xref: /openbmc/linux/net/sched/sch_netem.c (revision 6d99a79c)
1 /*
2  * net/sched/sch_netem.c	Network emulator
3  *
4  * 		This program is free software; you can redistribute it and/or
5  * 		modify it under the terms of the GNU General Public License
6  * 		as published by the Free Software Foundation; either version
7  * 		2 of the License.
8  *
9  *  		Many of the algorithms and ideas for this came from
10  *		NIST Net which is not copyrighted.
11  *
12  * Authors:	Stephen Hemminger <shemminger@osdl.org>
13  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
27 
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
31 
32 #define VERSION "1.3"
33 
34 /*	Network Emulation Queuing algorithm.
35 	====================================
36 
37 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 		 Network Emulation Tool
39 		 [2] Luigi Rizzo, DummyNet for FreeBSD
40 
41 	 ----------------------------------------------------------------
42 
43 	 This started out as a simple way to delay outgoing packets to
44 	 test TCP but has grown to include most of the functionality
45 	 of a full blown network emulator like NISTnet. It can delay
46 	 packets and add random jitter (and correlation). The random
47 	 distribution can be loaded from a table as well to provide
48 	 normal, Pareto, or experimental curves. Packet loss,
49 	 duplication, and reordering can also be emulated.
50 
51 	 This qdisc does not do classification that can be handled in
52 	 layering other disciplines.  It does not need to do bandwidth
53 	 control either since that can be handled by using token
54 	 bucket or other rate control.
55 
56      Correlated Loss Generator models
57 
58 	Added generation of correlated loss according to the
59 	"Gilbert-Elliot" model, a 4-state markov model.
60 
61 	References:
62 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 	and intuitive loss model for packet networks and its implementation
65 	in the Netem module in the Linux kernel", available in [1]
66 
67 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
69 */
70 
71 struct disttable {
72 	u32  size;
73 	s16 table[0];
74 };
75 
76 struct netem_sched_data {
77 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
78 	struct rb_root t_root;
79 
80 	/* optional qdisc for classful handling (NULL at netem init) */
81 	struct Qdisc	*qdisc;
82 
83 	struct qdisc_watchdog watchdog;
84 
85 	s64 latency;
86 	s64 jitter;
87 
88 	u32 loss;
89 	u32 ecn;
90 	u32 limit;
91 	u32 counter;
92 	u32 gap;
93 	u32 duplicate;
94 	u32 reorder;
95 	u32 corrupt;
96 	u64 rate;
97 	s32 packet_overhead;
98 	u32 cell_size;
99 	struct reciprocal_value cell_size_reciprocal;
100 	s32 cell_overhead;
101 
102 	struct crndstate {
103 		u32 last;
104 		u32 rho;
105 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
106 
107 	struct disttable *delay_dist;
108 
109 	enum  {
110 		CLG_RANDOM,
111 		CLG_4_STATES,
112 		CLG_GILB_ELL,
113 	} loss_model;
114 
115 	enum {
116 		TX_IN_GAP_PERIOD = 1,
117 		TX_IN_BURST_PERIOD,
118 		LOST_IN_GAP_PERIOD,
119 		LOST_IN_BURST_PERIOD,
120 	} _4_state_model;
121 
122 	enum {
123 		GOOD_STATE = 1,
124 		BAD_STATE,
125 	} GE_state_model;
126 
127 	/* Correlated Loss Generation models */
128 	struct clgstate {
129 		/* state of the Markov chain */
130 		u8 state;
131 
132 		/* 4-states and Gilbert-Elliot models */
133 		u32 a1;	/* p13 for 4-states or p for GE */
134 		u32 a2;	/* p31 for 4-states or r for GE */
135 		u32 a3;	/* p32 for 4-states or h for GE */
136 		u32 a4;	/* p14 for 4-states or 1-k for GE */
137 		u32 a5; /* p23 used only in 4-states */
138 	} clg;
139 
140 	struct tc_netem_slot slot_config;
141 	struct slotstate {
142 		u64 slot_next;
143 		s32 packets_left;
144 		s32 bytes_left;
145 	} slot;
146 
147 	struct disttable *slot_dist;
148 };
149 
150 /* Time stamp put into socket buffer control block
151  * Only valid when skbs are in our internal t(ime)fifo queue.
152  *
153  * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
154  * and skb->next & skb->prev are scratch space for a qdisc,
155  * we save skb->tstamp value in skb->cb[] before destroying it.
156  */
157 struct netem_skb_cb {
158 	u64	        time_to_send;
159 };
160 
161 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
162 {
163 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
164 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
165 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
166 }
167 
168 /* init_crandom - initialize correlated random number generator
169  * Use entropy source for initial seed.
170  */
171 static void init_crandom(struct crndstate *state, unsigned long rho)
172 {
173 	state->rho = rho;
174 	state->last = prandom_u32();
175 }
176 
177 /* get_crandom - correlated random number generator
178  * Next number depends on last value.
179  * rho is scaled to avoid floating point.
180  */
181 static u32 get_crandom(struct crndstate *state)
182 {
183 	u64 value, rho;
184 	unsigned long answer;
185 
186 	if (!state || state->rho == 0)	/* no correlation */
187 		return prandom_u32();
188 
189 	value = prandom_u32();
190 	rho = (u64)state->rho + 1;
191 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
192 	state->last = answer;
193 	return answer;
194 }
195 
196 /* loss_4state - 4-state model loss generator
197  * Generates losses according to the 4-state Markov chain adopted in
198  * the GI (General and Intuitive) loss model.
199  */
200 static bool loss_4state(struct netem_sched_data *q)
201 {
202 	struct clgstate *clg = &q->clg;
203 	u32 rnd = prandom_u32();
204 
205 	/*
206 	 * Makes a comparison between rnd and the transition
207 	 * probabilities outgoing from the current state, then decides the
208 	 * next state and if the next packet has to be transmitted or lost.
209 	 * The four states correspond to:
210 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
211 	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
212 	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
213 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
214 	 */
215 	switch (clg->state) {
216 	case TX_IN_GAP_PERIOD:
217 		if (rnd < clg->a4) {
218 			clg->state = LOST_IN_BURST_PERIOD;
219 			return true;
220 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
221 			clg->state = LOST_IN_GAP_PERIOD;
222 			return true;
223 		} else if (clg->a1 + clg->a4 < rnd) {
224 			clg->state = TX_IN_GAP_PERIOD;
225 		}
226 
227 		break;
228 	case TX_IN_BURST_PERIOD:
229 		if (rnd < clg->a5) {
230 			clg->state = LOST_IN_GAP_PERIOD;
231 			return true;
232 		} else {
233 			clg->state = TX_IN_BURST_PERIOD;
234 		}
235 
236 		break;
237 	case LOST_IN_GAP_PERIOD:
238 		if (rnd < clg->a3)
239 			clg->state = TX_IN_BURST_PERIOD;
240 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
241 			clg->state = TX_IN_GAP_PERIOD;
242 		} else if (clg->a2 + clg->a3 < rnd) {
243 			clg->state = LOST_IN_GAP_PERIOD;
244 			return true;
245 		}
246 		break;
247 	case LOST_IN_BURST_PERIOD:
248 		clg->state = TX_IN_GAP_PERIOD;
249 		break;
250 	}
251 
252 	return false;
253 }
254 
255 /* loss_gilb_ell - Gilbert-Elliot model loss generator
256  * Generates losses according to the Gilbert-Elliot loss model or
257  * its special cases  (Gilbert or Simple Gilbert)
258  *
259  * Makes a comparison between random number and the transition
260  * probabilities outgoing from the current state, then decides the
261  * next state. A second random number is extracted and the comparison
262  * with the loss probability of the current state decides if the next
263  * packet will be transmitted or lost.
264  */
265 static bool loss_gilb_ell(struct netem_sched_data *q)
266 {
267 	struct clgstate *clg = &q->clg;
268 
269 	switch (clg->state) {
270 	case GOOD_STATE:
271 		if (prandom_u32() < clg->a1)
272 			clg->state = BAD_STATE;
273 		if (prandom_u32() < clg->a4)
274 			return true;
275 		break;
276 	case BAD_STATE:
277 		if (prandom_u32() < clg->a2)
278 			clg->state = GOOD_STATE;
279 		if (prandom_u32() > clg->a3)
280 			return true;
281 	}
282 
283 	return false;
284 }
285 
286 static bool loss_event(struct netem_sched_data *q)
287 {
288 	switch (q->loss_model) {
289 	case CLG_RANDOM:
290 		/* Random packet drop 0 => none, ~0 => all */
291 		return q->loss && q->loss >= get_crandom(&q->loss_cor);
292 
293 	case CLG_4_STATES:
294 		/* 4state loss model algorithm (used also for GI model)
295 		* Extracts a value from the markov 4 state loss generator,
296 		* if it is 1 drops a packet and if needed writes the event in
297 		* the kernel logs
298 		*/
299 		return loss_4state(q);
300 
301 	case CLG_GILB_ELL:
302 		/* Gilbert-Elliot loss model algorithm
303 		* Extracts a value from the Gilbert-Elliot loss generator,
304 		* if it is 1 drops a packet and if needed writes the event in
305 		* the kernel logs
306 		*/
307 		return loss_gilb_ell(q);
308 	}
309 
310 	return false;	/* not reached */
311 }
312 
313 
314 /* tabledist - return a pseudo-randomly distributed value with mean mu and
315  * std deviation sigma.  Uses table lookup to approximate the desired
316  * distribution, and a uniformly-distributed pseudo-random source.
317  */
318 static s64 tabledist(s64 mu, s32 sigma,
319 		     struct crndstate *state,
320 		     const struct disttable *dist)
321 {
322 	s64 x;
323 	long t;
324 	u32 rnd;
325 
326 	if (sigma == 0)
327 		return mu;
328 
329 	rnd = get_crandom(state);
330 
331 	/* default uniform distribution */
332 	if (dist == NULL)
333 		return ((rnd % (2 * sigma)) + mu) - sigma;
334 
335 	t = dist->table[rnd % dist->size];
336 	x = (sigma % NETEM_DIST_SCALE) * t;
337 	if (x >= 0)
338 		x += NETEM_DIST_SCALE/2;
339 	else
340 		x -= NETEM_DIST_SCALE/2;
341 
342 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
343 }
344 
345 static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
346 {
347 	len += q->packet_overhead;
348 
349 	if (q->cell_size) {
350 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
351 
352 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
353 			cells++;
354 		len = cells * (q->cell_size + q->cell_overhead);
355 	}
356 
357 	return div64_u64(len * NSEC_PER_SEC, q->rate);
358 }
359 
360 static void tfifo_reset(struct Qdisc *sch)
361 {
362 	struct netem_sched_data *q = qdisc_priv(sch);
363 	struct rb_node *p = rb_first(&q->t_root);
364 
365 	while (p) {
366 		struct sk_buff *skb = rb_to_skb(p);
367 
368 		p = rb_next(p);
369 		rb_erase(&skb->rbnode, &q->t_root);
370 		rtnl_kfree_skbs(skb, skb);
371 	}
372 }
373 
374 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
375 {
376 	struct netem_sched_data *q = qdisc_priv(sch);
377 	u64 tnext = netem_skb_cb(nskb)->time_to_send;
378 	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
379 
380 	while (*p) {
381 		struct sk_buff *skb;
382 
383 		parent = *p;
384 		skb = rb_to_skb(parent);
385 		if (tnext >= netem_skb_cb(skb)->time_to_send)
386 			p = &parent->rb_right;
387 		else
388 			p = &parent->rb_left;
389 	}
390 	rb_link_node(&nskb->rbnode, parent, p);
391 	rb_insert_color(&nskb->rbnode, &q->t_root);
392 	sch->q.qlen++;
393 }
394 
395 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
396  * when we statistically choose to corrupt one, we instead segment it, returning
397  * the first packet to be corrupted, and re-enqueue the remaining frames
398  */
399 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
400 				     struct sk_buff **to_free)
401 {
402 	struct sk_buff *segs;
403 	netdev_features_t features = netif_skb_features(skb);
404 
405 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
406 
407 	if (IS_ERR_OR_NULL(segs)) {
408 		qdisc_drop(skb, sch, to_free);
409 		return NULL;
410 	}
411 	consume_skb(skb);
412 	return segs;
413 }
414 
415 /*
416  * Insert one skb into qdisc.
417  * Note: parent depends on return value to account for queue length.
418  * 	NET_XMIT_DROP: queue length didn't change.
419  *      NET_XMIT_SUCCESS: one skb was queued.
420  */
421 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
422 			 struct sk_buff **to_free)
423 {
424 	struct netem_sched_data *q = qdisc_priv(sch);
425 	/* We don't fill cb now as skb_unshare() may invalidate it */
426 	struct netem_skb_cb *cb;
427 	struct sk_buff *skb2;
428 	struct sk_buff *segs = NULL;
429 	unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb);
430 	int nb = 0;
431 	int count = 1;
432 	int rc = NET_XMIT_SUCCESS;
433 
434 	/* Random duplication */
435 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
436 		++count;
437 
438 	/* Drop packet? */
439 	if (loss_event(q)) {
440 		if (q->ecn && INET_ECN_set_ce(skb))
441 			qdisc_qstats_drop(sch); /* mark packet */
442 		else
443 			--count;
444 	}
445 	if (count == 0) {
446 		qdisc_qstats_drop(sch);
447 		__qdisc_drop(skb, to_free);
448 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
449 	}
450 
451 	/* If a delay is expected, orphan the skb. (orphaning usually takes
452 	 * place at TX completion time, so _before_ the link transit delay)
453 	 */
454 	if (q->latency || q->jitter || q->rate)
455 		skb_orphan_partial(skb);
456 
457 	/*
458 	 * If we need to duplicate packet, then re-insert at top of the
459 	 * qdisc tree, since parent queuer expects that only one
460 	 * skb will be queued.
461 	 */
462 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
463 		struct Qdisc *rootq = qdisc_root(sch);
464 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
465 
466 		q->duplicate = 0;
467 		rootq->enqueue(skb2, rootq, to_free);
468 		q->duplicate = dupsave;
469 	}
470 
471 	/*
472 	 * Randomized packet corruption.
473 	 * Make copy if needed since we are modifying
474 	 * If packet is going to be hardware checksummed, then
475 	 * do it now in software before we mangle it.
476 	 */
477 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
478 		if (skb_is_gso(skb)) {
479 			segs = netem_segment(skb, sch, to_free);
480 			if (!segs)
481 				return NET_XMIT_DROP;
482 		} else {
483 			segs = skb;
484 		}
485 
486 		skb = segs;
487 		segs = segs->next;
488 
489 		skb = skb_unshare(skb, GFP_ATOMIC);
490 		if (unlikely(!skb)) {
491 			qdisc_qstats_drop(sch);
492 			goto finish_segs;
493 		}
494 		if (skb->ip_summed == CHECKSUM_PARTIAL &&
495 		    skb_checksum_help(skb)) {
496 			qdisc_drop(skb, sch, to_free);
497 			goto finish_segs;
498 		}
499 
500 		skb->data[prandom_u32() % skb_headlen(skb)] ^=
501 			1<<(prandom_u32() % 8);
502 	}
503 
504 	if (unlikely(sch->q.qlen >= sch->limit))
505 		return qdisc_drop_all(skb, sch, to_free);
506 
507 	qdisc_qstats_backlog_inc(sch, skb);
508 
509 	cb = netem_skb_cb(skb);
510 	if (q->gap == 0 ||		/* not doing reordering */
511 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
512 	    q->reorder < get_crandom(&q->reorder_cor)) {
513 		u64 now;
514 		s64 delay;
515 
516 		delay = tabledist(q->latency, q->jitter,
517 				  &q->delay_cor, q->delay_dist);
518 
519 		now = ktime_get_ns();
520 
521 		if (q->rate) {
522 			struct netem_skb_cb *last = NULL;
523 
524 			if (sch->q.tail)
525 				last = netem_skb_cb(sch->q.tail);
526 			if (q->t_root.rb_node) {
527 				struct sk_buff *t_skb;
528 				struct netem_skb_cb *t_last;
529 
530 				t_skb = skb_rb_last(&q->t_root);
531 				t_last = netem_skb_cb(t_skb);
532 				if (!last ||
533 				    t_last->time_to_send > last->time_to_send) {
534 					last = t_last;
535 				}
536 			}
537 
538 			if (last) {
539 				/*
540 				 * Last packet in queue is reference point (now),
541 				 * calculate this time bonus and subtract
542 				 * from delay.
543 				 */
544 				delay -= last->time_to_send - now;
545 				delay = max_t(s64, 0, delay);
546 				now = last->time_to_send;
547 			}
548 
549 			delay += packet_time_ns(qdisc_pkt_len(skb), q);
550 		}
551 
552 		cb->time_to_send = now + delay;
553 		++q->counter;
554 		tfifo_enqueue(skb, sch);
555 	} else {
556 		/*
557 		 * Do re-ordering by putting one out of N packets at the front
558 		 * of the queue.
559 		 */
560 		cb->time_to_send = ktime_get_ns();
561 		q->counter = 0;
562 
563 		__qdisc_enqueue_head(skb, &sch->q);
564 		sch->qstats.requeues++;
565 	}
566 
567 finish_segs:
568 	if (segs) {
569 		while (segs) {
570 			skb2 = segs->next;
571 			skb_mark_not_on_list(segs);
572 			qdisc_skb_cb(segs)->pkt_len = segs->len;
573 			last_len = segs->len;
574 			rc = qdisc_enqueue(segs, sch, to_free);
575 			if (rc != NET_XMIT_SUCCESS) {
576 				if (net_xmit_drop_count(rc))
577 					qdisc_qstats_drop(sch);
578 			} else {
579 				nb++;
580 				len += last_len;
581 			}
582 			segs = skb2;
583 		}
584 		sch->q.qlen += nb;
585 		if (nb > 1)
586 			qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
587 	}
588 	return NET_XMIT_SUCCESS;
589 }
590 
591 /* Delay the next round with a new future slot with a
592  * correct number of bytes and packets.
593  */
594 
595 static void get_slot_next(struct netem_sched_data *q, u64 now)
596 {
597 	s64 next_delay;
598 
599 	if (!q->slot_dist)
600 		next_delay = q->slot_config.min_delay +
601 				(prandom_u32() *
602 				 (q->slot_config.max_delay -
603 				  q->slot_config.min_delay) >> 32);
604 	else
605 		next_delay = tabledist(q->slot_config.dist_delay,
606 				       (s32)(q->slot_config.dist_jitter),
607 				       NULL, q->slot_dist);
608 
609 	q->slot.slot_next = now + next_delay;
610 	q->slot.packets_left = q->slot_config.max_packets;
611 	q->slot.bytes_left = q->slot_config.max_bytes;
612 }
613 
614 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
615 {
616 	struct netem_sched_data *q = qdisc_priv(sch);
617 	struct sk_buff *skb;
618 	struct rb_node *p;
619 
620 tfifo_dequeue:
621 	skb = __qdisc_dequeue_head(&sch->q);
622 	if (skb) {
623 		qdisc_qstats_backlog_dec(sch, skb);
624 deliver:
625 		qdisc_bstats_update(sch, skb);
626 		return skb;
627 	}
628 	p = rb_first(&q->t_root);
629 	if (p) {
630 		u64 time_to_send;
631 		u64 now = ktime_get_ns();
632 
633 		skb = rb_to_skb(p);
634 
635 		/* if more time remaining? */
636 		time_to_send = netem_skb_cb(skb)->time_to_send;
637 		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
638 			get_slot_next(q, now);
639 
640 		if (time_to_send <= now &&  q->slot.slot_next <= now) {
641 			rb_erase(p, &q->t_root);
642 			sch->q.qlen--;
643 			qdisc_qstats_backlog_dec(sch, skb);
644 			skb->next = NULL;
645 			skb->prev = NULL;
646 			/* skb->dev shares skb->rbnode area,
647 			 * we need to restore its value.
648 			 */
649 			skb->dev = qdisc_dev(sch);
650 
651 			if (q->slot.slot_next) {
652 				q->slot.packets_left--;
653 				q->slot.bytes_left -= qdisc_pkt_len(skb);
654 				if (q->slot.packets_left <= 0 ||
655 				    q->slot.bytes_left <= 0)
656 					get_slot_next(q, now);
657 			}
658 
659 			if (q->qdisc) {
660 				unsigned int pkt_len = qdisc_pkt_len(skb);
661 				struct sk_buff *to_free = NULL;
662 				int err;
663 
664 				err = qdisc_enqueue(skb, q->qdisc, &to_free);
665 				kfree_skb_list(to_free);
666 				if (err != NET_XMIT_SUCCESS &&
667 				    net_xmit_drop_count(err)) {
668 					qdisc_qstats_drop(sch);
669 					qdisc_tree_reduce_backlog(sch, 1,
670 								  pkt_len);
671 				}
672 				goto tfifo_dequeue;
673 			}
674 			goto deliver;
675 		}
676 
677 		if (q->qdisc) {
678 			skb = q->qdisc->ops->dequeue(q->qdisc);
679 			if (skb)
680 				goto deliver;
681 		}
682 
683 		qdisc_watchdog_schedule_ns(&q->watchdog,
684 					   max(time_to_send,
685 					       q->slot.slot_next));
686 	}
687 
688 	if (q->qdisc) {
689 		skb = q->qdisc->ops->dequeue(q->qdisc);
690 		if (skb)
691 			goto deliver;
692 	}
693 	return NULL;
694 }
695 
696 static void netem_reset(struct Qdisc *sch)
697 {
698 	struct netem_sched_data *q = qdisc_priv(sch);
699 
700 	qdisc_reset_queue(sch);
701 	tfifo_reset(sch);
702 	if (q->qdisc)
703 		qdisc_reset(q->qdisc);
704 	qdisc_watchdog_cancel(&q->watchdog);
705 }
706 
707 static void dist_free(struct disttable *d)
708 {
709 	kvfree(d);
710 }
711 
712 /*
713  * Distribution data is a variable size payload containing
714  * signed 16 bit values.
715  */
716 
717 static int get_dist_table(struct Qdisc *sch, struct disttable **tbl,
718 			  const struct nlattr *attr)
719 {
720 	size_t n = nla_len(attr)/sizeof(__s16);
721 	const __s16 *data = nla_data(attr);
722 	spinlock_t *root_lock;
723 	struct disttable *d;
724 	int i;
725 
726 	if (n > NETEM_DIST_MAX)
727 		return -EINVAL;
728 
729 	d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
730 	if (!d)
731 		return -ENOMEM;
732 
733 	d->size = n;
734 	for (i = 0; i < n; i++)
735 		d->table[i] = data[i];
736 
737 	root_lock = qdisc_root_sleeping_lock(sch);
738 
739 	spin_lock_bh(root_lock);
740 	swap(*tbl, d);
741 	spin_unlock_bh(root_lock);
742 
743 	dist_free(d);
744 	return 0;
745 }
746 
747 static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
748 {
749 	const struct tc_netem_slot *c = nla_data(attr);
750 
751 	q->slot_config = *c;
752 	if (q->slot_config.max_packets == 0)
753 		q->slot_config.max_packets = INT_MAX;
754 	if (q->slot_config.max_bytes == 0)
755 		q->slot_config.max_bytes = INT_MAX;
756 	q->slot.packets_left = q->slot_config.max_packets;
757 	q->slot.bytes_left = q->slot_config.max_bytes;
758 	if (q->slot_config.min_delay | q->slot_config.max_delay |
759 	    q->slot_config.dist_jitter)
760 		q->slot.slot_next = ktime_get_ns();
761 	else
762 		q->slot.slot_next = 0;
763 }
764 
765 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
766 {
767 	const struct tc_netem_corr *c = nla_data(attr);
768 
769 	init_crandom(&q->delay_cor, c->delay_corr);
770 	init_crandom(&q->loss_cor, c->loss_corr);
771 	init_crandom(&q->dup_cor, c->dup_corr);
772 }
773 
774 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
775 {
776 	const struct tc_netem_reorder *r = nla_data(attr);
777 
778 	q->reorder = r->probability;
779 	init_crandom(&q->reorder_cor, r->correlation);
780 }
781 
782 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
783 {
784 	const struct tc_netem_corrupt *r = nla_data(attr);
785 
786 	q->corrupt = r->probability;
787 	init_crandom(&q->corrupt_cor, r->correlation);
788 }
789 
790 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
791 {
792 	const struct tc_netem_rate *r = nla_data(attr);
793 
794 	q->rate = r->rate;
795 	q->packet_overhead = r->packet_overhead;
796 	q->cell_size = r->cell_size;
797 	q->cell_overhead = r->cell_overhead;
798 	if (q->cell_size)
799 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
800 	else
801 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
802 }
803 
804 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
805 {
806 	const struct nlattr *la;
807 	int rem;
808 
809 	nla_for_each_nested(la, attr, rem) {
810 		u16 type = nla_type(la);
811 
812 		switch (type) {
813 		case NETEM_LOSS_GI: {
814 			const struct tc_netem_gimodel *gi = nla_data(la);
815 
816 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
817 				pr_info("netem: incorrect gi model size\n");
818 				return -EINVAL;
819 			}
820 
821 			q->loss_model = CLG_4_STATES;
822 
823 			q->clg.state = TX_IN_GAP_PERIOD;
824 			q->clg.a1 = gi->p13;
825 			q->clg.a2 = gi->p31;
826 			q->clg.a3 = gi->p32;
827 			q->clg.a4 = gi->p14;
828 			q->clg.a5 = gi->p23;
829 			break;
830 		}
831 
832 		case NETEM_LOSS_GE: {
833 			const struct tc_netem_gemodel *ge = nla_data(la);
834 
835 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
836 				pr_info("netem: incorrect ge model size\n");
837 				return -EINVAL;
838 			}
839 
840 			q->loss_model = CLG_GILB_ELL;
841 			q->clg.state = GOOD_STATE;
842 			q->clg.a1 = ge->p;
843 			q->clg.a2 = ge->r;
844 			q->clg.a3 = ge->h;
845 			q->clg.a4 = ge->k1;
846 			break;
847 		}
848 
849 		default:
850 			pr_info("netem: unknown loss type %u\n", type);
851 			return -EINVAL;
852 		}
853 	}
854 
855 	return 0;
856 }
857 
858 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
859 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
860 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
861 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
862 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
863 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
864 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
865 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
866 	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
867 	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
868 	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
869 };
870 
871 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
872 		      const struct nla_policy *policy, int len)
873 {
874 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
875 
876 	if (nested_len < 0) {
877 		pr_info("netem: invalid attributes len %d\n", nested_len);
878 		return -EINVAL;
879 	}
880 
881 	if (nested_len >= nla_attr_size(0))
882 		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
883 				 nested_len, policy, NULL);
884 
885 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
886 	return 0;
887 }
888 
889 /* Parse netlink message to set options */
890 static int netem_change(struct Qdisc *sch, struct nlattr *opt,
891 			struct netlink_ext_ack *extack)
892 {
893 	struct netem_sched_data *q = qdisc_priv(sch);
894 	struct nlattr *tb[TCA_NETEM_MAX + 1];
895 	struct tc_netem_qopt *qopt;
896 	struct clgstate old_clg;
897 	int old_loss_model = CLG_RANDOM;
898 	int ret;
899 
900 	if (opt == NULL)
901 		return -EINVAL;
902 
903 	qopt = nla_data(opt);
904 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
905 	if (ret < 0)
906 		return ret;
907 
908 	/* backup q->clg and q->loss_model */
909 	old_clg = q->clg;
910 	old_loss_model = q->loss_model;
911 
912 	if (tb[TCA_NETEM_LOSS]) {
913 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
914 		if (ret) {
915 			q->loss_model = old_loss_model;
916 			return ret;
917 		}
918 	} else {
919 		q->loss_model = CLG_RANDOM;
920 	}
921 
922 	if (tb[TCA_NETEM_DELAY_DIST]) {
923 		ret = get_dist_table(sch, &q->delay_dist,
924 				     tb[TCA_NETEM_DELAY_DIST]);
925 		if (ret)
926 			goto get_table_failure;
927 	}
928 
929 	if (tb[TCA_NETEM_SLOT_DIST]) {
930 		ret = get_dist_table(sch, &q->slot_dist,
931 				     tb[TCA_NETEM_SLOT_DIST]);
932 		if (ret)
933 			goto get_table_failure;
934 	}
935 
936 	sch->limit = qopt->limit;
937 
938 	q->latency = PSCHED_TICKS2NS(qopt->latency);
939 	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
940 	q->limit = qopt->limit;
941 	q->gap = qopt->gap;
942 	q->counter = 0;
943 	q->loss = qopt->loss;
944 	q->duplicate = qopt->duplicate;
945 
946 	/* for compatibility with earlier versions.
947 	 * if gap is set, need to assume 100% probability
948 	 */
949 	if (q->gap)
950 		q->reorder = ~0;
951 
952 	if (tb[TCA_NETEM_CORR])
953 		get_correlation(q, tb[TCA_NETEM_CORR]);
954 
955 	if (tb[TCA_NETEM_REORDER])
956 		get_reorder(q, tb[TCA_NETEM_REORDER]);
957 
958 	if (tb[TCA_NETEM_CORRUPT])
959 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
960 
961 	if (tb[TCA_NETEM_RATE])
962 		get_rate(q, tb[TCA_NETEM_RATE]);
963 
964 	if (tb[TCA_NETEM_RATE64])
965 		q->rate = max_t(u64, q->rate,
966 				nla_get_u64(tb[TCA_NETEM_RATE64]));
967 
968 	if (tb[TCA_NETEM_LATENCY64])
969 		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
970 
971 	if (tb[TCA_NETEM_JITTER64])
972 		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
973 
974 	if (tb[TCA_NETEM_ECN])
975 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
976 
977 	if (tb[TCA_NETEM_SLOT])
978 		get_slot(q, tb[TCA_NETEM_SLOT]);
979 
980 	return ret;
981 
982 get_table_failure:
983 	/* recover clg and loss_model, in case of
984 	 * q->clg and q->loss_model were modified
985 	 * in get_loss_clg()
986 	 */
987 	q->clg = old_clg;
988 	q->loss_model = old_loss_model;
989 	return ret;
990 }
991 
992 static int netem_init(struct Qdisc *sch, struct nlattr *opt,
993 		      struct netlink_ext_ack *extack)
994 {
995 	struct netem_sched_data *q = qdisc_priv(sch);
996 	int ret;
997 
998 	qdisc_watchdog_init(&q->watchdog, sch);
999 
1000 	if (!opt)
1001 		return -EINVAL;
1002 
1003 	q->loss_model = CLG_RANDOM;
1004 	ret = netem_change(sch, opt, extack);
1005 	if (ret)
1006 		pr_info("netem: change failed\n");
1007 	return ret;
1008 }
1009 
1010 static void netem_destroy(struct Qdisc *sch)
1011 {
1012 	struct netem_sched_data *q = qdisc_priv(sch);
1013 
1014 	qdisc_watchdog_cancel(&q->watchdog);
1015 	if (q->qdisc)
1016 		qdisc_put(q->qdisc);
1017 	dist_free(q->delay_dist);
1018 	dist_free(q->slot_dist);
1019 }
1020 
1021 static int dump_loss_model(const struct netem_sched_data *q,
1022 			   struct sk_buff *skb)
1023 {
1024 	struct nlattr *nest;
1025 
1026 	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
1027 	if (nest == NULL)
1028 		goto nla_put_failure;
1029 
1030 	switch (q->loss_model) {
1031 	case CLG_RANDOM:
1032 		/* legacy loss model */
1033 		nla_nest_cancel(skb, nest);
1034 		return 0;	/* no data */
1035 
1036 	case CLG_4_STATES: {
1037 		struct tc_netem_gimodel gi = {
1038 			.p13 = q->clg.a1,
1039 			.p31 = q->clg.a2,
1040 			.p32 = q->clg.a3,
1041 			.p14 = q->clg.a4,
1042 			.p23 = q->clg.a5,
1043 		};
1044 
1045 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1046 			goto nla_put_failure;
1047 		break;
1048 	}
1049 	case CLG_GILB_ELL: {
1050 		struct tc_netem_gemodel ge = {
1051 			.p = q->clg.a1,
1052 			.r = q->clg.a2,
1053 			.h = q->clg.a3,
1054 			.k1 = q->clg.a4,
1055 		};
1056 
1057 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1058 			goto nla_put_failure;
1059 		break;
1060 	}
1061 	}
1062 
1063 	nla_nest_end(skb, nest);
1064 	return 0;
1065 
1066 nla_put_failure:
1067 	nla_nest_cancel(skb, nest);
1068 	return -1;
1069 }
1070 
1071 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1072 {
1073 	const struct netem_sched_data *q = qdisc_priv(sch);
1074 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1075 	struct tc_netem_qopt qopt;
1076 	struct tc_netem_corr cor;
1077 	struct tc_netem_reorder reorder;
1078 	struct tc_netem_corrupt corrupt;
1079 	struct tc_netem_rate rate;
1080 	struct tc_netem_slot slot;
1081 
1082 	qopt.latency = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->latency),
1083 			     UINT_MAX);
1084 	qopt.jitter = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->jitter),
1085 			    UINT_MAX);
1086 	qopt.limit = q->limit;
1087 	qopt.loss = q->loss;
1088 	qopt.gap = q->gap;
1089 	qopt.duplicate = q->duplicate;
1090 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1091 		goto nla_put_failure;
1092 
1093 	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1094 		goto nla_put_failure;
1095 
1096 	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1097 		goto nla_put_failure;
1098 
1099 	cor.delay_corr = q->delay_cor.rho;
1100 	cor.loss_corr = q->loss_cor.rho;
1101 	cor.dup_corr = q->dup_cor.rho;
1102 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1103 		goto nla_put_failure;
1104 
1105 	reorder.probability = q->reorder;
1106 	reorder.correlation = q->reorder_cor.rho;
1107 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1108 		goto nla_put_failure;
1109 
1110 	corrupt.probability = q->corrupt;
1111 	corrupt.correlation = q->corrupt_cor.rho;
1112 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1113 		goto nla_put_failure;
1114 
1115 	if (q->rate >= (1ULL << 32)) {
1116 		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1117 				      TCA_NETEM_PAD))
1118 			goto nla_put_failure;
1119 		rate.rate = ~0U;
1120 	} else {
1121 		rate.rate = q->rate;
1122 	}
1123 	rate.packet_overhead = q->packet_overhead;
1124 	rate.cell_size = q->cell_size;
1125 	rate.cell_overhead = q->cell_overhead;
1126 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1127 		goto nla_put_failure;
1128 
1129 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1130 		goto nla_put_failure;
1131 
1132 	if (dump_loss_model(q, skb) != 0)
1133 		goto nla_put_failure;
1134 
1135 	if (q->slot_config.min_delay | q->slot_config.max_delay |
1136 	    q->slot_config.dist_jitter) {
1137 		slot = q->slot_config;
1138 		if (slot.max_packets == INT_MAX)
1139 			slot.max_packets = 0;
1140 		if (slot.max_bytes == INT_MAX)
1141 			slot.max_bytes = 0;
1142 		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1143 			goto nla_put_failure;
1144 	}
1145 
1146 	return nla_nest_end(skb, nla);
1147 
1148 nla_put_failure:
1149 	nlmsg_trim(skb, nla);
1150 	return -1;
1151 }
1152 
1153 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1154 			  struct sk_buff *skb, struct tcmsg *tcm)
1155 {
1156 	struct netem_sched_data *q = qdisc_priv(sch);
1157 
1158 	if (cl != 1 || !q->qdisc) 	/* only one class */
1159 		return -ENOENT;
1160 
1161 	tcm->tcm_handle |= TC_H_MIN(1);
1162 	tcm->tcm_info = q->qdisc->handle;
1163 
1164 	return 0;
1165 }
1166 
1167 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1168 		     struct Qdisc **old, struct netlink_ext_ack *extack)
1169 {
1170 	struct netem_sched_data *q = qdisc_priv(sch);
1171 
1172 	*old = qdisc_replace(sch, new, &q->qdisc);
1173 	return 0;
1174 }
1175 
1176 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1177 {
1178 	struct netem_sched_data *q = qdisc_priv(sch);
1179 	return q->qdisc;
1180 }
1181 
1182 static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1183 {
1184 	return 1;
1185 }
1186 
1187 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1188 {
1189 	if (!walker->stop) {
1190 		if (walker->count >= walker->skip)
1191 			if (walker->fn(sch, 1, walker) < 0) {
1192 				walker->stop = 1;
1193 				return;
1194 			}
1195 		walker->count++;
1196 	}
1197 }
1198 
1199 static const struct Qdisc_class_ops netem_class_ops = {
1200 	.graft		=	netem_graft,
1201 	.leaf		=	netem_leaf,
1202 	.find		=	netem_find,
1203 	.walk		=	netem_walk,
1204 	.dump		=	netem_dump_class,
1205 };
1206 
1207 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1208 	.id		=	"netem",
1209 	.cl_ops		=	&netem_class_ops,
1210 	.priv_size	=	sizeof(struct netem_sched_data),
1211 	.enqueue	=	netem_enqueue,
1212 	.dequeue	=	netem_dequeue,
1213 	.peek		=	qdisc_peek_dequeued,
1214 	.init		=	netem_init,
1215 	.reset		=	netem_reset,
1216 	.destroy	=	netem_destroy,
1217 	.change		=	netem_change,
1218 	.dump		=	netem_dump,
1219 	.owner		=	THIS_MODULE,
1220 };
1221 
1222 
1223 static int __init netem_module_init(void)
1224 {
1225 	pr_info("netem: version " VERSION "\n");
1226 	return register_qdisc(&netem_qdisc_ops);
1227 }
1228 static void __exit netem_module_exit(void)
1229 {
1230 	unregister_qdisc(&netem_qdisc_ops);
1231 }
1232 module_init(netem_module_init)
1233 module_exit(netem_module_exit)
1234 MODULE_LICENSE("GPL");
1235