xref: /openbmc/linux/net/sched/sch_netem.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sched/sch_netem.c	Network emulator
4  *
5  *  		Many of the algorithms and ideas for this came from
6  *		NIST Net which is not copyrighted.
7  *
8  * Authors:	Stephen Hemminger <shemminger@osdl.org>
9  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/skbuff.h>
19 #include <linux/vmalloc.h>
20 #include <linux/rtnetlink.h>
21 #include <linux/reciprocal_div.h>
22 #include <linux/rbtree.h>
23 
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
26 #include <net/inet_ecn.h>
27 
28 #define VERSION "1.3"
29 
30 /*	Network Emulation Queuing algorithm.
31 	====================================
32 
33 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
34 		 Network Emulation Tool
35 		 [2] Luigi Rizzo, DummyNet for FreeBSD
36 
37 	 ----------------------------------------------------------------
38 
39 	 This started out as a simple way to delay outgoing packets to
40 	 test TCP but has grown to include most of the functionality
41 	 of a full blown network emulator like NISTnet. It can delay
42 	 packets and add random jitter (and correlation). The random
43 	 distribution can be loaded from a table as well to provide
44 	 normal, Pareto, or experimental curves. Packet loss,
45 	 duplication, and reordering can also be emulated.
46 
47 	 This qdisc does not do classification that can be handled in
48 	 layering other disciplines.  It does not need to do bandwidth
49 	 control either since that can be handled by using token
50 	 bucket or other rate control.
51 
52      Correlated Loss Generator models
53 
54 	Added generation of correlated loss according to the
55 	"Gilbert-Elliot" model, a 4-state markov model.
56 
57 	References:
58 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
59 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
60 	and intuitive loss model for packet networks and its implementation
61 	in the Netem module in the Linux kernel", available in [1]
62 
63 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
64 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
65 */
66 
67 struct disttable {
68 	u32  size;
69 	s16 table[0];
70 };
71 
72 struct netem_sched_data {
73 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
74 	struct rb_root t_root;
75 
76 	/* a linear queue; reduces rbtree rebalancing when jitter is low */
77 	struct sk_buff	*t_head;
78 	struct sk_buff	*t_tail;
79 
80 	/* optional qdisc for classful handling (NULL at netem init) */
81 	struct Qdisc	*qdisc;
82 
83 	struct qdisc_watchdog watchdog;
84 
85 	s64 latency;
86 	s64 jitter;
87 
88 	u32 loss;
89 	u32 ecn;
90 	u32 limit;
91 	u32 counter;
92 	u32 gap;
93 	u32 duplicate;
94 	u32 reorder;
95 	u32 corrupt;
96 	u64 rate;
97 	s32 packet_overhead;
98 	u32 cell_size;
99 	struct reciprocal_value cell_size_reciprocal;
100 	s32 cell_overhead;
101 
102 	struct crndstate {
103 		u32 last;
104 		u32 rho;
105 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
106 
107 	struct disttable *delay_dist;
108 
109 	enum  {
110 		CLG_RANDOM,
111 		CLG_4_STATES,
112 		CLG_GILB_ELL,
113 	} loss_model;
114 
115 	enum {
116 		TX_IN_GAP_PERIOD = 1,
117 		TX_IN_BURST_PERIOD,
118 		LOST_IN_GAP_PERIOD,
119 		LOST_IN_BURST_PERIOD,
120 	} _4_state_model;
121 
122 	enum {
123 		GOOD_STATE = 1,
124 		BAD_STATE,
125 	} GE_state_model;
126 
127 	/* Correlated Loss Generation models */
128 	struct clgstate {
129 		/* state of the Markov chain */
130 		u8 state;
131 
132 		/* 4-states and Gilbert-Elliot models */
133 		u32 a1;	/* p13 for 4-states or p for GE */
134 		u32 a2;	/* p31 for 4-states or r for GE */
135 		u32 a3;	/* p32 for 4-states or h for GE */
136 		u32 a4;	/* p14 for 4-states or 1-k for GE */
137 		u32 a5; /* p23 used only in 4-states */
138 	} clg;
139 
140 	struct tc_netem_slot slot_config;
141 	struct slotstate {
142 		u64 slot_next;
143 		s32 packets_left;
144 		s32 bytes_left;
145 	} slot;
146 
147 	struct disttable *slot_dist;
148 };
149 
150 /* Time stamp put into socket buffer control block
151  * Only valid when skbs are in our internal t(ime)fifo queue.
152  *
153  * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
154  * and skb->next & skb->prev are scratch space for a qdisc,
155  * we save skb->tstamp value in skb->cb[] before destroying it.
156  */
157 struct netem_skb_cb {
158 	u64	        time_to_send;
159 };
160 
161 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
162 {
163 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
164 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
165 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
166 }
167 
168 /* init_crandom - initialize correlated random number generator
169  * Use entropy source for initial seed.
170  */
171 static void init_crandom(struct crndstate *state, unsigned long rho)
172 {
173 	state->rho = rho;
174 	state->last = prandom_u32();
175 }
176 
177 /* get_crandom - correlated random number generator
178  * Next number depends on last value.
179  * rho is scaled to avoid floating point.
180  */
181 static u32 get_crandom(struct crndstate *state)
182 {
183 	u64 value, rho;
184 	unsigned long answer;
185 
186 	if (!state || state->rho == 0)	/* no correlation */
187 		return prandom_u32();
188 
189 	value = prandom_u32();
190 	rho = (u64)state->rho + 1;
191 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
192 	state->last = answer;
193 	return answer;
194 }
195 
196 /* loss_4state - 4-state model loss generator
197  * Generates losses according to the 4-state Markov chain adopted in
198  * the GI (General and Intuitive) loss model.
199  */
200 static bool loss_4state(struct netem_sched_data *q)
201 {
202 	struct clgstate *clg = &q->clg;
203 	u32 rnd = prandom_u32();
204 
205 	/*
206 	 * Makes a comparison between rnd and the transition
207 	 * probabilities outgoing from the current state, then decides the
208 	 * next state and if the next packet has to be transmitted or lost.
209 	 * The four states correspond to:
210 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
211 	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
212 	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
213 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
214 	 */
215 	switch (clg->state) {
216 	case TX_IN_GAP_PERIOD:
217 		if (rnd < clg->a4) {
218 			clg->state = LOST_IN_BURST_PERIOD;
219 			return true;
220 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
221 			clg->state = LOST_IN_GAP_PERIOD;
222 			return true;
223 		} else if (clg->a1 + clg->a4 < rnd) {
224 			clg->state = TX_IN_GAP_PERIOD;
225 		}
226 
227 		break;
228 	case TX_IN_BURST_PERIOD:
229 		if (rnd < clg->a5) {
230 			clg->state = LOST_IN_GAP_PERIOD;
231 			return true;
232 		} else {
233 			clg->state = TX_IN_BURST_PERIOD;
234 		}
235 
236 		break;
237 	case LOST_IN_GAP_PERIOD:
238 		if (rnd < clg->a3)
239 			clg->state = TX_IN_BURST_PERIOD;
240 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
241 			clg->state = TX_IN_GAP_PERIOD;
242 		} else if (clg->a2 + clg->a3 < rnd) {
243 			clg->state = LOST_IN_GAP_PERIOD;
244 			return true;
245 		}
246 		break;
247 	case LOST_IN_BURST_PERIOD:
248 		clg->state = TX_IN_GAP_PERIOD;
249 		break;
250 	}
251 
252 	return false;
253 }
254 
255 /* loss_gilb_ell - Gilbert-Elliot model loss generator
256  * Generates losses according to the Gilbert-Elliot loss model or
257  * its special cases  (Gilbert or Simple Gilbert)
258  *
259  * Makes a comparison between random number and the transition
260  * probabilities outgoing from the current state, then decides the
261  * next state. A second random number is extracted and the comparison
262  * with the loss probability of the current state decides if the next
263  * packet will be transmitted or lost.
264  */
265 static bool loss_gilb_ell(struct netem_sched_data *q)
266 {
267 	struct clgstate *clg = &q->clg;
268 
269 	switch (clg->state) {
270 	case GOOD_STATE:
271 		if (prandom_u32() < clg->a1)
272 			clg->state = BAD_STATE;
273 		if (prandom_u32() < clg->a4)
274 			return true;
275 		break;
276 	case BAD_STATE:
277 		if (prandom_u32() < clg->a2)
278 			clg->state = GOOD_STATE;
279 		if (prandom_u32() > clg->a3)
280 			return true;
281 	}
282 
283 	return false;
284 }
285 
286 static bool loss_event(struct netem_sched_data *q)
287 {
288 	switch (q->loss_model) {
289 	case CLG_RANDOM:
290 		/* Random packet drop 0 => none, ~0 => all */
291 		return q->loss && q->loss >= get_crandom(&q->loss_cor);
292 
293 	case CLG_4_STATES:
294 		/* 4state loss model algorithm (used also for GI model)
295 		* Extracts a value from the markov 4 state loss generator,
296 		* if it is 1 drops a packet and if needed writes the event in
297 		* the kernel logs
298 		*/
299 		return loss_4state(q);
300 
301 	case CLG_GILB_ELL:
302 		/* Gilbert-Elliot loss model algorithm
303 		* Extracts a value from the Gilbert-Elliot loss generator,
304 		* if it is 1 drops a packet and if needed writes the event in
305 		* the kernel logs
306 		*/
307 		return loss_gilb_ell(q);
308 	}
309 
310 	return false;	/* not reached */
311 }
312 
313 
314 /* tabledist - return a pseudo-randomly distributed value with mean mu and
315  * std deviation sigma.  Uses table lookup to approximate the desired
316  * distribution, and a uniformly-distributed pseudo-random source.
317  */
318 static s64 tabledist(s64 mu, s32 sigma,
319 		     struct crndstate *state,
320 		     const struct disttable *dist)
321 {
322 	s64 x;
323 	long t;
324 	u32 rnd;
325 
326 	if (sigma == 0)
327 		return mu;
328 
329 	rnd = get_crandom(state);
330 
331 	/* default uniform distribution */
332 	if (dist == NULL)
333 		return ((rnd % (2 * sigma)) + mu) - sigma;
334 
335 	t = dist->table[rnd % dist->size];
336 	x = (sigma % NETEM_DIST_SCALE) * t;
337 	if (x >= 0)
338 		x += NETEM_DIST_SCALE/2;
339 	else
340 		x -= NETEM_DIST_SCALE/2;
341 
342 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
343 }
344 
345 static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
346 {
347 	len += q->packet_overhead;
348 
349 	if (q->cell_size) {
350 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
351 
352 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
353 			cells++;
354 		len = cells * (q->cell_size + q->cell_overhead);
355 	}
356 
357 	return div64_u64(len * NSEC_PER_SEC, q->rate);
358 }
359 
360 static void tfifo_reset(struct Qdisc *sch)
361 {
362 	struct netem_sched_data *q = qdisc_priv(sch);
363 	struct rb_node *p = rb_first(&q->t_root);
364 
365 	while (p) {
366 		struct sk_buff *skb = rb_to_skb(p);
367 
368 		p = rb_next(p);
369 		rb_erase(&skb->rbnode, &q->t_root);
370 		rtnl_kfree_skbs(skb, skb);
371 	}
372 
373 	rtnl_kfree_skbs(q->t_head, q->t_tail);
374 	q->t_head = NULL;
375 	q->t_tail = NULL;
376 }
377 
378 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
379 {
380 	struct netem_sched_data *q = qdisc_priv(sch);
381 	u64 tnext = netem_skb_cb(nskb)->time_to_send;
382 
383 	if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
384 		if (q->t_tail)
385 			q->t_tail->next = nskb;
386 		else
387 			q->t_head = nskb;
388 		q->t_tail = nskb;
389 	} else {
390 		struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
391 
392 		while (*p) {
393 			struct sk_buff *skb;
394 
395 			parent = *p;
396 			skb = rb_to_skb(parent);
397 			if (tnext >= netem_skb_cb(skb)->time_to_send)
398 				p = &parent->rb_right;
399 			else
400 				p = &parent->rb_left;
401 		}
402 		rb_link_node(&nskb->rbnode, parent, p);
403 		rb_insert_color(&nskb->rbnode, &q->t_root);
404 	}
405 	sch->q.qlen++;
406 }
407 
408 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
409  * when we statistically choose to corrupt one, we instead segment it, returning
410  * the first packet to be corrupted, and re-enqueue the remaining frames
411  */
412 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
413 				     struct sk_buff **to_free)
414 {
415 	struct sk_buff *segs;
416 	netdev_features_t features = netif_skb_features(skb);
417 
418 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
419 
420 	if (IS_ERR_OR_NULL(segs)) {
421 		qdisc_drop(skb, sch, to_free);
422 		return NULL;
423 	}
424 	consume_skb(skb);
425 	return segs;
426 }
427 
428 /*
429  * Insert one skb into qdisc.
430  * Note: parent depends on return value to account for queue length.
431  * 	NET_XMIT_DROP: queue length didn't change.
432  *      NET_XMIT_SUCCESS: one skb was queued.
433  */
434 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
435 			 struct sk_buff **to_free)
436 {
437 	struct netem_sched_data *q = qdisc_priv(sch);
438 	/* We don't fill cb now as skb_unshare() may invalidate it */
439 	struct netem_skb_cb *cb;
440 	struct sk_buff *skb2;
441 	struct sk_buff *segs = NULL;
442 	unsigned int prev_len = qdisc_pkt_len(skb);
443 	int count = 1;
444 	int rc = NET_XMIT_SUCCESS;
445 	int rc_drop = NET_XMIT_DROP;
446 
447 	/* Do not fool qdisc_drop_all() */
448 	skb->prev = NULL;
449 
450 	/* Random duplication */
451 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
452 		++count;
453 
454 	/* Drop packet? */
455 	if (loss_event(q)) {
456 		if (q->ecn && INET_ECN_set_ce(skb))
457 			qdisc_qstats_drop(sch); /* mark packet */
458 		else
459 			--count;
460 	}
461 	if (count == 0) {
462 		qdisc_qstats_drop(sch);
463 		__qdisc_drop(skb, to_free);
464 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
465 	}
466 
467 	/* If a delay is expected, orphan the skb. (orphaning usually takes
468 	 * place at TX completion time, so _before_ the link transit delay)
469 	 */
470 	if (q->latency || q->jitter || q->rate)
471 		skb_orphan_partial(skb);
472 
473 	/*
474 	 * If we need to duplicate packet, then re-insert at top of the
475 	 * qdisc tree, since parent queuer expects that only one
476 	 * skb will be queued.
477 	 */
478 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
479 		struct Qdisc *rootq = qdisc_root_bh(sch);
480 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
481 
482 		q->duplicate = 0;
483 		rootq->enqueue(skb2, rootq, to_free);
484 		q->duplicate = dupsave;
485 		rc_drop = NET_XMIT_SUCCESS;
486 	}
487 
488 	/*
489 	 * Randomized packet corruption.
490 	 * Make copy if needed since we are modifying
491 	 * If packet is going to be hardware checksummed, then
492 	 * do it now in software before we mangle it.
493 	 */
494 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
495 		if (skb_is_gso(skb)) {
496 			skb = netem_segment(skb, sch, to_free);
497 			if (!skb)
498 				return rc_drop;
499 			segs = skb->next;
500 			skb_mark_not_on_list(skb);
501 			qdisc_skb_cb(skb)->pkt_len = skb->len;
502 		}
503 
504 		skb = skb_unshare(skb, GFP_ATOMIC);
505 		if (unlikely(!skb)) {
506 			qdisc_qstats_drop(sch);
507 			goto finish_segs;
508 		}
509 		if (skb->ip_summed == CHECKSUM_PARTIAL &&
510 		    skb_checksum_help(skb)) {
511 			qdisc_drop(skb, sch, to_free);
512 			goto finish_segs;
513 		}
514 
515 		skb->data[prandom_u32() % skb_headlen(skb)] ^=
516 			1<<(prandom_u32() % 8);
517 	}
518 
519 	if (unlikely(sch->q.qlen >= sch->limit)) {
520 		/* re-link segs, so that qdisc_drop_all() frees them all */
521 		skb->next = segs;
522 		qdisc_drop_all(skb, sch, to_free);
523 		return rc_drop;
524 	}
525 
526 	qdisc_qstats_backlog_inc(sch, skb);
527 
528 	cb = netem_skb_cb(skb);
529 	if (q->gap == 0 ||		/* not doing reordering */
530 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
531 	    q->reorder < get_crandom(&q->reorder_cor)) {
532 		u64 now;
533 		s64 delay;
534 
535 		delay = tabledist(q->latency, q->jitter,
536 				  &q->delay_cor, q->delay_dist);
537 
538 		now = ktime_get_ns();
539 
540 		if (q->rate) {
541 			struct netem_skb_cb *last = NULL;
542 
543 			if (sch->q.tail)
544 				last = netem_skb_cb(sch->q.tail);
545 			if (q->t_root.rb_node) {
546 				struct sk_buff *t_skb;
547 				struct netem_skb_cb *t_last;
548 
549 				t_skb = skb_rb_last(&q->t_root);
550 				t_last = netem_skb_cb(t_skb);
551 				if (!last ||
552 				    t_last->time_to_send > last->time_to_send)
553 					last = t_last;
554 			}
555 			if (q->t_tail) {
556 				struct netem_skb_cb *t_last =
557 					netem_skb_cb(q->t_tail);
558 
559 				if (!last ||
560 				    t_last->time_to_send > last->time_to_send)
561 					last = t_last;
562 			}
563 
564 			if (last) {
565 				/*
566 				 * Last packet in queue is reference point (now),
567 				 * calculate this time bonus and subtract
568 				 * from delay.
569 				 */
570 				delay -= last->time_to_send - now;
571 				delay = max_t(s64, 0, delay);
572 				now = last->time_to_send;
573 			}
574 
575 			delay += packet_time_ns(qdisc_pkt_len(skb), q);
576 		}
577 
578 		cb->time_to_send = now + delay;
579 		++q->counter;
580 		tfifo_enqueue(skb, sch);
581 	} else {
582 		/*
583 		 * Do re-ordering by putting one out of N packets at the front
584 		 * of the queue.
585 		 */
586 		cb->time_to_send = ktime_get_ns();
587 		q->counter = 0;
588 
589 		__qdisc_enqueue_head(skb, &sch->q);
590 		sch->qstats.requeues++;
591 	}
592 
593 finish_segs:
594 	if (segs) {
595 		unsigned int len, last_len;
596 		int nb = 0;
597 
598 		len = skb->len;
599 
600 		while (segs) {
601 			skb2 = segs->next;
602 			skb_mark_not_on_list(segs);
603 			qdisc_skb_cb(segs)->pkt_len = segs->len;
604 			last_len = segs->len;
605 			rc = qdisc_enqueue(segs, sch, to_free);
606 			if (rc != NET_XMIT_SUCCESS) {
607 				if (net_xmit_drop_count(rc))
608 					qdisc_qstats_drop(sch);
609 			} else {
610 				nb++;
611 				len += last_len;
612 			}
613 			segs = skb2;
614 		}
615 		qdisc_tree_reduce_backlog(sch, -nb, prev_len - len);
616 	}
617 	return NET_XMIT_SUCCESS;
618 }
619 
620 /* Delay the next round with a new future slot with a
621  * correct number of bytes and packets.
622  */
623 
624 static void get_slot_next(struct netem_sched_data *q, u64 now)
625 {
626 	s64 next_delay;
627 
628 	if (!q->slot_dist)
629 		next_delay = q->slot_config.min_delay +
630 				(prandom_u32() *
631 				 (q->slot_config.max_delay -
632 				  q->slot_config.min_delay) >> 32);
633 	else
634 		next_delay = tabledist(q->slot_config.dist_delay,
635 				       (s32)(q->slot_config.dist_jitter),
636 				       NULL, q->slot_dist);
637 
638 	q->slot.slot_next = now + next_delay;
639 	q->slot.packets_left = q->slot_config.max_packets;
640 	q->slot.bytes_left = q->slot_config.max_bytes;
641 }
642 
643 static struct sk_buff *netem_peek(struct netem_sched_data *q)
644 {
645 	struct sk_buff *skb = skb_rb_first(&q->t_root);
646 	u64 t1, t2;
647 
648 	if (!skb)
649 		return q->t_head;
650 	if (!q->t_head)
651 		return skb;
652 
653 	t1 = netem_skb_cb(skb)->time_to_send;
654 	t2 = netem_skb_cb(q->t_head)->time_to_send;
655 	if (t1 < t2)
656 		return skb;
657 	return q->t_head;
658 }
659 
660 static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
661 {
662 	if (skb == q->t_head) {
663 		q->t_head = skb->next;
664 		if (!q->t_head)
665 			q->t_tail = NULL;
666 	} else {
667 		rb_erase(&skb->rbnode, &q->t_root);
668 	}
669 }
670 
671 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
672 {
673 	struct netem_sched_data *q = qdisc_priv(sch);
674 	struct sk_buff *skb;
675 
676 tfifo_dequeue:
677 	skb = __qdisc_dequeue_head(&sch->q);
678 	if (skb) {
679 		qdisc_qstats_backlog_dec(sch, skb);
680 deliver:
681 		qdisc_bstats_update(sch, skb);
682 		return skb;
683 	}
684 	skb = netem_peek(q);
685 	if (skb) {
686 		u64 time_to_send;
687 		u64 now = ktime_get_ns();
688 
689 		/* if more time remaining? */
690 		time_to_send = netem_skb_cb(skb)->time_to_send;
691 		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
692 			get_slot_next(q, now);
693 
694 		if (time_to_send <= now && q->slot.slot_next <= now) {
695 			netem_erase_head(q, skb);
696 			sch->q.qlen--;
697 			qdisc_qstats_backlog_dec(sch, skb);
698 			skb->next = NULL;
699 			skb->prev = NULL;
700 			/* skb->dev shares skb->rbnode area,
701 			 * we need to restore its value.
702 			 */
703 			skb->dev = qdisc_dev(sch);
704 
705 			if (q->slot.slot_next) {
706 				q->slot.packets_left--;
707 				q->slot.bytes_left -= qdisc_pkt_len(skb);
708 				if (q->slot.packets_left <= 0 ||
709 				    q->slot.bytes_left <= 0)
710 					get_slot_next(q, now);
711 			}
712 
713 			if (q->qdisc) {
714 				unsigned int pkt_len = qdisc_pkt_len(skb);
715 				struct sk_buff *to_free = NULL;
716 				int err;
717 
718 				err = qdisc_enqueue(skb, q->qdisc, &to_free);
719 				kfree_skb_list(to_free);
720 				if (err != NET_XMIT_SUCCESS &&
721 				    net_xmit_drop_count(err)) {
722 					qdisc_qstats_drop(sch);
723 					qdisc_tree_reduce_backlog(sch, 1,
724 								  pkt_len);
725 				}
726 				goto tfifo_dequeue;
727 			}
728 			goto deliver;
729 		}
730 
731 		if (q->qdisc) {
732 			skb = q->qdisc->ops->dequeue(q->qdisc);
733 			if (skb)
734 				goto deliver;
735 		}
736 
737 		qdisc_watchdog_schedule_ns(&q->watchdog,
738 					   max(time_to_send,
739 					       q->slot.slot_next));
740 	}
741 
742 	if (q->qdisc) {
743 		skb = q->qdisc->ops->dequeue(q->qdisc);
744 		if (skb)
745 			goto deliver;
746 	}
747 	return NULL;
748 }
749 
750 static void netem_reset(struct Qdisc *sch)
751 {
752 	struct netem_sched_data *q = qdisc_priv(sch);
753 
754 	qdisc_reset_queue(sch);
755 	tfifo_reset(sch);
756 	if (q->qdisc)
757 		qdisc_reset(q->qdisc);
758 	qdisc_watchdog_cancel(&q->watchdog);
759 }
760 
761 static void dist_free(struct disttable *d)
762 {
763 	kvfree(d);
764 }
765 
766 /*
767  * Distribution data is a variable size payload containing
768  * signed 16 bit values.
769  */
770 
771 static int get_dist_table(struct Qdisc *sch, struct disttable **tbl,
772 			  const struct nlattr *attr)
773 {
774 	size_t n = nla_len(attr)/sizeof(__s16);
775 	const __s16 *data = nla_data(attr);
776 	spinlock_t *root_lock;
777 	struct disttable *d;
778 	int i;
779 
780 	if (!n || n > NETEM_DIST_MAX)
781 		return -EINVAL;
782 
783 	d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
784 	if (!d)
785 		return -ENOMEM;
786 
787 	d->size = n;
788 	for (i = 0; i < n; i++)
789 		d->table[i] = data[i];
790 
791 	root_lock = qdisc_root_sleeping_lock(sch);
792 
793 	spin_lock_bh(root_lock);
794 	swap(*tbl, d);
795 	spin_unlock_bh(root_lock);
796 
797 	dist_free(d);
798 	return 0;
799 }
800 
801 static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
802 {
803 	const struct tc_netem_slot *c = nla_data(attr);
804 
805 	q->slot_config = *c;
806 	if (q->slot_config.max_packets == 0)
807 		q->slot_config.max_packets = INT_MAX;
808 	if (q->slot_config.max_bytes == 0)
809 		q->slot_config.max_bytes = INT_MAX;
810 	q->slot.packets_left = q->slot_config.max_packets;
811 	q->slot.bytes_left = q->slot_config.max_bytes;
812 	if (q->slot_config.min_delay | q->slot_config.max_delay |
813 	    q->slot_config.dist_jitter)
814 		q->slot.slot_next = ktime_get_ns();
815 	else
816 		q->slot.slot_next = 0;
817 }
818 
819 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
820 {
821 	const struct tc_netem_corr *c = nla_data(attr);
822 
823 	init_crandom(&q->delay_cor, c->delay_corr);
824 	init_crandom(&q->loss_cor, c->loss_corr);
825 	init_crandom(&q->dup_cor, c->dup_corr);
826 }
827 
828 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
829 {
830 	const struct tc_netem_reorder *r = nla_data(attr);
831 
832 	q->reorder = r->probability;
833 	init_crandom(&q->reorder_cor, r->correlation);
834 }
835 
836 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
837 {
838 	const struct tc_netem_corrupt *r = nla_data(attr);
839 
840 	q->corrupt = r->probability;
841 	init_crandom(&q->corrupt_cor, r->correlation);
842 }
843 
844 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
845 {
846 	const struct tc_netem_rate *r = nla_data(attr);
847 
848 	q->rate = r->rate;
849 	q->packet_overhead = r->packet_overhead;
850 	q->cell_size = r->cell_size;
851 	q->cell_overhead = r->cell_overhead;
852 	if (q->cell_size)
853 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
854 	else
855 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
856 }
857 
858 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
859 {
860 	const struct nlattr *la;
861 	int rem;
862 
863 	nla_for_each_nested(la, attr, rem) {
864 		u16 type = nla_type(la);
865 
866 		switch (type) {
867 		case NETEM_LOSS_GI: {
868 			const struct tc_netem_gimodel *gi = nla_data(la);
869 
870 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
871 				pr_info("netem: incorrect gi model size\n");
872 				return -EINVAL;
873 			}
874 
875 			q->loss_model = CLG_4_STATES;
876 
877 			q->clg.state = TX_IN_GAP_PERIOD;
878 			q->clg.a1 = gi->p13;
879 			q->clg.a2 = gi->p31;
880 			q->clg.a3 = gi->p32;
881 			q->clg.a4 = gi->p14;
882 			q->clg.a5 = gi->p23;
883 			break;
884 		}
885 
886 		case NETEM_LOSS_GE: {
887 			const struct tc_netem_gemodel *ge = nla_data(la);
888 
889 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
890 				pr_info("netem: incorrect ge model size\n");
891 				return -EINVAL;
892 			}
893 
894 			q->loss_model = CLG_GILB_ELL;
895 			q->clg.state = GOOD_STATE;
896 			q->clg.a1 = ge->p;
897 			q->clg.a2 = ge->r;
898 			q->clg.a3 = ge->h;
899 			q->clg.a4 = ge->k1;
900 			break;
901 		}
902 
903 		default:
904 			pr_info("netem: unknown loss type %u\n", type);
905 			return -EINVAL;
906 		}
907 	}
908 
909 	return 0;
910 }
911 
912 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
913 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
914 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
915 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
916 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
917 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
918 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
919 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
920 	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
921 	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
922 	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
923 };
924 
925 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
926 		      const struct nla_policy *policy, int len)
927 {
928 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
929 
930 	if (nested_len < 0) {
931 		pr_info("netem: invalid attributes len %d\n", nested_len);
932 		return -EINVAL;
933 	}
934 
935 	if (nested_len >= nla_attr_size(0))
936 		return nla_parse_deprecated(tb, maxtype,
937 					    nla_data(nla) + NLA_ALIGN(len),
938 					    nested_len, policy, NULL);
939 
940 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
941 	return 0;
942 }
943 
944 /* Parse netlink message to set options */
945 static int netem_change(struct Qdisc *sch, struct nlattr *opt,
946 			struct netlink_ext_ack *extack)
947 {
948 	struct netem_sched_data *q = qdisc_priv(sch);
949 	struct nlattr *tb[TCA_NETEM_MAX + 1];
950 	struct tc_netem_qopt *qopt;
951 	struct clgstate old_clg;
952 	int old_loss_model = CLG_RANDOM;
953 	int ret;
954 
955 	if (opt == NULL)
956 		return -EINVAL;
957 
958 	qopt = nla_data(opt);
959 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
960 	if (ret < 0)
961 		return ret;
962 
963 	/* backup q->clg and q->loss_model */
964 	old_clg = q->clg;
965 	old_loss_model = q->loss_model;
966 
967 	if (tb[TCA_NETEM_LOSS]) {
968 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
969 		if (ret) {
970 			q->loss_model = old_loss_model;
971 			return ret;
972 		}
973 	} else {
974 		q->loss_model = CLG_RANDOM;
975 	}
976 
977 	if (tb[TCA_NETEM_DELAY_DIST]) {
978 		ret = get_dist_table(sch, &q->delay_dist,
979 				     tb[TCA_NETEM_DELAY_DIST]);
980 		if (ret)
981 			goto get_table_failure;
982 	}
983 
984 	if (tb[TCA_NETEM_SLOT_DIST]) {
985 		ret = get_dist_table(sch, &q->slot_dist,
986 				     tb[TCA_NETEM_SLOT_DIST]);
987 		if (ret)
988 			goto get_table_failure;
989 	}
990 
991 	sch->limit = qopt->limit;
992 
993 	q->latency = PSCHED_TICKS2NS(qopt->latency);
994 	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
995 	q->limit = qopt->limit;
996 	q->gap = qopt->gap;
997 	q->counter = 0;
998 	q->loss = qopt->loss;
999 	q->duplicate = qopt->duplicate;
1000 
1001 	/* for compatibility with earlier versions.
1002 	 * if gap is set, need to assume 100% probability
1003 	 */
1004 	if (q->gap)
1005 		q->reorder = ~0;
1006 
1007 	if (tb[TCA_NETEM_CORR])
1008 		get_correlation(q, tb[TCA_NETEM_CORR]);
1009 
1010 	if (tb[TCA_NETEM_REORDER])
1011 		get_reorder(q, tb[TCA_NETEM_REORDER]);
1012 
1013 	if (tb[TCA_NETEM_CORRUPT])
1014 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
1015 
1016 	if (tb[TCA_NETEM_RATE])
1017 		get_rate(q, tb[TCA_NETEM_RATE]);
1018 
1019 	if (tb[TCA_NETEM_RATE64])
1020 		q->rate = max_t(u64, q->rate,
1021 				nla_get_u64(tb[TCA_NETEM_RATE64]));
1022 
1023 	if (tb[TCA_NETEM_LATENCY64])
1024 		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
1025 
1026 	if (tb[TCA_NETEM_JITTER64])
1027 		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
1028 
1029 	if (tb[TCA_NETEM_ECN])
1030 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1031 
1032 	if (tb[TCA_NETEM_SLOT])
1033 		get_slot(q, tb[TCA_NETEM_SLOT]);
1034 
1035 	return ret;
1036 
1037 get_table_failure:
1038 	/* recover clg and loss_model, in case of
1039 	 * q->clg and q->loss_model were modified
1040 	 * in get_loss_clg()
1041 	 */
1042 	q->clg = old_clg;
1043 	q->loss_model = old_loss_model;
1044 	return ret;
1045 }
1046 
1047 static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1048 		      struct netlink_ext_ack *extack)
1049 {
1050 	struct netem_sched_data *q = qdisc_priv(sch);
1051 	int ret;
1052 
1053 	qdisc_watchdog_init(&q->watchdog, sch);
1054 
1055 	if (!opt)
1056 		return -EINVAL;
1057 
1058 	q->loss_model = CLG_RANDOM;
1059 	ret = netem_change(sch, opt, extack);
1060 	if (ret)
1061 		pr_info("netem: change failed\n");
1062 	return ret;
1063 }
1064 
1065 static void netem_destroy(struct Qdisc *sch)
1066 {
1067 	struct netem_sched_data *q = qdisc_priv(sch);
1068 
1069 	qdisc_watchdog_cancel(&q->watchdog);
1070 	if (q->qdisc)
1071 		qdisc_put(q->qdisc);
1072 	dist_free(q->delay_dist);
1073 	dist_free(q->slot_dist);
1074 }
1075 
1076 static int dump_loss_model(const struct netem_sched_data *q,
1077 			   struct sk_buff *skb)
1078 {
1079 	struct nlattr *nest;
1080 
1081 	nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
1082 	if (nest == NULL)
1083 		goto nla_put_failure;
1084 
1085 	switch (q->loss_model) {
1086 	case CLG_RANDOM:
1087 		/* legacy loss model */
1088 		nla_nest_cancel(skb, nest);
1089 		return 0;	/* no data */
1090 
1091 	case CLG_4_STATES: {
1092 		struct tc_netem_gimodel gi = {
1093 			.p13 = q->clg.a1,
1094 			.p31 = q->clg.a2,
1095 			.p32 = q->clg.a3,
1096 			.p14 = q->clg.a4,
1097 			.p23 = q->clg.a5,
1098 		};
1099 
1100 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1101 			goto nla_put_failure;
1102 		break;
1103 	}
1104 	case CLG_GILB_ELL: {
1105 		struct tc_netem_gemodel ge = {
1106 			.p = q->clg.a1,
1107 			.r = q->clg.a2,
1108 			.h = q->clg.a3,
1109 			.k1 = q->clg.a4,
1110 		};
1111 
1112 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1113 			goto nla_put_failure;
1114 		break;
1115 	}
1116 	}
1117 
1118 	nla_nest_end(skb, nest);
1119 	return 0;
1120 
1121 nla_put_failure:
1122 	nla_nest_cancel(skb, nest);
1123 	return -1;
1124 }
1125 
1126 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1127 {
1128 	const struct netem_sched_data *q = qdisc_priv(sch);
1129 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1130 	struct tc_netem_qopt qopt;
1131 	struct tc_netem_corr cor;
1132 	struct tc_netem_reorder reorder;
1133 	struct tc_netem_corrupt corrupt;
1134 	struct tc_netem_rate rate;
1135 	struct tc_netem_slot slot;
1136 
1137 	qopt.latency = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->latency),
1138 			     UINT_MAX);
1139 	qopt.jitter = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->jitter),
1140 			    UINT_MAX);
1141 	qopt.limit = q->limit;
1142 	qopt.loss = q->loss;
1143 	qopt.gap = q->gap;
1144 	qopt.duplicate = q->duplicate;
1145 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1146 		goto nla_put_failure;
1147 
1148 	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1149 		goto nla_put_failure;
1150 
1151 	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1152 		goto nla_put_failure;
1153 
1154 	cor.delay_corr = q->delay_cor.rho;
1155 	cor.loss_corr = q->loss_cor.rho;
1156 	cor.dup_corr = q->dup_cor.rho;
1157 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1158 		goto nla_put_failure;
1159 
1160 	reorder.probability = q->reorder;
1161 	reorder.correlation = q->reorder_cor.rho;
1162 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1163 		goto nla_put_failure;
1164 
1165 	corrupt.probability = q->corrupt;
1166 	corrupt.correlation = q->corrupt_cor.rho;
1167 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1168 		goto nla_put_failure;
1169 
1170 	if (q->rate >= (1ULL << 32)) {
1171 		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1172 				      TCA_NETEM_PAD))
1173 			goto nla_put_failure;
1174 		rate.rate = ~0U;
1175 	} else {
1176 		rate.rate = q->rate;
1177 	}
1178 	rate.packet_overhead = q->packet_overhead;
1179 	rate.cell_size = q->cell_size;
1180 	rate.cell_overhead = q->cell_overhead;
1181 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1182 		goto nla_put_failure;
1183 
1184 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1185 		goto nla_put_failure;
1186 
1187 	if (dump_loss_model(q, skb) != 0)
1188 		goto nla_put_failure;
1189 
1190 	if (q->slot_config.min_delay | q->slot_config.max_delay |
1191 	    q->slot_config.dist_jitter) {
1192 		slot = q->slot_config;
1193 		if (slot.max_packets == INT_MAX)
1194 			slot.max_packets = 0;
1195 		if (slot.max_bytes == INT_MAX)
1196 			slot.max_bytes = 0;
1197 		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1198 			goto nla_put_failure;
1199 	}
1200 
1201 	return nla_nest_end(skb, nla);
1202 
1203 nla_put_failure:
1204 	nlmsg_trim(skb, nla);
1205 	return -1;
1206 }
1207 
1208 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1209 			  struct sk_buff *skb, struct tcmsg *tcm)
1210 {
1211 	struct netem_sched_data *q = qdisc_priv(sch);
1212 
1213 	if (cl != 1 || !q->qdisc) 	/* only one class */
1214 		return -ENOENT;
1215 
1216 	tcm->tcm_handle |= TC_H_MIN(1);
1217 	tcm->tcm_info = q->qdisc->handle;
1218 
1219 	return 0;
1220 }
1221 
1222 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1223 		     struct Qdisc **old, struct netlink_ext_ack *extack)
1224 {
1225 	struct netem_sched_data *q = qdisc_priv(sch);
1226 
1227 	*old = qdisc_replace(sch, new, &q->qdisc);
1228 	return 0;
1229 }
1230 
1231 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1232 {
1233 	struct netem_sched_data *q = qdisc_priv(sch);
1234 	return q->qdisc;
1235 }
1236 
1237 static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1238 {
1239 	return 1;
1240 }
1241 
1242 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1243 {
1244 	if (!walker->stop) {
1245 		if (walker->count >= walker->skip)
1246 			if (walker->fn(sch, 1, walker) < 0) {
1247 				walker->stop = 1;
1248 				return;
1249 			}
1250 		walker->count++;
1251 	}
1252 }
1253 
1254 static const struct Qdisc_class_ops netem_class_ops = {
1255 	.graft		=	netem_graft,
1256 	.leaf		=	netem_leaf,
1257 	.find		=	netem_find,
1258 	.walk		=	netem_walk,
1259 	.dump		=	netem_dump_class,
1260 };
1261 
1262 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1263 	.id		=	"netem",
1264 	.cl_ops		=	&netem_class_ops,
1265 	.priv_size	=	sizeof(struct netem_sched_data),
1266 	.enqueue	=	netem_enqueue,
1267 	.dequeue	=	netem_dequeue,
1268 	.peek		=	qdisc_peek_dequeued,
1269 	.init		=	netem_init,
1270 	.reset		=	netem_reset,
1271 	.destroy	=	netem_destroy,
1272 	.change		=	netem_change,
1273 	.dump		=	netem_dump,
1274 	.owner		=	THIS_MODULE,
1275 };
1276 
1277 
1278 static int __init netem_module_init(void)
1279 {
1280 	pr_info("netem: version " VERSION "\n");
1281 	return register_qdisc(&netem_qdisc_ops);
1282 }
1283 static void __exit netem_module_exit(void)
1284 {
1285 	unregister_qdisc(&netem_qdisc_ops);
1286 }
1287 module_init(netem_module_init)
1288 module_exit(netem_module_exit)
1289 MODULE_LICENSE("GPL");
1290