA_NETEM_RATE64]));
1031 
1032 	if (tb[TCA_NETEM_LATENCY64])
1033 		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
1034 
1035 	if (tb[TCA_NETEM_JITTER64])
1036 		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
1037 
1038 	if (tb[TCA_NETEM_ECN])
1039 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1040 
1041 	if (tb[TCA_NETEM_SLOT])
1042 		get_slot(q, tb[TCA_NETEM_SLOT]);
1043 
1044 	/* capping jitter to the range acceptable by tabledist() */
1045 	q->jitter = min_t(s64, abs(q->jitter), INT_MAX);
1046 
1047 	return ret;
1048 
1049 get_table_failure:
1050 	/* recover clg and loss_model, in case of
1051 	 * q->clg and q->loss_model were modified
1052 	 * in get_loss_clg()
1053 	 */
1054 	q->clg = old_clg;
1055 	q->loss_model = old_loss_model;
1056 	return ret;
1057 }
1058 
1059 static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1060 		      struct netlink_ext_ack *extack)
1061 {
1062 	struct netem_sched_data *q = qdisc_priv(sch);
1063 	int ret;
1064 
1065 	qdisc_watchdog_init(&q->watchdog, sch);
1066 
1067 	if (!opt)
1068 		return -EINVAL;
1069 
1070 	q->loss_model = CLG_RANDOM;
1071 	ret = netem_change(sch, opt, extack);
1072 	if (ret)
1073 		pr_info("netem: change failed\n");
1074 	return ret;
1075 }
1076 
1077 static void netem_destroy(struct Qdisc *sch)
1078 {
1079 	struct netem_sched_data *q = qdisc_priv(sch);
1080 
1081 	qdisc_watchdog_cancel(&q->watchdog);
1082 	if (q->qdisc)
1083 		qdisc_put(q->qdisc);
1084 	dist_free(q->delay_dist);
1085 	dist_free(q->slot_dist);
1086 }
1087 
1088 static int dump_loss_model(const struct netem_sched_data *q,
1089 			   struct sk_buff *skb)
1090 {
1091 	struct nlattr *nest;
1092 
1093 	nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
1094 	if (nest == NULL)
1095 		goto nla_put_failure;
1096 
1097 	switch (q->loss_model) {
1098 	case CLG_RANDOM:
1099 		/* legacy loss model */
1100 		nla_nest_cancel(skb, nest);
1101 		return 0;	/* no data */
1102 
1103 	case CLG_4_STATES: {
1104 		struct tc_netem_gimodel gi = {
1105 			.p13 = q->clg.a1,
1106 			.p31 = q->clg.a2,
1107 			.p32 = q->clg.a3,
1108 			.p14 = q->clg.a4,
1109 			.p23 = q->clg.a5,
1110 		};
1111 
1112 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1113 			goto nla_put_failure;
1114 		break;
1115 	}
1116 	case CLG_GILB_ELL: {
1117 		struct tc_netem_gemodel ge = {
1118 			.p = q->clg.a1,
1119 			.r = q->clg.a2,
1120 			.h = q->clg.a3,
1121 			.k1 = q->clg.a4,
1122 		};
1123 
1124 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1125 			goto nla_put_failure;
1126 		break;
1127 	}
1128 	}
1129 
1130 	nla_nest_end(skb, nest);
1131 	return 0;
1132 
1133 nla_put_failure:
1134 	nla_nest_cancel(skb, nest);
1135 	return -1;
1136 }
1137 
1138 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1139 {
1140 	const struct netem_sched_data *q = qdisc_priv(sch);
1141 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1142 	struct tc_netem_qopt qopt;
1143 	struct tc_netem_corr cor;
1144 	struct tc_netem_reorder reorder;
1145 	struct tc_netem_corrupt corrupt;
1146 	struct tc_netem_rate rate;
1147 	struct tc_netem_slot slot;
1148 
1149 	qopt.latency = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->latency),
1150 			     UINT_MAX);
1151 	qopt.jitter = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->jitter),
1152 			    UINT_MAX);
1153 	qopt.limit = q->limit;
1154 	qopt.loss = q->loss;
1155 	qopt.gap = q->gap;
1156 	qopt.duplicate = q->duplicate;
1157 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1158 		goto nla_put_failure;
1159 
1160 	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1161 		goto nla_put_failure;
1162 
1163 	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1164 		goto nla_put_failure;
1165 
1166 	cor.delay_corr = q->delay_cor.rho;
1167 	cor.loss_corr = q->loss_cor.rho;
1168 	cor.dup_corr = q->dup_cor.rho;
1169 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1170 		goto nla_put_failure;
1171 
1172 	reorder.probability = q->reorder;
1173 	reorder.correlation = q->reorder_cor.rho;
1174 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1175 		goto nla_put_failure;
1176 
1177 	corrupt.probability = q->corrupt;
1178 	corrupt.correlation = q->corrupt_cor.rho;
1179 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1180 		goto nla_put_failure;
1181 
1182 	if (q->rate >= (1ULL << 32)) {
1183 		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1184 				      TCA_NETEM_PAD))
1185 			goto nla_put_failure;
1186 		rate.rate = ~0U;
1187 	} else {
1188 		rate.rate = q->rate;
1189 	}
1190 	rate.packet_overhead = q->packet_overhead;
1191 	rate.cell_size = q->cell_size;
1192 	rate.cell_overhead = q->cell_overhead;
1193 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1194 		goto nla_put_failure;
1195 
1196 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1197 		goto nla_put_failure;
1198 
1199 	if (dump_loss_model(q, skb) != 0)
1200 		goto nla_put_failure;
1201 
1202 	if (q->slot_config.min_delay | q->slot_config.max_delay |
1203 	    q->slot_config.dist_jitter) {
1204 		slot = q->slot_config;
1205 		if (slot.max_packets == INT_MAX)
1206 			slot.max_packets = 0;
1207 		if (slot.max_bytes == INT_MAX)
1208 			slot.max_bytes = 0;
1209 		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1210 			goto nla_put_failure;
1211 	}
1212 
1213 	return nla_nest_end(skb, nla);
1214 
1215 nla_put_failure:
1216 	nlmsg_trim(skb, nla);
1217 	return -1;
1218 }
1219 
1220 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1221 			  struct sk_buff *skb, struct tcmsg *tcm)
1222 {
1223 	struct netem_sched_data *q = qdisc_priv(sch);
1224 
1225 	if (cl != 1 || !q->qdisc) 	/* only one class */
1226 		return -ENOENT;
1227 
1228 	tcm->tcm_handle |= TC_H_MIN(1);
1229 	tcm->tcm_info = q->qdisc->handle;
1230 
1231 	return 0;
1232 }
1233 
1234 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1235 		     struct Qdisc **old, struct netlink_ext_ack *extack)
1236 {
1237 	struct netem_sched_data *q = qdisc_priv(sch);
1238 
1239 	*old = qdisc_replace(sch, new, &q->qdisc);
1240 	return 0;
1241 }
1242 
1243 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1244 {
1245 	struct netem_sched_data *q = qdisc_priv(sch);
1246 	return q->qdisc;
1247 }
1248 
1249 static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1250 {
1251 	return 1;
1252 }
1253 
1254 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1255 {
1256 	if (!walker->stop) {
1257 		if (walker->count >= walker->skip)
1258 			if (walker->fn(sch, 1, walker) < 0) {
1259 				walker->stop = 1;
1260 				return;
1261 			}
1262 		walker->count++;
1263 	}
1264 }
1265 
1266 static const struct Qdisc_class_ops netem_class_ops = {
1267 	.graft		=	netem_graft,
1268 	.leaf		=	netem_leaf,
1269 	.find		=	netem_find,
1270 	.walk		=	netem_walk,
1271 	.dump		=	netem_dump_class,
1272 };
1273 
1274 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1275 	.id		=	"netem",
1276 	.cl_ops		=	&netem_class_ops,
1277 	.priv_size	=	sizeof(struct netem_sched_data),
1278 	.enqueue	=	netem_enqueue,
1279 	.dequeue	=	netem_dequeue,
1280 	.peek		=	qdisc_peek_dequeued,
1281 	.init		=	netem_init,
1282 	.reset		=	netem_reset,
1283 	.destroy	=	netem_destroy,
1284 	.change		=	netem_change,
1285 	.dump		=	netem_dump,
1286 	.owner		=	THIS_MODULE,
1287 };
1288 
1289 
1290 static int __init netem_module_init(void)
1291 {
1292 	pr_info("netem: version " VERSION "\n");
1293 	return register_qdisc(&netem_qdisc_ops);
1294 }
1295 static void __exit netem_module_exit(void)
1296 {
1297 	unregister_qdisc(&netem_qdisc_ops);
1298 }
1299 module_init(netem_module_init)
1300 module_exit(netem_module_exit)
1301 MODULE_LICENSE("GPL");
1302