xref: /openbmc/linux/net/sched/sch_netem.c (revision 7fe2f639)
1 /*
2  * net/sched/sch_netem.c	Network emulator
3  *
4  * 		This program is free software; you can redistribute it and/or
5  * 		modify it under the terms of the GNU General Public License
6  * 		as published by the Free Software Foundation; either version
7  * 		2 of the License.
8  *
9  *  		Many of the algorithms and ideas for this came from
10  *		NIST Net which is not copyrighted.
11  *
12  * Authors:	Stephen Hemminger <shemminger@osdl.org>
13  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/skbuff.h>
22 #include <linux/vmalloc.h>
23 #include <linux/rtnetlink.h>
24 
25 #include <net/netlink.h>
26 #include <net/pkt_sched.h>
27 
28 #define VERSION "1.3"
29 
30 /*	Network Emulation Queuing algorithm.
31 	====================================
32 
33 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
34 		 Network Emulation Tool
35 		 [2] Luigi Rizzo, DummyNet for FreeBSD
36 
37 	 ----------------------------------------------------------------
38 
39 	 This started out as a simple way to delay outgoing packets to
40 	 test TCP but has grown to include most of the functionality
41 	 of a full blown network emulator like NISTnet. It can delay
42 	 packets and add random jitter (and correlation). The random
43 	 distribution can be loaded from a table as well to provide
44 	 normal, Pareto, or experimental curves. Packet loss,
45 	 duplication, and reordering can also be emulated.
46 
47 	 This qdisc does not do classification that can be handled in
48 	 layering other disciplines.  It does not need to do bandwidth
49 	 control either since that can be handled by using token
50 	 bucket or other rate control.
51 
52      Correlated Loss Generator models
53 
54 	Added generation of correlated loss according to the
55 	"Gilbert-Elliot" model, a 4-state markov model.
56 
57 	References:
58 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
59 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
60 	and intuitive loss model for packet networks and its implementation
61 	in the Netem module in the Linux kernel", available in [1]
62 
63 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
64 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
65 */
66 
67 struct netem_sched_data {
68 	struct Qdisc	*qdisc;
69 	struct qdisc_watchdog watchdog;
70 
71 	psched_tdiff_t latency;
72 	psched_tdiff_t jitter;
73 
74 	u32 loss;
75 	u32 limit;
76 	u32 counter;
77 	u32 gap;
78 	u32 duplicate;
79 	u32 reorder;
80 	u32 corrupt;
81 
82 	struct crndstate {
83 		u32 last;
84 		u32 rho;
85 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
86 
87 	struct disttable {
88 		u32  size;
89 		s16 table[0];
90 	} *delay_dist;
91 
92 	enum  {
93 		CLG_RANDOM,
94 		CLG_4_STATES,
95 		CLG_GILB_ELL,
96 	} loss_model;
97 
98 	/* Correlated Loss Generation models */
99 	struct clgstate {
100 		/* state of the Markov chain */
101 		u8 state;
102 
103 		/* 4-states and Gilbert-Elliot models */
104 		u32 a1;	/* p13 for 4-states or p for GE */
105 		u32 a2;	/* p31 for 4-states or r for GE */
106 		u32 a3;	/* p32 for 4-states or h for GE */
107 		u32 a4;	/* p14 for 4-states or 1-k for GE */
108 		u32 a5; /* p23 used only in 4-states */
109 	} clg;
110 
111 };
112 
113 /* Time stamp put into socket buffer control block */
114 struct netem_skb_cb {
115 	psched_time_t	time_to_send;
116 };
117 
118 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
119 {
120 	BUILD_BUG_ON(sizeof(skb->cb) <
121 		sizeof(struct qdisc_skb_cb) + sizeof(struct netem_skb_cb));
122 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
123 }
124 
125 /* init_crandom - initialize correlated random number generator
126  * Use entropy source for initial seed.
127  */
128 static void init_crandom(struct crndstate *state, unsigned long rho)
129 {
130 	state->rho = rho;
131 	state->last = net_random();
132 }
133 
134 /* get_crandom - correlated random number generator
135  * Next number depends on last value.
136  * rho is scaled to avoid floating point.
137  */
138 static u32 get_crandom(struct crndstate *state)
139 {
140 	u64 value, rho;
141 	unsigned long answer;
142 
143 	if (state->rho == 0)	/* no correlation */
144 		return net_random();
145 
146 	value = net_random();
147 	rho = (u64)state->rho + 1;
148 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
149 	state->last = answer;
150 	return answer;
151 }
152 
153 /* loss_4state - 4-state model loss generator
154  * Generates losses according to the 4-state Markov chain adopted in
155  * the GI (General and Intuitive) loss model.
156  */
157 static bool loss_4state(struct netem_sched_data *q)
158 {
159 	struct clgstate *clg = &q->clg;
160 	u32 rnd = net_random();
161 
162 	/*
163 	 * Makes a comparison between rnd and the transition
164 	 * probabilities outgoing from the current state, then decides the
165 	 * next state and if the next packet has to be transmitted or lost.
166 	 * The four states correspond to:
167 	 *   1 => successfully transmitted packets within a gap period
168 	 *   4 => isolated losses within a gap period
169 	 *   3 => lost packets within a burst period
170 	 *   2 => successfully transmitted packets within a burst period
171 	 */
172 	switch (clg->state) {
173 	case 1:
174 		if (rnd < clg->a4) {
175 			clg->state = 4;
176 			return true;
177 		} else if (clg->a4 < rnd && rnd < clg->a1) {
178 			clg->state = 3;
179 			return true;
180 		} else if (clg->a1 < rnd)
181 			clg->state = 1;
182 
183 		break;
184 	case 2:
185 		if (rnd < clg->a5) {
186 			clg->state = 3;
187 			return true;
188 		} else
189 			clg->state = 2;
190 
191 		break;
192 	case 3:
193 		if (rnd < clg->a3)
194 			clg->state = 2;
195 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
196 			clg->state = 1;
197 			return true;
198 		} else if (clg->a2 + clg->a3 < rnd) {
199 			clg->state = 3;
200 			return true;
201 		}
202 		break;
203 	case 4:
204 		clg->state = 1;
205 		break;
206 	}
207 
208 	return false;
209 }
210 
211 /* loss_gilb_ell - Gilbert-Elliot model loss generator
212  * Generates losses according to the Gilbert-Elliot loss model or
213  * its special cases  (Gilbert or Simple Gilbert)
214  *
215  * Makes a comparison between random number and the transition
216  * probabilities outgoing from the current state, then decides the
217  * next state. A second random number is extracted and the comparison
218  * with the loss probability of the current state decides if the next
219  * packet will be transmitted or lost.
220  */
221 static bool loss_gilb_ell(struct netem_sched_data *q)
222 {
223 	struct clgstate *clg = &q->clg;
224 
225 	switch (clg->state) {
226 	case 1:
227 		if (net_random() < clg->a1)
228 			clg->state = 2;
229 		if (net_random() < clg->a4)
230 			return true;
231 	case 2:
232 		if (net_random() < clg->a2)
233 			clg->state = 1;
234 		if (clg->a3 > net_random())
235 			return true;
236 	}
237 
238 	return false;
239 }
240 
241 static bool loss_event(struct netem_sched_data *q)
242 {
243 	switch (q->loss_model) {
244 	case CLG_RANDOM:
245 		/* Random packet drop 0 => none, ~0 => all */
246 		return q->loss && q->loss >= get_crandom(&q->loss_cor);
247 
248 	case CLG_4_STATES:
249 		/* 4state loss model algorithm (used also for GI model)
250 		* Extracts a value from the markov 4 state loss generator,
251 		* if it is 1 drops a packet and if needed writes the event in
252 		* the kernel logs
253 		*/
254 		return loss_4state(q);
255 
256 	case CLG_GILB_ELL:
257 		/* Gilbert-Elliot loss model algorithm
258 		* Extracts a value from the Gilbert-Elliot loss generator,
259 		* if it is 1 drops a packet and if needed writes the event in
260 		* the kernel logs
261 		*/
262 		return loss_gilb_ell(q);
263 	}
264 
265 	return false;	/* not reached */
266 }
267 
268 
269 /* tabledist - return a pseudo-randomly distributed value with mean mu and
270  * std deviation sigma.  Uses table lookup to approximate the desired
271  * distribution, and a uniformly-distributed pseudo-random source.
272  */
273 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
274 				struct crndstate *state,
275 				const struct disttable *dist)
276 {
277 	psched_tdiff_t x;
278 	long t;
279 	u32 rnd;
280 
281 	if (sigma == 0)
282 		return mu;
283 
284 	rnd = get_crandom(state);
285 
286 	/* default uniform distribution */
287 	if (dist == NULL)
288 		return (rnd % (2*sigma)) - sigma + mu;
289 
290 	t = dist->table[rnd % dist->size];
291 	x = (sigma % NETEM_DIST_SCALE) * t;
292 	if (x >= 0)
293 		x += NETEM_DIST_SCALE/2;
294 	else
295 		x -= NETEM_DIST_SCALE/2;
296 
297 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
298 }
299 
300 /*
301  * Insert one skb into qdisc.
302  * Note: parent depends on return value to account for queue length.
303  * 	NET_XMIT_DROP: queue length didn't change.
304  *      NET_XMIT_SUCCESS: one skb was queued.
305  */
306 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
307 {
308 	struct netem_sched_data *q = qdisc_priv(sch);
309 	/* We don't fill cb now as skb_unshare() may invalidate it */
310 	struct netem_skb_cb *cb;
311 	struct sk_buff *skb2;
312 	int ret;
313 	int count = 1;
314 
315 	/* Random duplication */
316 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
317 		++count;
318 
319 	/* Drop packet? */
320 	if (loss_event(q))
321 		--count;
322 
323 	if (count == 0) {
324 		sch->qstats.drops++;
325 		kfree_skb(skb);
326 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
327 	}
328 
329 	skb_orphan(skb);
330 
331 	/*
332 	 * If we need to duplicate packet, then re-insert at top of the
333 	 * qdisc tree, since parent queuer expects that only one
334 	 * skb will be queued.
335 	 */
336 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
337 		struct Qdisc *rootq = qdisc_root(sch);
338 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
339 		q->duplicate = 0;
340 
341 		qdisc_enqueue_root(skb2, rootq);
342 		q->duplicate = dupsave;
343 	}
344 
345 	/*
346 	 * Randomized packet corruption.
347 	 * Make copy if needed since we are modifying
348 	 * If packet is going to be hardware checksummed, then
349 	 * do it now in software before we mangle it.
350 	 */
351 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
352 		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
353 		    (skb->ip_summed == CHECKSUM_PARTIAL &&
354 		     skb_checksum_help(skb))) {
355 			sch->qstats.drops++;
356 			return NET_XMIT_DROP;
357 		}
358 
359 		skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8);
360 	}
361 
362 	cb = netem_skb_cb(skb);
363 	if (q->gap == 0 ||		/* not doing reordering */
364 	    q->counter < q->gap ||	/* inside last reordering gap */
365 	    q->reorder < get_crandom(&q->reorder_cor)) {
366 		psched_time_t now;
367 		psched_tdiff_t delay;
368 
369 		delay = tabledist(q->latency, q->jitter,
370 				  &q->delay_cor, q->delay_dist);
371 
372 		now = psched_get_time();
373 		cb->time_to_send = now + delay;
374 		++q->counter;
375 		ret = qdisc_enqueue(skb, q->qdisc);
376 	} else {
377 		/*
378 		 * Do re-ordering by putting one out of N packets at the front
379 		 * of the queue.
380 		 */
381 		cb->time_to_send = psched_get_time();
382 		q->counter = 0;
383 
384 		__skb_queue_head(&q->qdisc->q, skb);
385 		q->qdisc->qstats.backlog += qdisc_pkt_len(skb);
386 		q->qdisc->qstats.requeues++;
387 		ret = NET_XMIT_SUCCESS;
388 	}
389 
390 	if (ret != NET_XMIT_SUCCESS) {
391 		if (net_xmit_drop_count(ret)) {
392 			sch->qstats.drops++;
393 			return ret;
394 		}
395 	}
396 
397 	sch->q.qlen++;
398 	return NET_XMIT_SUCCESS;
399 }
400 
401 static unsigned int netem_drop(struct Qdisc *sch)
402 {
403 	struct netem_sched_data *q = qdisc_priv(sch);
404 	unsigned int len = 0;
405 
406 	if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
407 		sch->q.qlen--;
408 		sch->qstats.drops++;
409 	}
410 	return len;
411 }
412 
413 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
414 {
415 	struct netem_sched_data *q = qdisc_priv(sch);
416 	struct sk_buff *skb;
417 
418 	if (qdisc_is_throttled(sch))
419 		return NULL;
420 
421 	skb = q->qdisc->ops->peek(q->qdisc);
422 	if (skb) {
423 		const struct netem_skb_cb *cb = netem_skb_cb(skb);
424 		psched_time_t now = psched_get_time();
425 
426 		/* if more time remaining? */
427 		if (cb->time_to_send <= now) {
428 			skb = qdisc_dequeue_peeked(q->qdisc);
429 			if (unlikely(!skb))
430 				return NULL;
431 
432 #ifdef CONFIG_NET_CLS_ACT
433 			/*
434 			 * If it's at ingress let's pretend the delay is
435 			 * from the network (tstamp will be updated).
436 			 */
437 			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
438 				skb->tstamp.tv64 = 0;
439 #endif
440 
441 			sch->q.qlen--;
442 			qdisc_unthrottled(sch);
443 			qdisc_bstats_update(sch, skb);
444 			return skb;
445 		}
446 
447 		qdisc_watchdog_schedule(&q->watchdog, cb->time_to_send);
448 	}
449 
450 	return NULL;
451 }
452 
453 static void netem_reset(struct Qdisc *sch)
454 {
455 	struct netem_sched_data *q = qdisc_priv(sch);
456 
457 	qdisc_reset(q->qdisc);
458 	sch->q.qlen = 0;
459 	qdisc_watchdog_cancel(&q->watchdog);
460 }
461 
462 static void dist_free(struct disttable *d)
463 {
464 	if (d) {
465 		if (is_vmalloc_addr(d))
466 			vfree(d);
467 		else
468 			kfree(d);
469 	}
470 }
471 
472 /*
473  * Distribution data is a variable size payload containing
474  * signed 16 bit values.
475  */
476 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
477 {
478 	struct netem_sched_data *q = qdisc_priv(sch);
479 	size_t n = nla_len(attr)/sizeof(__s16);
480 	const __s16 *data = nla_data(attr);
481 	spinlock_t *root_lock;
482 	struct disttable *d;
483 	int i;
484 	size_t s;
485 
486 	if (n > NETEM_DIST_MAX)
487 		return -EINVAL;
488 
489 	s = sizeof(struct disttable) + n * sizeof(s16);
490 	d = kmalloc(s, GFP_KERNEL);
491 	if (!d)
492 		d = vmalloc(s);
493 	if (!d)
494 		return -ENOMEM;
495 
496 	d->size = n;
497 	for (i = 0; i < n; i++)
498 		d->table[i] = data[i];
499 
500 	root_lock = qdisc_root_sleeping_lock(sch);
501 
502 	spin_lock_bh(root_lock);
503 	dist_free(q->delay_dist);
504 	q->delay_dist = d;
505 	spin_unlock_bh(root_lock);
506 	return 0;
507 }
508 
509 static void get_correlation(struct Qdisc *sch, const struct nlattr *attr)
510 {
511 	struct netem_sched_data *q = qdisc_priv(sch);
512 	const struct tc_netem_corr *c = nla_data(attr);
513 
514 	init_crandom(&q->delay_cor, c->delay_corr);
515 	init_crandom(&q->loss_cor, c->loss_corr);
516 	init_crandom(&q->dup_cor, c->dup_corr);
517 }
518 
519 static void get_reorder(struct Qdisc *sch, const struct nlattr *attr)
520 {
521 	struct netem_sched_data *q = qdisc_priv(sch);
522 	const struct tc_netem_reorder *r = nla_data(attr);
523 
524 	q->reorder = r->probability;
525 	init_crandom(&q->reorder_cor, r->correlation);
526 }
527 
528 static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr)
529 {
530 	struct netem_sched_data *q = qdisc_priv(sch);
531 	const struct tc_netem_corrupt *r = nla_data(attr);
532 
533 	q->corrupt = r->probability;
534 	init_crandom(&q->corrupt_cor, r->correlation);
535 }
536 
537 static int get_loss_clg(struct Qdisc *sch, const struct nlattr *attr)
538 {
539 	struct netem_sched_data *q = qdisc_priv(sch);
540 	const struct nlattr *la;
541 	int rem;
542 
543 	nla_for_each_nested(la, attr, rem) {
544 		u16 type = nla_type(la);
545 
546 		switch(type) {
547 		case NETEM_LOSS_GI: {
548 			const struct tc_netem_gimodel *gi = nla_data(la);
549 
550 			if (nla_len(la) != sizeof(struct tc_netem_gimodel)) {
551 				pr_info("netem: incorrect gi model size\n");
552 				return -EINVAL;
553 			}
554 
555 			q->loss_model = CLG_4_STATES;
556 
557 			q->clg.state = 1;
558 			q->clg.a1 = gi->p13;
559 			q->clg.a2 = gi->p31;
560 			q->clg.a3 = gi->p32;
561 			q->clg.a4 = gi->p14;
562 			q->clg.a5 = gi->p23;
563 			break;
564 		}
565 
566 		case NETEM_LOSS_GE: {
567 			const struct tc_netem_gemodel *ge = nla_data(la);
568 
569 			if (nla_len(la) != sizeof(struct tc_netem_gemodel)) {
570 				pr_info("netem: incorrect gi model size\n");
571 				return -EINVAL;
572 			}
573 
574 			q->loss_model = CLG_GILB_ELL;
575 			q->clg.state = 1;
576 			q->clg.a1 = ge->p;
577 			q->clg.a2 = ge->r;
578 			q->clg.a3 = ge->h;
579 			q->clg.a4 = ge->k1;
580 			break;
581 		}
582 
583 		default:
584 			pr_info("netem: unknown loss type %u\n", type);
585 			return -EINVAL;
586 		}
587 	}
588 
589 	return 0;
590 }
591 
592 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
593 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
594 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
595 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
596 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
597 };
598 
599 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
600 		      const struct nla_policy *policy, int len)
601 {
602 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
603 
604 	if (nested_len < 0) {
605 		pr_info("netem: invalid attributes len %d\n", nested_len);
606 		return -EINVAL;
607 	}
608 
609 	if (nested_len >= nla_attr_size(0))
610 		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
611 				 nested_len, policy);
612 
613 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
614 	return 0;
615 }
616 
617 /* Parse netlink message to set options */
618 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
619 {
620 	struct netem_sched_data *q = qdisc_priv(sch);
621 	struct nlattr *tb[TCA_NETEM_MAX + 1];
622 	struct tc_netem_qopt *qopt;
623 	int ret;
624 
625 	if (opt == NULL)
626 		return -EINVAL;
627 
628 	qopt = nla_data(opt);
629 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
630 	if (ret < 0)
631 		return ret;
632 
633 	ret = fifo_set_limit(q->qdisc, qopt->limit);
634 	if (ret) {
635 		pr_info("netem: can't set fifo limit\n");
636 		return ret;
637 	}
638 
639 	q->latency = qopt->latency;
640 	q->jitter = qopt->jitter;
641 	q->limit = qopt->limit;
642 	q->gap = qopt->gap;
643 	q->counter = 0;
644 	q->loss = qopt->loss;
645 	q->duplicate = qopt->duplicate;
646 
647 	/* for compatibility with earlier versions.
648 	 * if gap is set, need to assume 100% probability
649 	 */
650 	if (q->gap)
651 		q->reorder = ~0;
652 
653 	if (tb[TCA_NETEM_CORR])
654 		get_correlation(sch, tb[TCA_NETEM_CORR]);
655 
656 	if (tb[TCA_NETEM_DELAY_DIST]) {
657 		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
658 		if (ret)
659 			return ret;
660 	}
661 
662 	if (tb[TCA_NETEM_REORDER])
663 		get_reorder(sch, tb[TCA_NETEM_REORDER]);
664 
665 	if (tb[TCA_NETEM_CORRUPT])
666 		get_corrupt(sch, tb[TCA_NETEM_CORRUPT]);
667 
668 	q->loss_model = CLG_RANDOM;
669 	if (tb[TCA_NETEM_LOSS])
670 		ret = get_loss_clg(sch, tb[TCA_NETEM_LOSS]);
671 
672 	return ret;
673 }
674 
675 /*
676  * Special case version of FIFO queue for use by netem.
677  * It queues in order based on timestamps in skb's
678  */
679 struct fifo_sched_data {
680 	u32 limit;
681 	psched_time_t oldest;
682 };
683 
684 static int tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
685 {
686 	struct fifo_sched_data *q = qdisc_priv(sch);
687 	struct sk_buff_head *list = &sch->q;
688 	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
689 	struct sk_buff *skb;
690 
691 	if (likely(skb_queue_len(list) < q->limit)) {
692 		/* Optimize for add at tail */
693 		if (likely(skb_queue_empty(list) || tnext >= q->oldest)) {
694 			q->oldest = tnext;
695 			return qdisc_enqueue_tail(nskb, sch);
696 		}
697 
698 		skb_queue_reverse_walk(list, skb) {
699 			const struct netem_skb_cb *cb = netem_skb_cb(skb);
700 
701 			if (tnext >= cb->time_to_send)
702 				break;
703 		}
704 
705 		__skb_queue_after(list, skb, nskb);
706 
707 		sch->qstats.backlog += qdisc_pkt_len(nskb);
708 
709 		return NET_XMIT_SUCCESS;
710 	}
711 
712 	return qdisc_reshape_fail(nskb, sch);
713 }
714 
715 static int tfifo_init(struct Qdisc *sch, struct nlattr *opt)
716 {
717 	struct fifo_sched_data *q = qdisc_priv(sch);
718 
719 	if (opt) {
720 		struct tc_fifo_qopt *ctl = nla_data(opt);
721 		if (nla_len(opt) < sizeof(*ctl))
722 			return -EINVAL;
723 
724 		q->limit = ctl->limit;
725 	} else
726 		q->limit = max_t(u32, qdisc_dev(sch)->tx_queue_len, 1);
727 
728 	q->oldest = PSCHED_PASTPERFECT;
729 	return 0;
730 }
731 
732 static int tfifo_dump(struct Qdisc *sch, struct sk_buff *skb)
733 {
734 	struct fifo_sched_data *q = qdisc_priv(sch);
735 	struct tc_fifo_qopt opt = { .limit = q->limit };
736 
737 	NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
738 	return skb->len;
739 
740 nla_put_failure:
741 	return -1;
742 }
743 
744 static struct Qdisc_ops tfifo_qdisc_ops __read_mostly = {
745 	.id		=	"tfifo",
746 	.priv_size	=	sizeof(struct fifo_sched_data),
747 	.enqueue	=	tfifo_enqueue,
748 	.dequeue	=	qdisc_dequeue_head,
749 	.peek		=	qdisc_peek_head,
750 	.drop		=	qdisc_queue_drop,
751 	.init		=	tfifo_init,
752 	.reset		=	qdisc_reset_queue,
753 	.change		=	tfifo_init,
754 	.dump		=	tfifo_dump,
755 };
756 
757 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
758 {
759 	struct netem_sched_data *q = qdisc_priv(sch);
760 	int ret;
761 
762 	if (!opt)
763 		return -EINVAL;
764 
765 	qdisc_watchdog_init(&q->watchdog, sch);
766 
767 	q->loss_model = CLG_RANDOM;
768 	q->qdisc = qdisc_create_dflt(sch->dev_queue, &tfifo_qdisc_ops,
769 				     TC_H_MAKE(sch->handle, 1));
770 	if (!q->qdisc) {
771 		pr_notice("netem: qdisc create tfifo qdisc failed\n");
772 		return -ENOMEM;
773 	}
774 
775 	ret = netem_change(sch, opt);
776 	if (ret) {
777 		pr_info("netem: change failed\n");
778 		qdisc_destroy(q->qdisc);
779 	}
780 	return ret;
781 }
782 
783 static void netem_destroy(struct Qdisc *sch)
784 {
785 	struct netem_sched_data *q = qdisc_priv(sch);
786 
787 	qdisc_watchdog_cancel(&q->watchdog);
788 	qdisc_destroy(q->qdisc);
789 	dist_free(q->delay_dist);
790 }
791 
792 static int dump_loss_model(const struct netem_sched_data *q,
793 			   struct sk_buff *skb)
794 {
795 	struct nlattr *nest;
796 
797 	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
798 	if (nest == NULL)
799 		goto nla_put_failure;
800 
801 	switch (q->loss_model) {
802 	case CLG_RANDOM:
803 		/* legacy loss model */
804 		nla_nest_cancel(skb, nest);
805 		return 0;	/* no data */
806 
807 	case CLG_4_STATES: {
808 		struct tc_netem_gimodel gi = {
809 			.p13 = q->clg.a1,
810 			.p31 = q->clg.a2,
811 			.p32 = q->clg.a3,
812 			.p14 = q->clg.a4,
813 			.p23 = q->clg.a5,
814 		};
815 
816 		NLA_PUT(skb, NETEM_LOSS_GI, sizeof(gi), &gi);
817 		break;
818 	}
819 	case CLG_GILB_ELL: {
820 		struct tc_netem_gemodel ge = {
821 			.p = q->clg.a1,
822 			.r = q->clg.a2,
823 			.h = q->clg.a3,
824 			.k1 = q->clg.a4,
825 		};
826 
827 		NLA_PUT(skb, NETEM_LOSS_GE, sizeof(ge), &ge);
828 		break;
829 	}
830 	}
831 
832 	nla_nest_end(skb, nest);
833 	return 0;
834 
835 nla_put_failure:
836 	nla_nest_cancel(skb, nest);
837 	return -1;
838 }
839 
840 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
841 {
842 	const struct netem_sched_data *q = qdisc_priv(sch);
843 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
844 	struct tc_netem_qopt qopt;
845 	struct tc_netem_corr cor;
846 	struct tc_netem_reorder reorder;
847 	struct tc_netem_corrupt corrupt;
848 
849 	qopt.latency = q->latency;
850 	qopt.jitter = q->jitter;
851 	qopt.limit = q->limit;
852 	qopt.loss = q->loss;
853 	qopt.gap = q->gap;
854 	qopt.duplicate = q->duplicate;
855 	NLA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
856 
857 	cor.delay_corr = q->delay_cor.rho;
858 	cor.loss_corr = q->loss_cor.rho;
859 	cor.dup_corr = q->dup_cor.rho;
860 	NLA_PUT(skb, TCA_NETEM_CORR, sizeof(cor), &cor);
861 
862 	reorder.probability = q->reorder;
863 	reorder.correlation = q->reorder_cor.rho;
864 	NLA_PUT(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder);
865 
866 	corrupt.probability = q->corrupt;
867 	corrupt.correlation = q->corrupt_cor.rho;
868 	NLA_PUT(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt);
869 
870 	if (dump_loss_model(q, skb) != 0)
871 		goto nla_put_failure;
872 
873 	return nla_nest_end(skb, nla);
874 
875 nla_put_failure:
876 	nlmsg_trim(skb, nla);
877 	return -1;
878 }
879 
880 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
881 			  struct sk_buff *skb, struct tcmsg *tcm)
882 {
883 	struct netem_sched_data *q = qdisc_priv(sch);
884 
885 	if (cl != 1) 	/* only one class */
886 		return -ENOENT;
887 
888 	tcm->tcm_handle |= TC_H_MIN(1);
889 	tcm->tcm_info = q->qdisc->handle;
890 
891 	return 0;
892 }
893 
894 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
895 		     struct Qdisc **old)
896 {
897 	struct netem_sched_data *q = qdisc_priv(sch);
898 
899 	if (new == NULL)
900 		new = &noop_qdisc;
901 
902 	sch_tree_lock(sch);
903 	*old = q->qdisc;
904 	q->qdisc = new;
905 	qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
906 	qdisc_reset(*old);
907 	sch_tree_unlock(sch);
908 
909 	return 0;
910 }
911 
912 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
913 {
914 	struct netem_sched_data *q = qdisc_priv(sch);
915 	return q->qdisc;
916 }
917 
918 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
919 {
920 	return 1;
921 }
922 
923 static void netem_put(struct Qdisc *sch, unsigned long arg)
924 {
925 }
926 
927 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
928 {
929 	if (!walker->stop) {
930 		if (walker->count >= walker->skip)
931 			if (walker->fn(sch, 1, walker) < 0) {
932 				walker->stop = 1;
933 				return;
934 			}
935 		walker->count++;
936 	}
937 }
938 
939 static const struct Qdisc_class_ops netem_class_ops = {
940 	.graft		=	netem_graft,
941 	.leaf		=	netem_leaf,
942 	.get		=	netem_get,
943 	.put		=	netem_put,
944 	.walk		=	netem_walk,
945 	.dump		=	netem_dump_class,
946 };
947 
948 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
949 	.id		=	"netem",
950 	.cl_ops		=	&netem_class_ops,
951 	.priv_size	=	sizeof(struct netem_sched_data),
952 	.enqueue	=	netem_enqueue,
953 	.dequeue	=	netem_dequeue,
954 	.peek		=	qdisc_peek_dequeued,
955 	.drop		=	netem_drop,
956 	.init		=	netem_init,
957 	.reset		=	netem_reset,
958 	.destroy	=	netem_destroy,
959 	.change		=	netem_change,
960 	.dump		=	netem_dump,
961 	.owner		=	THIS_MODULE,
962 };
963 
964 
965 static int __init netem_module_init(void)
966 {
967 	pr_info("netem: version " VERSION "\n");
968 	return register_qdisc(&netem_qdisc_ops);
969 }
970 static void __exit netem_module_exit(void)
971 {
972 	unregister_qdisc(&netem_qdisc_ops);
973 }
974 module_init(netem_module_init)
975 module_exit(netem_module_exit)
976 MODULE_LICENSE("GPL");
977