xref: /openbmc/linux/net/sched/sch_netem.c (revision 97d0678f)
1 /*
2  * net/sched/sch_netem.c	Network emulator
3  *
4  * 		This program is free software; you can redistribute it and/or
5  * 		modify it under the terms of the GNU General Public License
6  * 		as published by the Free Software Foundation; either version
7  * 		2 of the License.
8  *
9  *  		Many of the algorithms and ideas for this came from
10  *		NIST Net which is not copyrighted.
11  *
12  * Authors:	Stephen Hemminger <shemminger@osdl.org>
13  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
27 
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
31 
32 #define VERSION "1.3"
33 
34 /*	Network Emulation Queuing algorithm.
35 	====================================
36 
37 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 		 Network Emulation Tool
39 		 [2] Luigi Rizzo, DummyNet for FreeBSD
40 
41 	 ----------------------------------------------------------------
42 
43 	 This started out as a simple way to delay outgoing packets to
44 	 test TCP but has grown to include most of the functionality
45 	 of a full blown network emulator like NISTnet. It can delay
46 	 packets and add random jitter (and correlation). The random
47 	 distribution can be loaded from a table as well to provide
48 	 normal, Pareto, or experimental curves. Packet loss,
49 	 duplication, and reordering can also be emulated.
50 
51 	 This qdisc does not do classification that can be handled in
52 	 layering other disciplines.  It does not need to do bandwidth
53 	 control either since that can be handled by using token
54 	 bucket or other rate control.
55 
56      Correlated Loss Generator models
57 
58 	Added generation of correlated loss according to the
59 	"Gilbert-Elliot" model, a 4-state markov model.
60 
61 	References:
62 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 	and intuitive loss model for packet networks and its implementation
65 	in the Netem module in the Linux kernel", available in [1]
66 
67 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
69 */
70 
71 struct netem_sched_data {
72 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 	struct rb_root t_root;
74 
75 	/* optional qdisc for classful handling (NULL at netem init) */
76 	struct Qdisc	*qdisc;
77 
78 	struct qdisc_watchdog watchdog;
79 
80 	psched_tdiff_t latency;
81 	psched_tdiff_t jitter;
82 
83 	u32 loss;
84 	u32 ecn;
85 	u32 limit;
86 	u32 counter;
87 	u32 gap;
88 	u32 duplicate;
89 	u32 reorder;
90 	u32 corrupt;
91 	u64 rate;
92 	s32 packet_overhead;
93 	u32 cell_size;
94 	struct reciprocal_value cell_size_reciprocal;
95 	s32 cell_overhead;
96 
97 	struct crndstate {
98 		u32 last;
99 		u32 rho;
100 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
101 
102 	struct disttable {
103 		u32  size;
104 		s16 table[0];
105 	} *delay_dist;
106 
107 	enum  {
108 		CLG_RANDOM,
109 		CLG_4_STATES,
110 		CLG_GILB_ELL,
111 	} loss_model;
112 
113 	enum {
114 		TX_IN_GAP_PERIOD = 1,
115 		TX_IN_BURST_PERIOD,
116 		LOST_IN_GAP_PERIOD,
117 		LOST_IN_BURST_PERIOD,
118 	} _4_state_model;
119 
120 	enum {
121 		GOOD_STATE = 1,
122 		BAD_STATE,
123 	} GE_state_model;
124 
125 	/* Correlated Loss Generation models */
126 	struct clgstate {
127 		/* state of the Markov chain */
128 		u8 state;
129 
130 		/* 4-states and Gilbert-Elliot models */
131 		u32 a1;	/* p13 for 4-states or p for GE */
132 		u32 a2;	/* p31 for 4-states or r for GE */
133 		u32 a3;	/* p32 for 4-states or h for GE */
134 		u32 a4;	/* p14 for 4-states or 1-k for GE */
135 		u32 a5; /* p23 used only in 4-states */
136 	} clg;
137 
138 };
139 
140 /* Time stamp put into socket buffer control block
141  * Only valid when skbs are in our internal t(ime)fifo queue.
142  *
143  * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
144  * and skb->next & skb->prev are scratch space for a qdisc,
145  * we save skb->tstamp value in skb->cb[] before destroying it.
146  */
147 struct netem_skb_cb {
148 	psched_time_t	time_to_send;
149 	ktime_t		tstamp_save;
150 };
151 
152 
153 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
154 {
155 	return container_of(rb, struct sk_buff, rbnode);
156 }
157 
158 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
159 {
160 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
161 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
162 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
163 }
164 
165 /* init_crandom - initialize correlated random number generator
166  * Use entropy source for initial seed.
167  */
168 static void init_crandom(struct crndstate *state, unsigned long rho)
169 {
170 	state->rho = rho;
171 	state->last = prandom_u32();
172 }
173 
174 /* get_crandom - correlated random number generator
175  * Next number depends on last value.
176  * rho is scaled to avoid floating point.
177  */
178 static u32 get_crandom(struct crndstate *state)
179 {
180 	u64 value, rho;
181 	unsigned long answer;
182 
183 	if (state->rho == 0)	/* no correlation */
184 		return prandom_u32();
185 
186 	value = prandom_u32();
187 	rho = (u64)state->rho + 1;
188 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
189 	state->last = answer;
190 	return answer;
191 }
192 
193 /* loss_4state - 4-state model loss generator
194  * Generates losses according to the 4-state Markov chain adopted in
195  * the GI (General and Intuitive) loss model.
196  */
197 static bool loss_4state(struct netem_sched_data *q)
198 {
199 	struct clgstate *clg = &q->clg;
200 	u32 rnd = prandom_u32();
201 
202 	/*
203 	 * Makes a comparison between rnd and the transition
204 	 * probabilities outgoing from the current state, then decides the
205 	 * next state and if the next packet has to be transmitted or lost.
206 	 * The four states correspond to:
207 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
208 	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
209 	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
210 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
211 	 */
212 	switch (clg->state) {
213 	case TX_IN_GAP_PERIOD:
214 		if (rnd < clg->a4) {
215 			clg->state = LOST_IN_BURST_PERIOD;
216 			return true;
217 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
218 			clg->state = LOST_IN_GAP_PERIOD;
219 			return true;
220 		} else if (clg->a1 + clg->a4 < rnd) {
221 			clg->state = TX_IN_GAP_PERIOD;
222 		}
223 
224 		break;
225 	case TX_IN_BURST_PERIOD:
226 		if (rnd < clg->a5) {
227 			clg->state = LOST_IN_GAP_PERIOD;
228 			return true;
229 		} else {
230 			clg->state = TX_IN_BURST_PERIOD;
231 		}
232 
233 		break;
234 	case LOST_IN_GAP_PERIOD:
235 		if (rnd < clg->a3)
236 			clg->state = TX_IN_BURST_PERIOD;
237 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
238 			clg->state = TX_IN_GAP_PERIOD;
239 		} else if (clg->a2 + clg->a3 < rnd) {
240 			clg->state = LOST_IN_GAP_PERIOD;
241 			return true;
242 		}
243 		break;
244 	case LOST_IN_BURST_PERIOD:
245 		clg->state = TX_IN_GAP_PERIOD;
246 		break;
247 	}
248 
249 	return false;
250 }
251 
252 /* loss_gilb_ell - Gilbert-Elliot model loss generator
253  * Generates losses according to the Gilbert-Elliot loss model or
254  * its special cases  (Gilbert or Simple Gilbert)
255  *
256  * Makes a comparison between random number and the transition
257  * probabilities outgoing from the current state, then decides the
258  * next state. A second random number is extracted and the comparison
259  * with the loss probability of the current state decides if the next
260  * packet will be transmitted or lost.
261  */
262 static bool loss_gilb_ell(struct netem_sched_data *q)
263 {
264 	struct clgstate *clg = &q->clg;
265 
266 	switch (clg->state) {
267 	case GOOD_STATE:
268 		if (prandom_u32() < clg->a1)
269 			clg->state = BAD_STATE;
270 		if (prandom_u32() < clg->a4)
271 			return true;
272 		break;
273 	case BAD_STATE:
274 		if (prandom_u32() < clg->a2)
275 			clg->state = GOOD_STATE;
276 		if (prandom_u32() > clg->a3)
277 			return true;
278 	}
279 
280 	return false;
281 }
282 
283 static bool loss_event(struct netem_sched_data *q)
284 {
285 	switch (q->loss_model) {
286 	case CLG_RANDOM:
287 		/* Random packet drop 0 => none, ~0 => all */
288 		return q->loss && q->loss >= get_crandom(&q->loss_cor);
289 
290 	case CLG_4_STATES:
291 		/* 4state loss model algorithm (used also for GI model)
292 		* Extracts a value from the markov 4 state loss generator,
293 		* if it is 1 drops a packet and if needed writes the event in
294 		* the kernel logs
295 		*/
296 		return loss_4state(q);
297 
298 	case CLG_GILB_ELL:
299 		/* Gilbert-Elliot loss model algorithm
300 		* Extracts a value from the Gilbert-Elliot loss generator,
301 		* if it is 1 drops a packet and if needed writes the event in
302 		* the kernel logs
303 		*/
304 		return loss_gilb_ell(q);
305 	}
306 
307 	return false;	/* not reached */
308 }
309 
310 
311 /* tabledist - return a pseudo-randomly distributed value with mean mu and
312  * std deviation sigma.  Uses table lookup to approximate the desired
313  * distribution, and a uniformly-distributed pseudo-random source.
314  */
315 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
316 				struct crndstate *state,
317 				const struct disttable *dist)
318 {
319 	psched_tdiff_t x;
320 	long t;
321 	u32 rnd;
322 
323 	if (sigma == 0)
324 		return mu;
325 
326 	rnd = get_crandom(state);
327 
328 	/* default uniform distribution */
329 	if (dist == NULL)
330 		return (rnd % (2*sigma)) - sigma + mu;
331 
332 	t = dist->table[rnd % dist->size];
333 	x = (sigma % NETEM_DIST_SCALE) * t;
334 	if (x >= 0)
335 		x += NETEM_DIST_SCALE/2;
336 	else
337 		x -= NETEM_DIST_SCALE/2;
338 
339 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
340 }
341 
342 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
343 {
344 	u64 ticks;
345 
346 	len += q->packet_overhead;
347 
348 	if (q->cell_size) {
349 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
350 
351 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
352 			cells++;
353 		len = cells * (q->cell_size + q->cell_overhead);
354 	}
355 
356 	ticks = (u64)len * NSEC_PER_SEC;
357 
358 	do_div(ticks, q->rate);
359 	return PSCHED_NS2TICKS(ticks);
360 }
361 
362 static void tfifo_reset(struct Qdisc *sch)
363 {
364 	struct netem_sched_data *q = qdisc_priv(sch);
365 	struct rb_node *p;
366 
367 	while ((p = rb_first(&q->t_root))) {
368 		struct sk_buff *skb = netem_rb_to_skb(p);
369 
370 		rb_erase(p, &q->t_root);
371 		rtnl_kfree_skbs(skb, skb);
372 	}
373 }
374 
375 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
376 {
377 	struct netem_sched_data *q = qdisc_priv(sch);
378 	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
379 	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
380 
381 	while (*p) {
382 		struct sk_buff *skb;
383 
384 		parent = *p;
385 		skb = netem_rb_to_skb(parent);
386 		if (tnext >= netem_skb_cb(skb)->time_to_send)
387 			p = &parent->rb_right;
388 		else
389 			p = &parent->rb_left;
390 	}
391 	rb_link_node(&nskb->rbnode, parent, p);
392 	rb_insert_color(&nskb->rbnode, &q->t_root);
393 	sch->q.qlen++;
394 }
395 
396 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
397  * when we statistically choose to corrupt one, we instead segment it, returning
398  * the first packet to be corrupted, and re-enqueue the remaining frames
399  */
400 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
401 				     struct sk_buff **to_free)
402 {
403 	struct sk_buff *segs;
404 	netdev_features_t features = netif_skb_features(skb);
405 
406 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
407 
408 	if (IS_ERR_OR_NULL(segs)) {
409 		qdisc_drop(skb, sch, to_free);
410 		return NULL;
411 	}
412 	consume_skb(skb);
413 	return segs;
414 }
415 
416 /*
417  * Insert one skb into qdisc.
418  * Note: parent depends on return value to account for queue length.
419  * 	NET_XMIT_DROP: queue length didn't change.
420  *      NET_XMIT_SUCCESS: one skb was queued.
421  */
422 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
423 			 struct sk_buff **to_free)
424 {
425 	struct netem_sched_data *q = qdisc_priv(sch);
426 	/* We don't fill cb now as skb_unshare() may invalidate it */
427 	struct netem_skb_cb *cb;
428 	struct sk_buff *skb2;
429 	struct sk_buff *segs = NULL;
430 	unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb);
431 	int nb = 0;
432 	int count = 1;
433 	int rc = NET_XMIT_SUCCESS;
434 
435 	/* Random duplication */
436 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
437 		++count;
438 
439 	/* Drop packet? */
440 	if (loss_event(q)) {
441 		if (q->ecn && INET_ECN_set_ce(skb))
442 			qdisc_qstats_drop(sch); /* mark packet */
443 		else
444 			--count;
445 	}
446 	if (count == 0) {
447 		qdisc_qstats_drop(sch);
448 		__qdisc_drop(skb, to_free);
449 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
450 	}
451 
452 	/* If a delay is expected, orphan the skb. (orphaning usually takes
453 	 * place at TX completion time, so _before_ the link transit delay)
454 	 */
455 	if (q->latency || q->jitter)
456 		skb_orphan_partial(skb);
457 
458 	/*
459 	 * If we need to duplicate packet, then re-insert at top of the
460 	 * qdisc tree, since parent queuer expects that only one
461 	 * skb will be queued.
462 	 */
463 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
464 		struct Qdisc *rootq = qdisc_root(sch);
465 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
466 
467 		q->duplicate = 0;
468 		rootq->enqueue(skb2, rootq, to_free);
469 		q->duplicate = dupsave;
470 	}
471 
472 	/*
473 	 * Randomized packet corruption.
474 	 * Make copy if needed since we are modifying
475 	 * If packet is going to be hardware checksummed, then
476 	 * do it now in software before we mangle it.
477 	 */
478 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
479 		if (skb_is_gso(skb)) {
480 			segs = netem_segment(skb, sch, to_free);
481 			if (!segs)
482 				return NET_XMIT_DROP;
483 		} else {
484 			segs = skb;
485 		}
486 
487 		skb = segs;
488 		segs = segs->next;
489 
490 		skb = skb_unshare(skb, GFP_ATOMIC);
491 		if (unlikely(!skb)) {
492 			qdisc_qstats_drop(sch);
493 			goto finish_segs;
494 		}
495 		if (skb->ip_summed == CHECKSUM_PARTIAL &&
496 		    skb_checksum_help(skb)) {
497 			qdisc_drop(skb, sch, to_free);
498 			goto finish_segs;
499 		}
500 
501 		skb->data[prandom_u32() % skb_headlen(skb)] ^=
502 			1<<(prandom_u32() % 8);
503 	}
504 
505 	if (unlikely(sch->q.qlen >= sch->limit))
506 		return qdisc_drop(skb, sch, to_free);
507 
508 	qdisc_qstats_backlog_inc(sch, skb);
509 
510 	cb = netem_skb_cb(skb);
511 	if (q->gap == 0 ||		/* not doing reordering */
512 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
513 	    q->reorder < get_crandom(&q->reorder_cor)) {
514 		psched_time_t now;
515 		psched_tdiff_t delay;
516 
517 		delay = tabledist(q->latency, q->jitter,
518 				  &q->delay_cor, q->delay_dist);
519 
520 		now = psched_get_time();
521 
522 		if (q->rate) {
523 			struct sk_buff *last;
524 
525 			if (sch->q.qlen)
526 				last = skb_peek_tail(&sch->q);
527 			else
528 				last = netem_rb_to_skb(rb_last(&q->t_root));
529 			if (last) {
530 				/*
531 				 * Last packet in queue is reference point (now),
532 				 * calculate this time bonus and subtract
533 				 * from delay.
534 				 */
535 				delay -= netem_skb_cb(last)->time_to_send - now;
536 				delay = max_t(psched_tdiff_t, 0, delay);
537 				now = netem_skb_cb(last)->time_to_send;
538 			}
539 
540 			delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
541 		}
542 
543 		cb->time_to_send = now + delay;
544 		cb->tstamp_save = skb->tstamp;
545 		++q->counter;
546 		tfifo_enqueue(skb, sch);
547 	} else {
548 		/*
549 		 * Do re-ordering by putting one out of N packets at the front
550 		 * of the queue.
551 		 */
552 		cb->time_to_send = psched_get_time();
553 		q->counter = 0;
554 
555 		__skb_queue_head(&sch->q, skb);
556 		sch->qstats.requeues++;
557 	}
558 
559 finish_segs:
560 	if (segs) {
561 		while (segs) {
562 			skb2 = segs->next;
563 			segs->next = NULL;
564 			qdisc_skb_cb(segs)->pkt_len = segs->len;
565 			last_len = segs->len;
566 			rc = qdisc_enqueue(segs, sch, to_free);
567 			if (rc != NET_XMIT_SUCCESS) {
568 				if (net_xmit_drop_count(rc))
569 					qdisc_qstats_drop(sch);
570 			} else {
571 				nb++;
572 				len += last_len;
573 			}
574 			segs = skb2;
575 		}
576 		sch->q.qlen += nb;
577 		if (nb > 1)
578 			qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
579 	}
580 	return NET_XMIT_SUCCESS;
581 }
582 
583 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
584 {
585 	struct netem_sched_data *q = qdisc_priv(sch);
586 	struct sk_buff *skb;
587 	struct rb_node *p;
588 
589 tfifo_dequeue:
590 	skb = __skb_dequeue(&sch->q);
591 	if (skb) {
592 		qdisc_qstats_backlog_dec(sch, skb);
593 deliver:
594 		qdisc_bstats_update(sch, skb);
595 		return skb;
596 	}
597 	p = rb_first(&q->t_root);
598 	if (p) {
599 		psched_time_t time_to_send;
600 
601 		skb = netem_rb_to_skb(p);
602 
603 		/* if more time remaining? */
604 		time_to_send = netem_skb_cb(skb)->time_to_send;
605 		if (time_to_send <= psched_get_time()) {
606 			rb_erase(p, &q->t_root);
607 
608 			sch->q.qlen--;
609 			qdisc_qstats_backlog_dec(sch, skb);
610 			skb->next = NULL;
611 			skb->prev = NULL;
612 			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
613 
614 #ifdef CONFIG_NET_CLS_ACT
615 			/*
616 			 * If it's at ingress let's pretend the delay is
617 			 * from the network (tstamp will be updated).
618 			 */
619 			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
620 				skb->tstamp.tv64 = 0;
621 #endif
622 
623 			if (q->qdisc) {
624 				unsigned int pkt_len = qdisc_pkt_len(skb);
625 				struct sk_buff *to_free = NULL;
626 				int err;
627 
628 				err = qdisc_enqueue(skb, q->qdisc, &to_free);
629 				kfree_skb_list(to_free);
630 				if (err != NET_XMIT_SUCCESS &&
631 				    net_xmit_drop_count(err)) {
632 					qdisc_qstats_drop(sch);
633 					qdisc_tree_reduce_backlog(sch, 1,
634 								  pkt_len);
635 				}
636 				goto tfifo_dequeue;
637 			}
638 			goto deliver;
639 		}
640 
641 		if (q->qdisc) {
642 			skb = q->qdisc->ops->dequeue(q->qdisc);
643 			if (skb)
644 				goto deliver;
645 		}
646 		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
647 	}
648 
649 	if (q->qdisc) {
650 		skb = q->qdisc->ops->dequeue(q->qdisc);
651 		if (skb)
652 			goto deliver;
653 	}
654 	return NULL;
655 }
656 
657 static void netem_reset(struct Qdisc *sch)
658 {
659 	struct netem_sched_data *q = qdisc_priv(sch);
660 
661 	qdisc_reset_queue(sch);
662 	tfifo_reset(sch);
663 	if (q->qdisc)
664 		qdisc_reset(q->qdisc);
665 	qdisc_watchdog_cancel(&q->watchdog);
666 }
667 
668 static void dist_free(struct disttable *d)
669 {
670 	kvfree(d);
671 }
672 
673 /*
674  * Distribution data is a variable size payload containing
675  * signed 16 bit values.
676  */
677 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
678 {
679 	struct netem_sched_data *q = qdisc_priv(sch);
680 	size_t n = nla_len(attr)/sizeof(__s16);
681 	const __s16 *data = nla_data(attr);
682 	spinlock_t *root_lock;
683 	struct disttable *d;
684 	int i;
685 	size_t s;
686 
687 	if (n > NETEM_DIST_MAX)
688 		return -EINVAL;
689 
690 	s = sizeof(struct disttable) + n * sizeof(s16);
691 	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
692 	if (!d)
693 		d = vmalloc(s);
694 	if (!d)
695 		return -ENOMEM;
696 
697 	d->size = n;
698 	for (i = 0; i < n; i++)
699 		d->table[i] = data[i];
700 
701 	root_lock = qdisc_root_sleeping_lock(sch);
702 
703 	spin_lock_bh(root_lock);
704 	swap(q->delay_dist, d);
705 	spin_unlock_bh(root_lock);
706 
707 	dist_free(d);
708 	return 0;
709 }
710 
711 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
712 {
713 	const struct tc_netem_corr *c = nla_data(attr);
714 
715 	init_crandom(&q->delay_cor, c->delay_corr);
716 	init_crandom(&q->loss_cor, c->loss_corr);
717 	init_crandom(&q->dup_cor, c->dup_corr);
718 }
719 
720 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
721 {
722 	const struct tc_netem_reorder *r = nla_data(attr);
723 
724 	q->reorder = r->probability;
725 	init_crandom(&q->reorder_cor, r->correlation);
726 }
727 
728 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
729 {
730 	const struct tc_netem_corrupt *r = nla_data(attr);
731 
732 	q->corrupt = r->probability;
733 	init_crandom(&q->corrupt_cor, r->correlation);
734 }
735 
736 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
737 {
738 	const struct tc_netem_rate *r = nla_data(attr);
739 
740 	q->rate = r->rate;
741 	q->packet_overhead = r->packet_overhead;
742 	q->cell_size = r->cell_size;
743 	q->cell_overhead = r->cell_overhead;
744 	if (q->cell_size)
745 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
746 	else
747 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
748 }
749 
750 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
751 {
752 	const struct nlattr *la;
753 	int rem;
754 
755 	nla_for_each_nested(la, attr, rem) {
756 		u16 type = nla_type(la);
757 
758 		switch (type) {
759 		case NETEM_LOSS_GI: {
760 			const struct tc_netem_gimodel *gi = nla_data(la);
761 
762 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
763 				pr_info("netem: incorrect gi model size\n");
764 				return -EINVAL;
765 			}
766 
767 			q->loss_model = CLG_4_STATES;
768 
769 			q->clg.state = TX_IN_GAP_PERIOD;
770 			q->clg.a1 = gi->p13;
771 			q->clg.a2 = gi->p31;
772 			q->clg.a3 = gi->p32;
773 			q->clg.a4 = gi->p14;
774 			q->clg.a5 = gi->p23;
775 			break;
776 		}
777 
778 		case NETEM_LOSS_GE: {
779 			const struct tc_netem_gemodel *ge = nla_data(la);
780 
781 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
782 				pr_info("netem: incorrect ge model size\n");
783 				return -EINVAL;
784 			}
785 
786 			q->loss_model = CLG_GILB_ELL;
787 			q->clg.state = GOOD_STATE;
788 			q->clg.a1 = ge->p;
789 			q->clg.a2 = ge->r;
790 			q->clg.a3 = ge->h;
791 			q->clg.a4 = ge->k1;
792 			break;
793 		}
794 
795 		default:
796 			pr_info("netem: unknown loss type %u\n", type);
797 			return -EINVAL;
798 		}
799 	}
800 
801 	return 0;
802 }
803 
804 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
805 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
806 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
807 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
808 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
809 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
810 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
811 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
812 };
813 
814 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
815 		      const struct nla_policy *policy, int len)
816 {
817 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
818 
819 	if (nested_len < 0) {
820 		pr_info("netem: invalid attributes len %d\n", nested_len);
821 		return -EINVAL;
822 	}
823 
824 	if (nested_len >= nla_attr_size(0))
825 		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
826 				 nested_len, policy);
827 
828 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
829 	return 0;
830 }
831 
832 /* Parse netlink message to set options */
833 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
834 {
835 	struct netem_sched_data *q = qdisc_priv(sch);
836 	struct nlattr *tb[TCA_NETEM_MAX + 1];
837 	struct tc_netem_qopt *qopt;
838 	struct clgstate old_clg;
839 	int old_loss_model = CLG_RANDOM;
840 	int ret;
841 
842 	if (opt == NULL)
843 		return -EINVAL;
844 
845 	qopt = nla_data(opt);
846 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
847 	if (ret < 0)
848 		return ret;
849 
850 	/* backup q->clg and q->loss_model */
851 	old_clg = q->clg;
852 	old_loss_model = q->loss_model;
853 
854 	if (tb[TCA_NETEM_LOSS]) {
855 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
856 		if (ret) {
857 			q->loss_model = old_loss_model;
858 			return ret;
859 		}
860 	} else {
861 		q->loss_model = CLG_RANDOM;
862 	}
863 
864 	if (tb[TCA_NETEM_DELAY_DIST]) {
865 		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
866 		if (ret) {
867 			/* recover clg and loss_model, in case of
868 			 * q->clg and q->loss_model were modified
869 			 * in get_loss_clg()
870 			 */
871 			q->clg = old_clg;
872 			q->loss_model = old_loss_model;
873 			return ret;
874 		}
875 	}
876 
877 	sch->limit = qopt->limit;
878 
879 	q->latency = qopt->latency;
880 	q->jitter = qopt->jitter;
881 	q->limit = qopt->limit;
882 	q->gap = qopt->gap;
883 	q->counter = 0;
884 	q->loss = qopt->loss;
885 	q->duplicate = qopt->duplicate;
886 
887 	/* for compatibility with earlier versions.
888 	 * if gap is set, need to assume 100% probability
889 	 */
890 	if (q->gap)
891 		q->reorder = ~0;
892 
893 	if (tb[TCA_NETEM_CORR])
894 		get_correlation(q, tb[TCA_NETEM_CORR]);
895 
896 	if (tb[TCA_NETEM_REORDER])
897 		get_reorder(q, tb[TCA_NETEM_REORDER]);
898 
899 	if (tb[TCA_NETEM_CORRUPT])
900 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
901 
902 	if (tb[TCA_NETEM_RATE])
903 		get_rate(q, tb[TCA_NETEM_RATE]);
904 
905 	if (tb[TCA_NETEM_RATE64])
906 		q->rate = max_t(u64, q->rate,
907 				nla_get_u64(tb[TCA_NETEM_RATE64]));
908 
909 	if (tb[TCA_NETEM_ECN])
910 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
911 
912 	return ret;
913 }
914 
915 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
916 {
917 	struct netem_sched_data *q = qdisc_priv(sch);
918 	int ret;
919 
920 	if (!opt)
921 		return -EINVAL;
922 
923 	qdisc_watchdog_init(&q->watchdog, sch);
924 
925 	q->loss_model = CLG_RANDOM;
926 	ret = netem_change(sch, opt);
927 	if (ret)
928 		pr_info("netem: change failed\n");
929 	return ret;
930 }
931 
932 static void netem_destroy(struct Qdisc *sch)
933 {
934 	struct netem_sched_data *q = qdisc_priv(sch);
935 
936 	qdisc_watchdog_cancel(&q->watchdog);
937 	if (q->qdisc)
938 		qdisc_destroy(q->qdisc);
939 	dist_free(q->delay_dist);
940 }
941 
942 static int dump_loss_model(const struct netem_sched_data *q,
943 			   struct sk_buff *skb)
944 {
945 	struct nlattr *nest;
946 
947 	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
948 	if (nest == NULL)
949 		goto nla_put_failure;
950 
951 	switch (q->loss_model) {
952 	case CLG_RANDOM:
953 		/* legacy loss model */
954 		nla_nest_cancel(skb, nest);
955 		return 0;	/* no data */
956 
957 	case CLG_4_STATES: {
958 		struct tc_netem_gimodel gi = {
959 			.p13 = q->clg.a1,
960 			.p31 = q->clg.a2,
961 			.p32 = q->clg.a3,
962 			.p14 = q->clg.a4,
963 			.p23 = q->clg.a5,
964 		};
965 
966 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
967 			goto nla_put_failure;
968 		break;
969 	}
970 	case CLG_GILB_ELL: {
971 		struct tc_netem_gemodel ge = {
972 			.p = q->clg.a1,
973 			.r = q->clg.a2,
974 			.h = q->clg.a3,
975 			.k1 = q->clg.a4,
976 		};
977 
978 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
979 			goto nla_put_failure;
980 		break;
981 	}
982 	}
983 
984 	nla_nest_end(skb, nest);
985 	return 0;
986 
987 nla_put_failure:
988 	nla_nest_cancel(skb, nest);
989 	return -1;
990 }
991 
992 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
993 {
994 	const struct netem_sched_data *q = qdisc_priv(sch);
995 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
996 	struct tc_netem_qopt qopt;
997 	struct tc_netem_corr cor;
998 	struct tc_netem_reorder reorder;
999 	struct tc_netem_corrupt corrupt;
1000 	struct tc_netem_rate rate;
1001 
1002 	qopt.latency = q->latency;
1003 	qopt.jitter = q->jitter;
1004 	qopt.limit = q->limit;
1005 	qopt.loss = q->loss;
1006 	qopt.gap = q->gap;
1007 	qopt.duplicate = q->duplicate;
1008 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1009 		goto nla_put_failure;
1010 
1011 	cor.delay_corr = q->delay_cor.rho;
1012 	cor.loss_corr = q->loss_cor.rho;
1013 	cor.dup_corr = q->dup_cor.rho;
1014 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1015 		goto nla_put_failure;
1016 
1017 	reorder.probability = q->reorder;
1018 	reorder.correlation = q->reorder_cor.rho;
1019 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1020 		goto nla_put_failure;
1021 
1022 	corrupt.probability = q->corrupt;
1023 	corrupt.correlation = q->corrupt_cor.rho;
1024 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1025 		goto nla_put_failure;
1026 
1027 	if (q->rate >= (1ULL << 32)) {
1028 		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1029 				      TCA_NETEM_PAD))
1030 			goto nla_put_failure;
1031 		rate.rate = ~0U;
1032 	} else {
1033 		rate.rate = q->rate;
1034 	}
1035 	rate.packet_overhead = q->packet_overhead;
1036 	rate.cell_size = q->cell_size;
1037 	rate.cell_overhead = q->cell_overhead;
1038 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1039 		goto nla_put_failure;
1040 
1041 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1042 		goto nla_put_failure;
1043 
1044 	if (dump_loss_model(q, skb) != 0)
1045 		goto nla_put_failure;
1046 
1047 	return nla_nest_end(skb, nla);
1048 
1049 nla_put_failure:
1050 	nlmsg_trim(skb, nla);
1051 	return -1;
1052 }
1053 
1054 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1055 			  struct sk_buff *skb, struct tcmsg *tcm)
1056 {
1057 	struct netem_sched_data *q = qdisc_priv(sch);
1058 
1059 	if (cl != 1 || !q->qdisc) 	/* only one class */
1060 		return -ENOENT;
1061 
1062 	tcm->tcm_handle |= TC_H_MIN(1);
1063 	tcm->tcm_info = q->qdisc->handle;
1064 
1065 	return 0;
1066 }
1067 
1068 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1069 		     struct Qdisc **old)
1070 {
1071 	struct netem_sched_data *q = qdisc_priv(sch);
1072 
1073 	*old = qdisc_replace(sch, new, &q->qdisc);
1074 	return 0;
1075 }
1076 
1077 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1078 {
1079 	struct netem_sched_data *q = qdisc_priv(sch);
1080 	return q->qdisc;
1081 }
1082 
1083 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1084 {
1085 	return 1;
1086 }
1087 
1088 static void netem_put(struct Qdisc *sch, unsigned long arg)
1089 {
1090 }
1091 
1092 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1093 {
1094 	if (!walker->stop) {
1095 		if (walker->count >= walker->skip)
1096 			if (walker->fn(sch, 1, walker) < 0) {
1097 				walker->stop = 1;
1098 				return;
1099 			}
1100 		walker->count++;
1101 	}
1102 }
1103 
1104 static const struct Qdisc_class_ops netem_class_ops = {
1105 	.graft		=	netem_graft,
1106 	.leaf		=	netem_leaf,
1107 	.get		=	netem_get,
1108 	.put		=	netem_put,
1109 	.walk		=	netem_walk,
1110 	.dump		=	netem_dump_class,
1111 };
1112 
1113 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1114 	.id		=	"netem",
1115 	.cl_ops		=	&netem_class_ops,
1116 	.priv_size	=	sizeof(struct netem_sched_data),
1117 	.enqueue	=	netem_enqueue,
1118 	.dequeue	=	netem_dequeue,
1119 	.peek		=	qdisc_peek_dequeued,
1120 	.init		=	netem_init,
1121 	.reset		=	netem_reset,
1122 	.destroy	=	netem_destroy,
1123 	.change		=	netem_change,
1124 	.dump		=	netem_dump,
1125 	.owner		=	THIS_MODULE,
1126 };
1127 
1128 
1129 static int __init netem_module_init(void)
1130 {
1131 	pr_info("netem: version " VERSION "\n");
1132 	return register_qdisc(&netem_qdisc_ops);
1133 }
1134 static void __exit netem_module_exit(void)
1135 {
1136 	unregister_qdisc(&netem_qdisc_ops);
1137 }
1138 module_init(netem_module_init)
1139 module_exit(netem_module_exit)
1140 MODULE_LICENSE("GPL");
1141