1 /* 2 * net/sched/sch_netem.c Network emulator 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License. 8 * 9 * Many of the algorithms and ideas for this came from 10 * NIST Net which is not copyrighted. 11 * 12 * Authors: Stephen Hemminger <shemminger@osdl.org> 13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro> 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/kernel.h> 21 #include <linux/errno.h> 22 #include <linux/skbuff.h> 23 #include <linux/vmalloc.h> 24 #include <linux/rtnetlink.h> 25 #include <linux/reciprocal_div.h> 26 #include <linux/rbtree.h> 27 28 #include <net/netlink.h> 29 #include <net/pkt_sched.h> 30 #include <net/inet_ecn.h> 31 32 #define VERSION "1.3" 33 34 /* Network Emulation Queuing algorithm. 35 ==================================== 36 37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based 38 Network Emulation Tool 39 [2] Luigi Rizzo, DummyNet for FreeBSD 40 41 ---------------------------------------------------------------- 42 43 This started out as a simple way to delay outgoing packets to 44 test TCP but has grown to include most of the functionality 45 of a full blown network emulator like NISTnet. It can delay 46 packets and add random jitter (and correlation). The random 47 distribution can be loaded from a table as well to provide 48 normal, Pareto, or experimental curves. Packet loss, 49 duplication, and reordering can also be emulated. 50 51 This qdisc does not do classification that can be handled in 52 layering other disciplines. It does not need to do bandwidth 53 control either since that can be handled by using token 54 bucket or other rate control. 55 56 Correlated Loss Generator models 57 58 Added generation of correlated loss according to the 59 "Gilbert-Elliot" model, a 4-state markov model. 60 61 References: 62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG 63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general 64 and intuitive loss model for packet networks and its implementation 65 in the Netem module in the Linux kernel", available in [1] 66 67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it 68 Fabio Ludovici <fabio.ludovici at yahoo.it> 69 */ 70 71 struct netem_sched_data { 72 /* internal t(ime)fifo qdisc uses t_root and sch->limit */ 73 struct rb_root t_root; 74 75 /* optional qdisc for classful handling (NULL at netem init) */ 76 struct Qdisc *qdisc; 77 78 struct qdisc_watchdog watchdog; 79 80 psched_tdiff_t latency; 81 psched_tdiff_t jitter; 82 83 u32 loss; 84 u32 ecn; 85 u32 limit; 86 u32 counter; 87 u32 gap; 88 u32 duplicate; 89 u32 reorder; 90 u32 corrupt; 91 u32 rate; 92 s32 packet_overhead; 93 u32 cell_size; 94 u32 cell_size_reciprocal; 95 s32 cell_overhead; 96 97 struct crndstate { 98 u32 last; 99 u32 rho; 100 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor; 101 102 struct disttable { 103 u32 size; 104 s16 table[0]; 105 } *delay_dist; 106 107 enum { 108 CLG_RANDOM, 109 CLG_4_STATES, 110 CLG_GILB_ELL, 111 } loss_model; 112 113 /* Correlated Loss Generation models */ 114 struct clgstate { 115 /* state of the Markov chain */ 116 u8 state; 117 118 /* 4-states and Gilbert-Elliot models */ 119 u32 a1; /* p13 for 4-states or p for GE */ 120 u32 a2; /* p31 for 4-states or r for GE */ 121 u32 a3; /* p32 for 4-states or h for GE */ 122 u32 a4; /* p14 for 4-states or 1-k for GE */ 123 u32 a5; /* p23 used only in 4-states */ 124 } clg; 125 126 }; 127 128 /* Time stamp put into socket buffer control block 129 * Only valid when skbs are in our internal t(ime)fifo queue. 130 */ 131 struct netem_skb_cb { 132 psched_time_t time_to_send; 133 ktime_t tstamp_save; 134 }; 135 136 /* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp 137 * to hold a rb_node structure. 138 * 139 * If struct sk_buff layout is changed, the following checks will complain. 140 */ 141 static struct rb_node *netem_rb_node(struct sk_buff *skb) 142 { 143 BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0); 144 BUILD_BUG_ON(offsetof(struct sk_buff, prev) != 145 offsetof(struct sk_buff, next) + sizeof(skb->next)); 146 BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) != 147 offsetof(struct sk_buff, prev) + sizeof(skb->prev)); 148 BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) + 149 sizeof(skb->prev) + 150 sizeof(skb->tstamp)); 151 return (struct rb_node *)&skb->next; 152 } 153 154 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb) 155 { 156 return (struct sk_buff *)rb; 157 } 158 159 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb) 160 { 161 /* we assume we can use skb next/prev/tstamp as storage for rb_node */ 162 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb)); 163 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data; 164 } 165 166 /* init_crandom - initialize correlated random number generator 167 * Use entropy source for initial seed. 168 */ 169 static void init_crandom(struct crndstate *state, unsigned long rho) 170 { 171 state->rho = rho; 172 state->last = net_random(); 173 } 174 175 /* get_crandom - correlated random number generator 176 * Next number depends on last value. 177 * rho is scaled to avoid floating point. 178 */ 179 static u32 get_crandom(struct crndstate *state) 180 { 181 u64 value, rho; 182 unsigned long answer; 183 184 if (state->rho == 0) /* no correlation */ 185 return net_random(); 186 187 value = net_random(); 188 rho = (u64)state->rho + 1; 189 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32; 190 state->last = answer; 191 return answer; 192 } 193 194 /* loss_4state - 4-state model loss generator 195 * Generates losses according to the 4-state Markov chain adopted in 196 * the GI (General and Intuitive) loss model. 197 */ 198 static bool loss_4state(struct netem_sched_data *q) 199 { 200 struct clgstate *clg = &q->clg; 201 u32 rnd = net_random(); 202 203 /* 204 * Makes a comparison between rnd and the transition 205 * probabilities outgoing from the current state, then decides the 206 * next state and if the next packet has to be transmitted or lost. 207 * The four states correspond to: 208 * 1 => successfully transmitted packets within a gap period 209 * 4 => isolated losses within a gap period 210 * 3 => lost packets within a burst period 211 * 2 => successfully transmitted packets within a burst period 212 */ 213 switch (clg->state) { 214 case 1: 215 if (rnd < clg->a4) { 216 clg->state = 4; 217 return true; 218 } else if (clg->a4 < rnd && rnd < clg->a1) { 219 clg->state = 3; 220 return true; 221 } else if (clg->a1 < rnd) 222 clg->state = 1; 223 224 break; 225 case 2: 226 if (rnd < clg->a5) { 227 clg->state = 3; 228 return true; 229 } else 230 clg->state = 2; 231 232 break; 233 case 3: 234 if (rnd < clg->a3) 235 clg->state = 2; 236 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) { 237 clg->state = 1; 238 } else if (clg->a2 + clg->a3 < rnd) { 239 clg->state = 3; 240 return true; 241 } 242 break; 243 case 4: 244 clg->state = 1; 245 break; 246 } 247 248 return false; 249 } 250 251 /* loss_gilb_ell - Gilbert-Elliot model loss generator 252 * Generates losses according to the Gilbert-Elliot loss model or 253 * its special cases (Gilbert or Simple Gilbert) 254 * 255 * Makes a comparison between random number and the transition 256 * probabilities outgoing from the current state, then decides the 257 * next state. A second random number is extracted and the comparison 258 * with the loss probability of the current state decides if the next 259 * packet will be transmitted or lost. 260 */ 261 static bool loss_gilb_ell(struct netem_sched_data *q) 262 { 263 struct clgstate *clg = &q->clg; 264 265 switch (clg->state) { 266 case 1: 267 if (net_random() < clg->a1) 268 clg->state = 2; 269 if (net_random() < clg->a4) 270 return true; 271 case 2: 272 if (net_random() < clg->a2) 273 clg->state = 1; 274 if (clg->a3 > net_random()) 275 return true; 276 } 277 278 return false; 279 } 280 281 static bool loss_event(struct netem_sched_data *q) 282 { 283 switch (q->loss_model) { 284 case CLG_RANDOM: 285 /* Random packet drop 0 => none, ~0 => all */ 286 return q->loss && q->loss >= get_crandom(&q->loss_cor); 287 288 case CLG_4_STATES: 289 /* 4state loss model algorithm (used also for GI model) 290 * Extracts a value from the markov 4 state loss generator, 291 * if it is 1 drops a packet and if needed writes the event in 292 * the kernel logs 293 */ 294 return loss_4state(q); 295 296 case CLG_GILB_ELL: 297 /* Gilbert-Elliot loss model algorithm 298 * Extracts a value from the Gilbert-Elliot loss generator, 299 * if it is 1 drops a packet and if needed writes the event in 300 * the kernel logs 301 */ 302 return loss_gilb_ell(q); 303 } 304 305 return false; /* not reached */ 306 } 307 308 309 /* tabledist - return a pseudo-randomly distributed value with mean mu and 310 * std deviation sigma. Uses table lookup to approximate the desired 311 * distribution, and a uniformly-distributed pseudo-random source. 312 */ 313 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma, 314 struct crndstate *state, 315 const struct disttable *dist) 316 { 317 psched_tdiff_t x; 318 long t; 319 u32 rnd; 320 321 if (sigma == 0) 322 return mu; 323 324 rnd = get_crandom(state); 325 326 /* default uniform distribution */ 327 if (dist == NULL) 328 return (rnd % (2*sigma)) - sigma + mu; 329 330 t = dist->table[rnd % dist->size]; 331 x = (sigma % NETEM_DIST_SCALE) * t; 332 if (x >= 0) 333 x += NETEM_DIST_SCALE/2; 334 else 335 x -= NETEM_DIST_SCALE/2; 336 337 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu; 338 } 339 340 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q) 341 { 342 u64 ticks; 343 344 len += q->packet_overhead; 345 346 if (q->cell_size) { 347 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal); 348 349 if (len > cells * q->cell_size) /* extra cell needed for remainder */ 350 cells++; 351 len = cells * (q->cell_size + q->cell_overhead); 352 } 353 354 ticks = (u64)len * NSEC_PER_SEC; 355 356 do_div(ticks, q->rate); 357 return PSCHED_NS2TICKS(ticks); 358 } 359 360 static void tfifo_reset(struct Qdisc *sch) 361 { 362 struct netem_sched_data *q = qdisc_priv(sch); 363 struct rb_node *p; 364 365 while ((p = rb_first(&q->t_root))) { 366 struct sk_buff *skb = netem_rb_to_skb(p); 367 368 rb_erase(p, &q->t_root); 369 skb->next = NULL; 370 skb->prev = NULL; 371 kfree_skb(skb); 372 } 373 } 374 375 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch) 376 { 377 struct netem_sched_data *q = qdisc_priv(sch); 378 psched_time_t tnext = netem_skb_cb(nskb)->time_to_send; 379 struct rb_node **p = &q->t_root.rb_node, *parent = NULL; 380 381 while (*p) { 382 struct sk_buff *skb; 383 384 parent = *p; 385 skb = netem_rb_to_skb(parent); 386 if (tnext >= netem_skb_cb(skb)->time_to_send) 387 p = &parent->rb_right; 388 else 389 p = &parent->rb_left; 390 } 391 rb_link_node(netem_rb_node(nskb), parent, p); 392 rb_insert_color(netem_rb_node(nskb), &q->t_root); 393 sch->q.qlen++; 394 } 395 396 /* 397 * Insert one skb into qdisc. 398 * Note: parent depends on return value to account for queue length. 399 * NET_XMIT_DROP: queue length didn't change. 400 * NET_XMIT_SUCCESS: one skb was queued. 401 */ 402 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch) 403 { 404 struct netem_sched_data *q = qdisc_priv(sch); 405 /* We don't fill cb now as skb_unshare() may invalidate it */ 406 struct netem_skb_cb *cb; 407 struct sk_buff *skb2; 408 int count = 1; 409 410 /* Random duplication */ 411 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor)) 412 ++count; 413 414 /* Drop packet? */ 415 if (loss_event(q)) { 416 if (q->ecn && INET_ECN_set_ce(skb)) 417 sch->qstats.drops++; /* mark packet */ 418 else 419 --count; 420 } 421 if (count == 0) { 422 sch->qstats.drops++; 423 kfree_skb(skb); 424 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 425 } 426 427 /* If a delay is expected, orphan the skb. (orphaning usually takes 428 * place at TX completion time, so _before_ the link transit delay) 429 */ 430 if (q->latency || q->jitter) 431 skb_orphan_partial(skb); 432 433 /* 434 * If we need to duplicate packet, then re-insert at top of the 435 * qdisc tree, since parent queuer expects that only one 436 * skb will be queued. 437 */ 438 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) { 439 struct Qdisc *rootq = qdisc_root(sch); 440 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */ 441 q->duplicate = 0; 442 443 qdisc_enqueue_root(skb2, rootq); 444 q->duplicate = dupsave; 445 } 446 447 /* 448 * Randomized packet corruption. 449 * Make copy if needed since we are modifying 450 * If packet is going to be hardware checksummed, then 451 * do it now in software before we mangle it. 452 */ 453 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) { 454 if (!(skb = skb_unshare(skb, GFP_ATOMIC)) || 455 (skb->ip_summed == CHECKSUM_PARTIAL && 456 skb_checksum_help(skb))) 457 return qdisc_drop(skb, sch); 458 459 skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8); 460 } 461 462 if (unlikely(skb_queue_len(&sch->q) >= sch->limit)) 463 return qdisc_reshape_fail(skb, sch); 464 465 sch->qstats.backlog += qdisc_pkt_len(skb); 466 467 cb = netem_skb_cb(skb); 468 if (q->gap == 0 || /* not doing reordering */ 469 q->counter < q->gap - 1 || /* inside last reordering gap */ 470 q->reorder < get_crandom(&q->reorder_cor)) { 471 psched_time_t now; 472 psched_tdiff_t delay; 473 474 delay = tabledist(q->latency, q->jitter, 475 &q->delay_cor, q->delay_dist); 476 477 now = psched_get_time(); 478 479 if (q->rate) { 480 struct sk_buff *last; 481 482 if (!skb_queue_empty(&sch->q)) 483 last = skb_peek_tail(&sch->q); 484 else 485 last = netem_rb_to_skb(rb_last(&q->t_root)); 486 if (last) { 487 /* 488 * Last packet in queue is reference point (now), 489 * calculate this time bonus and subtract 490 * from delay. 491 */ 492 delay -= netem_skb_cb(last)->time_to_send - now; 493 delay = max_t(psched_tdiff_t, 0, delay); 494 now = netem_skb_cb(last)->time_to_send; 495 } 496 497 delay += packet_len_2_sched_time(skb->len, q); 498 } 499 500 cb->time_to_send = now + delay; 501 cb->tstamp_save = skb->tstamp; 502 ++q->counter; 503 tfifo_enqueue(skb, sch); 504 } else { 505 /* 506 * Do re-ordering by putting one out of N packets at the front 507 * of the queue. 508 */ 509 cb->time_to_send = psched_get_time(); 510 q->counter = 0; 511 512 __skb_queue_head(&sch->q, skb); 513 sch->qstats.requeues++; 514 } 515 516 return NET_XMIT_SUCCESS; 517 } 518 519 static unsigned int netem_drop(struct Qdisc *sch) 520 { 521 struct netem_sched_data *q = qdisc_priv(sch); 522 unsigned int len; 523 524 len = qdisc_queue_drop(sch); 525 526 if (!len) { 527 struct rb_node *p = rb_first(&q->t_root); 528 529 if (p) { 530 struct sk_buff *skb = netem_rb_to_skb(p); 531 532 rb_erase(p, &q->t_root); 533 sch->q.qlen--; 534 skb->next = NULL; 535 skb->prev = NULL; 536 len = qdisc_pkt_len(skb); 537 sch->qstats.backlog -= len; 538 kfree_skb(skb); 539 } 540 } 541 if (!len && q->qdisc && q->qdisc->ops->drop) 542 len = q->qdisc->ops->drop(q->qdisc); 543 if (len) 544 sch->qstats.drops++; 545 546 return len; 547 } 548 549 static struct sk_buff *netem_dequeue(struct Qdisc *sch) 550 { 551 struct netem_sched_data *q = qdisc_priv(sch); 552 struct sk_buff *skb; 553 struct rb_node *p; 554 555 if (qdisc_is_throttled(sch)) 556 return NULL; 557 558 tfifo_dequeue: 559 skb = __skb_dequeue(&sch->q); 560 if (skb) { 561 deliver: 562 sch->qstats.backlog -= qdisc_pkt_len(skb); 563 qdisc_unthrottled(sch); 564 qdisc_bstats_update(sch, skb); 565 return skb; 566 } 567 p = rb_first(&q->t_root); 568 if (p) { 569 psched_time_t time_to_send; 570 571 skb = netem_rb_to_skb(p); 572 573 /* if more time remaining? */ 574 time_to_send = netem_skb_cb(skb)->time_to_send; 575 if (time_to_send <= psched_get_time()) { 576 rb_erase(p, &q->t_root); 577 578 sch->q.qlen--; 579 skb->next = NULL; 580 skb->prev = NULL; 581 skb->tstamp = netem_skb_cb(skb)->tstamp_save; 582 583 #ifdef CONFIG_NET_CLS_ACT 584 /* 585 * If it's at ingress let's pretend the delay is 586 * from the network (tstamp will be updated). 587 */ 588 if (G_TC_FROM(skb->tc_verd) & AT_INGRESS) 589 skb->tstamp.tv64 = 0; 590 #endif 591 592 if (q->qdisc) { 593 int err = qdisc_enqueue(skb, q->qdisc); 594 595 if (unlikely(err != NET_XMIT_SUCCESS)) { 596 if (net_xmit_drop_count(err)) { 597 sch->qstats.drops++; 598 qdisc_tree_decrease_qlen(sch, 1); 599 } 600 } 601 goto tfifo_dequeue; 602 } 603 goto deliver; 604 } 605 606 if (q->qdisc) { 607 skb = q->qdisc->ops->dequeue(q->qdisc); 608 if (skb) 609 goto deliver; 610 } 611 qdisc_watchdog_schedule(&q->watchdog, time_to_send); 612 } 613 614 if (q->qdisc) { 615 skb = q->qdisc->ops->dequeue(q->qdisc); 616 if (skb) 617 goto deliver; 618 } 619 return NULL; 620 } 621 622 static void netem_reset(struct Qdisc *sch) 623 { 624 struct netem_sched_data *q = qdisc_priv(sch); 625 626 qdisc_reset_queue(sch); 627 tfifo_reset(sch); 628 if (q->qdisc) 629 qdisc_reset(q->qdisc); 630 qdisc_watchdog_cancel(&q->watchdog); 631 } 632 633 static void dist_free(struct disttable *d) 634 { 635 if (d) { 636 if (is_vmalloc_addr(d)) 637 vfree(d); 638 else 639 kfree(d); 640 } 641 } 642 643 /* 644 * Distribution data is a variable size payload containing 645 * signed 16 bit values. 646 */ 647 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr) 648 { 649 struct netem_sched_data *q = qdisc_priv(sch); 650 size_t n = nla_len(attr)/sizeof(__s16); 651 const __s16 *data = nla_data(attr); 652 spinlock_t *root_lock; 653 struct disttable *d; 654 int i; 655 size_t s; 656 657 if (n > NETEM_DIST_MAX) 658 return -EINVAL; 659 660 s = sizeof(struct disttable) + n * sizeof(s16); 661 d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN); 662 if (!d) 663 d = vmalloc(s); 664 if (!d) 665 return -ENOMEM; 666 667 d->size = n; 668 for (i = 0; i < n; i++) 669 d->table[i] = data[i]; 670 671 root_lock = qdisc_root_sleeping_lock(sch); 672 673 spin_lock_bh(root_lock); 674 swap(q->delay_dist, d); 675 spin_unlock_bh(root_lock); 676 677 dist_free(d); 678 return 0; 679 } 680 681 static void get_correlation(struct Qdisc *sch, const struct nlattr *attr) 682 { 683 struct netem_sched_data *q = qdisc_priv(sch); 684 const struct tc_netem_corr *c = nla_data(attr); 685 686 init_crandom(&q->delay_cor, c->delay_corr); 687 init_crandom(&q->loss_cor, c->loss_corr); 688 init_crandom(&q->dup_cor, c->dup_corr); 689 } 690 691 static void get_reorder(struct Qdisc *sch, const struct nlattr *attr) 692 { 693 struct netem_sched_data *q = qdisc_priv(sch); 694 const struct tc_netem_reorder *r = nla_data(attr); 695 696 q->reorder = r->probability; 697 init_crandom(&q->reorder_cor, r->correlation); 698 } 699 700 static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr) 701 { 702 struct netem_sched_data *q = qdisc_priv(sch); 703 const struct tc_netem_corrupt *r = nla_data(attr); 704 705 q->corrupt = r->probability; 706 init_crandom(&q->corrupt_cor, r->correlation); 707 } 708 709 static void get_rate(struct Qdisc *sch, const struct nlattr *attr) 710 { 711 struct netem_sched_data *q = qdisc_priv(sch); 712 const struct tc_netem_rate *r = nla_data(attr); 713 714 q->rate = r->rate; 715 q->packet_overhead = r->packet_overhead; 716 q->cell_size = r->cell_size; 717 if (q->cell_size) 718 q->cell_size_reciprocal = reciprocal_value(q->cell_size); 719 q->cell_overhead = r->cell_overhead; 720 } 721 722 static int get_loss_clg(struct Qdisc *sch, const struct nlattr *attr) 723 { 724 struct netem_sched_data *q = qdisc_priv(sch); 725 const struct nlattr *la; 726 int rem; 727 728 nla_for_each_nested(la, attr, rem) { 729 u16 type = nla_type(la); 730 731 switch(type) { 732 case NETEM_LOSS_GI: { 733 const struct tc_netem_gimodel *gi = nla_data(la); 734 735 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) { 736 pr_info("netem: incorrect gi model size\n"); 737 return -EINVAL; 738 } 739 740 q->loss_model = CLG_4_STATES; 741 742 q->clg.state = 1; 743 q->clg.a1 = gi->p13; 744 q->clg.a2 = gi->p31; 745 q->clg.a3 = gi->p32; 746 q->clg.a4 = gi->p14; 747 q->clg.a5 = gi->p23; 748 break; 749 } 750 751 case NETEM_LOSS_GE: { 752 const struct tc_netem_gemodel *ge = nla_data(la); 753 754 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) { 755 pr_info("netem: incorrect ge model size\n"); 756 return -EINVAL; 757 } 758 759 q->loss_model = CLG_GILB_ELL; 760 q->clg.state = 1; 761 q->clg.a1 = ge->p; 762 q->clg.a2 = ge->r; 763 q->clg.a3 = ge->h; 764 q->clg.a4 = ge->k1; 765 break; 766 } 767 768 default: 769 pr_info("netem: unknown loss type %u\n", type); 770 return -EINVAL; 771 } 772 } 773 774 return 0; 775 } 776 777 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = { 778 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) }, 779 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) }, 780 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) }, 781 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) }, 782 [TCA_NETEM_LOSS] = { .type = NLA_NESTED }, 783 [TCA_NETEM_ECN] = { .type = NLA_U32 }, 784 }; 785 786 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla, 787 const struct nla_policy *policy, int len) 788 { 789 int nested_len = nla_len(nla) - NLA_ALIGN(len); 790 791 if (nested_len < 0) { 792 pr_info("netem: invalid attributes len %d\n", nested_len); 793 return -EINVAL; 794 } 795 796 if (nested_len >= nla_attr_size(0)) 797 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len), 798 nested_len, policy); 799 800 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1)); 801 return 0; 802 } 803 804 /* Parse netlink message to set options */ 805 static int netem_change(struct Qdisc *sch, struct nlattr *opt) 806 { 807 struct netem_sched_data *q = qdisc_priv(sch); 808 struct nlattr *tb[TCA_NETEM_MAX + 1]; 809 struct tc_netem_qopt *qopt; 810 int ret; 811 812 if (opt == NULL) 813 return -EINVAL; 814 815 qopt = nla_data(opt); 816 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt)); 817 if (ret < 0) 818 return ret; 819 820 sch->limit = qopt->limit; 821 822 q->latency = qopt->latency; 823 q->jitter = qopt->jitter; 824 q->limit = qopt->limit; 825 q->gap = qopt->gap; 826 q->counter = 0; 827 q->loss = qopt->loss; 828 q->duplicate = qopt->duplicate; 829 830 /* for compatibility with earlier versions. 831 * if gap is set, need to assume 100% probability 832 */ 833 if (q->gap) 834 q->reorder = ~0; 835 836 if (tb[TCA_NETEM_CORR]) 837 get_correlation(sch, tb[TCA_NETEM_CORR]); 838 839 if (tb[TCA_NETEM_DELAY_DIST]) { 840 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]); 841 if (ret) 842 return ret; 843 } 844 845 if (tb[TCA_NETEM_REORDER]) 846 get_reorder(sch, tb[TCA_NETEM_REORDER]); 847 848 if (tb[TCA_NETEM_CORRUPT]) 849 get_corrupt(sch, tb[TCA_NETEM_CORRUPT]); 850 851 if (tb[TCA_NETEM_RATE]) 852 get_rate(sch, tb[TCA_NETEM_RATE]); 853 854 if (tb[TCA_NETEM_ECN]) 855 q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]); 856 857 q->loss_model = CLG_RANDOM; 858 if (tb[TCA_NETEM_LOSS]) 859 ret = get_loss_clg(sch, tb[TCA_NETEM_LOSS]); 860 861 return ret; 862 } 863 864 static int netem_init(struct Qdisc *sch, struct nlattr *opt) 865 { 866 struct netem_sched_data *q = qdisc_priv(sch); 867 int ret; 868 869 if (!opt) 870 return -EINVAL; 871 872 qdisc_watchdog_init(&q->watchdog, sch); 873 874 q->loss_model = CLG_RANDOM; 875 ret = netem_change(sch, opt); 876 if (ret) 877 pr_info("netem: change failed\n"); 878 return ret; 879 } 880 881 static void netem_destroy(struct Qdisc *sch) 882 { 883 struct netem_sched_data *q = qdisc_priv(sch); 884 885 qdisc_watchdog_cancel(&q->watchdog); 886 if (q->qdisc) 887 qdisc_destroy(q->qdisc); 888 dist_free(q->delay_dist); 889 } 890 891 static int dump_loss_model(const struct netem_sched_data *q, 892 struct sk_buff *skb) 893 { 894 struct nlattr *nest; 895 896 nest = nla_nest_start(skb, TCA_NETEM_LOSS); 897 if (nest == NULL) 898 goto nla_put_failure; 899 900 switch (q->loss_model) { 901 case CLG_RANDOM: 902 /* legacy loss model */ 903 nla_nest_cancel(skb, nest); 904 return 0; /* no data */ 905 906 case CLG_4_STATES: { 907 struct tc_netem_gimodel gi = { 908 .p13 = q->clg.a1, 909 .p31 = q->clg.a2, 910 .p32 = q->clg.a3, 911 .p14 = q->clg.a4, 912 .p23 = q->clg.a5, 913 }; 914 915 if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi)) 916 goto nla_put_failure; 917 break; 918 } 919 case CLG_GILB_ELL: { 920 struct tc_netem_gemodel ge = { 921 .p = q->clg.a1, 922 .r = q->clg.a2, 923 .h = q->clg.a3, 924 .k1 = q->clg.a4, 925 }; 926 927 if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge)) 928 goto nla_put_failure; 929 break; 930 } 931 } 932 933 nla_nest_end(skb, nest); 934 return 0; 935 936 nla_put_failure: 937 nla_nest_cancel(skb, nest); 938 return -1; 939 } 940 941 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb) 942 { 943 const struct netem_sched_data *q = qdisc_priv(sch); 944 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb); 945 struct tc_netem_qopt qopt; 946 struct tc_netem_corr cor; 947 struct tc_netem_reorder reorder; 948 struct tc_netem_corrupt corrupt; 949 struct tc_netem_rate rate; 950 951 qopt.latency = q->latency; 952 qopt.jitter = q->jitter; 953 qopt.limit = q->limit; 954 qopt.loss = q->loss; 955 qopt.gap = q->gap; 956 qopt.duplicate = q->duplicate; 957 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt)) 958 goto nla_put_failure; 959 960 cor.delay_corr = q->delay_cor.rho; 961 cor.loss_corr = q->loss_cor.rho; 962 cor.dup_corr = q->dup_cor.rho; 963 if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor)) 964 goto nla_put_failure; 965 966 reorder.probability = q->reorder; 967 reorder.correlation = q->reorder_cor.rho; 968 if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder)) 969 goto nla_put_failure; 970 971 corrupt.probability = q->corrupt; 972 corrupt.correlation = q->corrupt_cor.rho; 973 if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt)) 974 goto nla_put_failure; 975 976 rate.rate = q->rate; 977 rate.packet_overhead = q->packet_overhead; 978 rate.cell_size = q->cell_size; 979 rate.cell_overhead = q->cell_overhead; 980 if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate)) 981 goto nla_put_failure; 982 983 if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn)) 984 goto nla_put_failure; 985 986 if (dump_loss_model(q, skb) != 0) 987 goto nla_put_failure; 988 989 return nla_nest_end(skb, nla); 990 991 nla_put_failure: 992 nlmsg_trim(skb, nla); 993 return -1; 994 } 995 996 static int netem_dump_class(struct Qdisc *sch, unsigned long cl, 997 struct sk_buff *skb, struct tcmsg *tcm) 998 { 999 struct netem_sched_data *q = qdisc_priv(sch); 1000 1001 if (cl != 1 || !q->qdisc) /* only one class */ 1002 return -ENOENT; 1003 1004 tcm->tcm_handle |= TC_H_MIN(1); 1005 tcm->tcm_info = q->qdisc->handle; 1006 1007 return 0; 1008 } 1009 1010 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 1011 struct Qdisc **old) 1012 { 1013 struct netem_sched_data *q = qdisc_priv(sch); 1014 1015 sch_tree_lock(sch); 1016 *old = q->qdisc; 1017 q->qdisc = new; 1018 if (*old) { 1019 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen); 1020 qdisc_reset(*old); 1021 } 1022 sch_tree_unlock(sch); 1023 1024 return 0; 1025 } 1026 1027 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg) 1028 { 1029 struct netem_sched_data *q = qdisc_priv(sch); 1030 return q->qdisc; 1031 } 1032 1033 static unsigned long netem_get(struct Qdisc *sch, u32 classid) 1034 { 1035 return 1; 1036 } 1037 1038 static void netem_put(struct Qdisc *sch, unsigned long arg) 1039 { 1040 } 1041 1042 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker) 1043 { 1044 if (!walker->stop) { 1045 if (walker->count >= walker->skip) 1046 if (walker->fn(sch, 1, walker) < 0) { 1047 walker->stop = 1; 1048 return; 1049 } 1050 walker->count++; 1051 } 1052 } 1053 1054 static const struct Qdisc_class_ops netem_class_ops = { 1055 .graft = netem_graft, 1056 .leaf = netem_leaf, 1057 .get = netem_get, 1058 .put = netem_put, 1059 .walk = netem_walk, 1060 .dump = netem_dump_class, 1061 }; 1062 1063 static struct Qdisc_ops netem_qdisc_ops __read_mostly = { 1064 .id = "netem", 1065 .cl_ops = &netem_class_ops, 1066 .priv_size = sizeof(struct netem_sched_data), 1067 .enqueue = netem_enqueue, 1068 .dequeue = netem_dequeue, 1069 .peek = qdisc_peek_dequeued, 1070 .drop = netem_drop, 1071 .init = netem_init, 1072 .reset = netem_reset, 1073 .destroy = netem_destroy, 1074 .change = netem_change, 1075 .dump = netem_dump, 1076 .owner = THIS_MODULE, 1077 }; 1078 1079 1080 static int __init netem_module_init(void) 1081 { 1082 pr_info("netem: version " VERSION "\n"); 1083 return register_qdisc(&netem_qdisc_ops); 1084 } 1085 static void __exit netem_module_exit(void) 1086 { 1087 unregister_qdisc(&netem_qdisc_ops); 1088 } 1089 module_init(netem_module_init) 1090 module_exit(netem_module_exit) 1091 MODULE_LICENSE("GPL"); 1092