xref: /openbmc/linux/net/sched/sch_netem.c (revision 6774def6)
1 /*
2  * net/sched/sch_netem.c	Network emulator
3  *
4  * 		This program is free software; you can redistribute it and/or
5  * 		modify it under the terms of the GNU General Public License
6  * 		as published by the Free Software Foundation; either version
7  * 		2 of the License.
8  *
9  *  		Many of the algorithms and ideas for this came from
10  *		NIST Net which is not copyrighted.
11  *
12  * Authors:	Stephen Hemminger <shemminger@osdl.org>
13  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
27 
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
31 
32 #define VERSION "1.3"
33 
34 /*	Network Emulation Queuing algorithm.
35 	====================================
36 
37 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 		 Network Emulation Tool
39 		 [2] Luigi Rizzo, DummyNet for FreeBSD
40 
41 	 ----------------------------------------------------------------
42 
43 	 This started out as a simple way to delay outgoing packets to
44 	 test TCP but has grown to include most of the functionality
45 	 of a full blown network emulator like NISTnet. It can delay
46 	 packets and add random jitter (and correlation). The random
47 	 distribution can be loaded from a table as well to provide
48 	 normal, Pareto, or experimental curves. Packet loss,
49 	 duplication, and reordering can also be emulated.
50 
51 	 This qdisc does not do classification that can be handled in
52 	 layering other disciplines.  It does not need to do bandwidth
53 	 control either since that can be handled by using token
54 	 bucket or other rate control.
55 
56      Correlated Loss Generator models
57 
58 	Added generation of correlated loss according to the
59 	"Gilbert-Elliot" model, a 4-state markov model.
60 
61 	References:
62 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 	and intuitive loss model for packet networks and its implementation
65 	in the Netem module in the Linux kernel", available in [1]
66 
67 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
69 */
70 
71 struct netem_sched_data {
72 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 	struct rb_root t_root;
74 
75 	/* optional qdisc for classful handling (NULL at netem init) */
76 	struct Qdisc	*qdisc;
77 
78 	struct qdisc_watchdog watchdog;
79 
80 	psched_tdiff_t latency;
81 	psched_tdiff_t jitter;
82 
83 	u32 loss;
84 	u32 ecn;
85 	u32 limit;
86 	u32 counter;
87 	u32 gap;
88 	u32 duplicate;
89 	u32 reorder;
90 	u32 corrupt;
91 	u64 rate;
92 	s32 packet_overhead;
93 	u32 cell_size;
94 	struct reciprocal_value cell_size_reciprocal;
95 	s32 cell_overhead;
96 
97 	struct crndstate {
98 		u32 last;
99 		u32 rho;
100 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
101 
102 	struct disttable {
103 		u32  size;
104 		s16 table[0];
105 	} *delay_dist;
106 
107 	enum  {
108 		CLG_RANDOM,
109 		CLG_4_STATES,
110 		CLG_GILB_ELL,
111 	} loss_model;
112 
113 	enum {
114 		TX_IN_GAP_PERIOD = 1,
115 		TX_IN_BURST_PERIOD,
116 		LOST_IN_GAP_PERIOD,
117 		LOST_IN_BURST_PERIOD,
118 	} _4_state_model;
119 
120 	enum {
121 		GOOD_STATE = 1,
122 		BAD_STATE,
123 	} GE_state_model;
124 
125 	/* Correlated Loss Generation models */
126 	struct clgstate {
127 		/* state of the Markov chain */
128 		u8 state;
129 
130 		/* 4-states and Gilbert-Elliot models */
131 		u32 a1;	/* p13 for 4-states or p for GE */
132 		u32 a2;	/* p31 for 4-states or r for GE */
133 		u32 a3;	/* p32 for 4-states or h for GE */
134 		u32 a4;	/* p14 for 4-states or 1-k for GE */
135 		u32 a5; /* p23 used only in 4-states */
136 	} clg;
137 
138 };
139 
140 /* Time stamp put into socket buffer control block
141  * Only valid when skbs are in our internal t(ime)fifo queue.
142  */
143 struct netem_skb_cb {
144 	psched_time_t	time_to_send;
145 	ktime_t		tstamp_save;
146 };
147 
148 /* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp
149  * to hold a rb_node structure.
150  *
151  * If struct sk_buff layout is changed, the following checks will complain.
152  */
153 static struct rb_node *netem_rb_node(struct sk_buff *skb)
154 {
155 	BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0);
156 	BUILD_BUG_ON(offsetof(struct sk_buff, prev) !=
157 		     offsetof(struct sk_buff, next) + sizeof(skb->next));
158 	BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) !=
159 		     offsetof(struct sk_buff, prev) + sizeof(skb->prev));
160 	BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) +
161 					      sizeof(skb->prev) +
162 					      sizeof(skb->tstamp));
163 	return (struct rb_node *)&skb->next;
164 }
165 
166 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
167 {
168 	return (struct sk_buff *)rb;
169 }
170 
171 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
172 {
173 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
174 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
175 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
176 }
177 
178 /* init_crandom - initialize correlated random number generator
179  * Use entropy source for initial seed.
180  */
181 static void init_crandom(struct crndstate *state, unsigned long rho)
182 {
183 	state->rho = rho;
184 	state->last = prandom_u32();
185 }
186 
187 /* get_crandom - correlated random number generator
188  * Next number depends on last value.
189  * rho is scaled to avoid floating point.
190  */
191 static u32 get_crandom(struct crndstate *state)
192 {
193 	u64 value, rho;
194 	unsigned long answer;
195 
196 	if (state->rho == 0)	/* no correlation */
197 		return prandom_u32();
198 
199 	value = prandom_u32();
200 	rho = (u64)state->rho + 1;
201 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
202 	state->last = answer;
203 	return answer;
204 }
205 
206 /* loss_4state - 4-state model loss generator
207  * Generates losses according to the 4-state Markov chain adopted in
208  * the GI (General and Intuitive) loss model.
209  */
210 static bool loss_4state(struct netem_sched_data *q)
211 {
212 	struct clgstate *clg = &q->clg;
213 	u32 rnd = prandom_u32();
214 
215 	/*
216 	 * Makes a comparison between rnd and the transition
217 	 * probabilities outgoing from the current state, then decides the
218 	 * next state and if the next packet has to be transmitted or lost.
219 	 * The four states correspond to:
220 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
221 	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
222 	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
223 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
224 	 */
225 	switch (clg->state) {
226 	case TX_IN_GAP_PERIOD:
227 		if (rnd < clg->a4) {
228 			clg->state = LOST_IN_BURST_PERIOD;
229 			return true;
230 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
231 			clg->state = LOST_IN_GAP_PERIOD;
232 			return true;
233 		} else if (clg->a1 + clg->a4 < rnd) {
234 			clg->state = TX_IN_GAP_PERIOD;
235 		}
236 
237 		break;
238 	case TX_IN_BURST_PERIOD:
239 		if (rnd < clg->a5) {
240 			clg->state = LOST_IN_GAP_PERIOD;
241 			return true;
242 		} else {
243 			clg->state = TX_IN_BURST_PERIOD;
244 		}
245 
246 		break;
247 	case LOST_IN_GAP_PERIOD:
248 		if (rnd < clg->a3)
249 			clg->state = TX_IN_BURST_PERIOD;
250 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
251 			clg->state = TX_IN_GAP_PERIOD;
252 		} else if (clg->a2 + clg->a3 < rnd) {
253 			clg->state = LOST_IN_GAP_PERIOD;
254 			return true;
255 		}
256 		break;
257 	case LOST_IN_BURST_PERIOD:
258 		clg->state = TX_IN_GAP_PERIOD;
259 		break;
260 	}
261 
262 	return false;
263 }
264 
265 /* loss_gilb_ell - Gilbert-Elliot model loss generator
266  * Generates losses according to the Gilbert-Elliot loss model or
267  * its special cases  (Gilbert or Simple Gilbert)
268  *
269  * Makes a comparison between random number and the transition
270  * probabilities outgoing from the current state, then decides the
271  * next state. A second random number is extracted and the comparison
272  * with the loss probability of the current state decides if the next
273  * packet will be transmitted or lost.
274  */
275 static bool loss_gilb_ell(struct netem_sched_data *q)
276 {
277 	struct clgstate *clg = &q->clg;
278 
279 	switch (clg->state) {
280 	case GOOD_STATE:
281 		if (prandom_u32() < clg->a1)
282 			clg->state = BAD_STATE;
283 		if (prandom_u32() < clg->a4)
284 			return true;
285 		break;
286 	case BAD_STATE:
287 		if (prandom_u32() < clg->a2)
288 			clg->state = GOOD_STATE;
289 		if (prandom_u32() > clg->a3)
290 			return true;
291 	}
292 
293 	return false;
294 }
295 
296 static bool loss_event(struct netem_sched_data *q)
297 {
298 	switch (q->loss_model) {
299 	case CLG_RANDOM:
300 		/* Random packet drop 0 => none, ~0 => all */
301 		return q->loss && q->loss >= get_crandom(&q->loss_cor);
302 
303 	case CLG_4_STATES:
304 		/* 4state loss model algorithm (used also for GI model)
305 		* Extracts a value from the markov 4 state loss generator,
306 		* if it is 1 drops a packet and if needed writes the event in
307 		* the kernel logs
308 		*/
309 		return loss_4state(q);
310 
311 	case CLG_GILB_ELL:
312 		/* Gilbert-Elliot loss model algorithm
313 		* Extracts a value from the Gilbert-Elliot loss generator,
314 		* if it is 1 drops a packet and if needed writes the event in
315 		* the kernel logs
316 		*/
317 		return loss_gilb_ell(q);
318 	}
319 
320 	return false;	/* not reached */
321 }
322 
323 
324 /* tabledist - return a pseudo-randomly distributed value with mean mu and
325  * std deviation sigma.  Uses table lookup to approximate the desired
326  * distribution, and a uniformly-distributed pseudo-random source.
327  */
328 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
329 				struct crndstate *state,
330 				const struct disttable *dist)
331 {
332 	psched_tdiff_t x;
333 	long t;
334 	u32 rnd;
335 
336 	if (sigma == 0)
337 		return mu;
338 
339 	rnd = get_crandom(state);
340 
341 	/* default uniform distribution */
342 	if (dist == NULL)
343 		return (rnd % (2*sigma)) - sigma + mu;
344 
345 	t = dist->table[rnd % dist->size];
346 	x = (sigma % NETEM_DIST_SCALE) * t;
347 	if (x >= 0)
348 		x += NETEM_DIST_SCALE/2;
349 	else
350 		x -= NETEM_DIST_SCALE/2;
351 
352 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
353 }
354 
355 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
356 {
357 	u64 ticks;
358 
359 	len += q->packet_overhead;
360 
361 	if (q->cell_size) {
362 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
363 
364 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
365 			cells++;
366 		len = cells * (q->cell_size + q->cell_overhead);
367 	}
368 
369 	ticks = (u64)len * NSEC_PER_SEC;
370 
371 	do_div(ticks, q->rate);
372 	return PSCHED_NS2TICKS(ticks);
373 }
374 
375 static void tfifo_reset(struct Qdisc *sch)
376 {
377 	struct netem_sched_data *q = qdisc_priv(sch);
378 	struct rb_node *p;
379 
380 	while ((p = rb_first(&q->t_root))) {
381 		struct sk_buff *skb = netem_rb_to_skb(p);
382 
383 		rb_erase(p, &q->t_root);
384 		skb->next = NULL;
385 		skb->prev = NULL;
386 		kfree_skb(skb);
387 	}
388 }
389 
390 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
391 {
392 	struct netem_sched_data *q = qdisc_priv(sch);
393 	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
394 	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
395 
396 	while (*p) {
397 		struct sk_buff *skb;
398 
399 		parent = *p;
400 		skb = netem_rb_to_skb(parent);
401 		if (tnext >= netem_skb_cb(skb)->time_to_send)
402 			p = &parent->rb_right;
403 		else
404 			p = &parent->rb_left;
405 	}
406 	rb_link_node(netem_rb_node(nskb), parent, p);
407 	rb_insert_color(netem_rb_node(nskb), &q->t_root);
408 	sch->q.qlen++;
409 }
410 
411 /*
412  * Insert one skb into qdisc.
413  * Note: parent depends on return value to account for queue length.
414  * 	NET_XMIT_DROP: queue length didn't change.
415  *      NET_XMIT_SUCCESS: one skb was queued.
416  */
417 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
418 {
419 	struct netem_sched_data *q = qdisc_priv(sch);
420 	/* We don't fill cb now as skb_unshare() may invalidate it */
421 	struct netem_skb_cb *cb;
422 	struct sk_buff *skb2;
423 	int count = 1;
424 
425 	/* Random duplication */
426 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
427 		++count;
428 
429 	/* Drop packet? */
430 	if (loss_event(q)) {
431 		if (q->ecn && INET_ECN_set_ce(skb))
432 			qdisc_qstats_drop(sch); /* mark packet */
433 		else
434 			--count;
435 	}
436 	if (count == 0) {
437 		qdisc_qstats_drop(sch);
438 		kfree_skb(skb);
439 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
440 	}
441 
442 	/* If a delay is expected, orphan the skb. (orphaning usually takes
443 	 * place at TX completion time, so _before_ the link transit delay)
444 	 */
445 	if (q->latency || q->jitter)
446 		skb_orphan_partial(skb);
447 
448 	/*
449 	 * If we need to duplicate packet, then re-insert at top of the
450 	 * qdisc tree, since parent queuer expects that only one
451 	 * skb will be queued.
452 	 */
453 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
454 		struct Qdisc *rootq = qdisc_root(sch);
455 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
456 		q->duplicate = 0;
457 
458 		qdisc_enqueue_root(skb2, rootq);
459 		q->duplicate = dupsave;
460 	}
461 
462 	/*
463 	 * Randomized packet corruption.
464 	 * Make copy if needed since we are modifying
465 	 * If packet is going to be hardware checksummed, then
466 	 * do it now in software before we mangle it.
467 	 */
468 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
469 		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
470 		    (skb->ip_summed == CHECKSUM_PARTIAL &&
471 		     skb_checksum_help(skb)))
472 			return qdisc_drop(skb, sch);
473 
474 		skb->data[prandom_u32() % skb_headlen(skb)] ^=
475 			1<<(prandom_u32() % 8);
476 	}
477 
478 	if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
479 		return qdisc_reshape_fail(skb, sch);
480 
481 	qdisc_qstats_backlog_inc(sch, skb);
482 
483 	cb = netem_skb_cb(skb);
484 	if (q->gap == 0 ||		/* not doing reordering */
485 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
486 	    q->reorder < get_crandom(&q->reorder_cor)) {
487 		psched_time_t now;
488 		psched_tdiff_t delay;
489 
490 		delay = tabledist(q->latency, q->jitter,
491 				  &q->delay_cor, q->delay_dist);
492 
493 		now = psched_get_time();
494 
495 		if (q->rate) {
496 			struct sk_buff *last;
497 
498 			if (!skb_queue_empty(&sch->q))
499 				last = skb_peek_tail(&sch->q);
500 			else
501 				last = netem_rb_to_skb(rb_last(&q->t_root));
502 			if (last) {
503 				/*
504 				 * Last packet in queue is reference point (now),
505 				 * calculate this time bonus and subtract
506 				 * from delay.
507 				 */
508 				delay -= netem_skb_cb(last)->time_to_send - now;
509 				delay = max_t(psched_tdiff_t, 0, delay);
510 				now = netem_skb_cb(last)->time_to_send;
511 			}
512 
513 			delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
514 		}
515 
516 		cb->time_to_send = now + delay;
517 		cb->tstamp_save = skb->tstamp;
518 		++q->counter;
519 		tfifo_enqueue(skb, sch);
520 	} else {
521 		/*
522 		 * Do re-ordering by putting one out of N packets at the front
523 		 * of the queue.
524 		 */
525 		cb->time_to_send = psched_get_time();
526 		q->counter = 0;
527 
528 		__skb_queue_head(&sch->q, skb);
529 		sch->qstats.requeues++;
530 	}
531 
532 	return NET_XMIT_SUCCESS;
533 }
534 
535 static unsigned int netem_drop(struct Qdisc *sch)
536 {
537 	struct netem_sched_data *q = qdisc_priv(sch);
538 	unsigned int len;
539 
540 	len = qdisc_queue_drop(sch);
541 
542 	if (!len) {
543 		struct rb_node *p = rb_first(&q->t_root);
544 
545 		if (p) {
546 			struct sk_buff *skb = netem_rb_to_skb(p);
547 
548 			rb_erase(p, &q->t_root);
549 			sch->q.qlen--;
550 			skb->next = NULL;
551 			skb->prev = NULL;
552 			qdisc_qstats_backlog_dec(sch, skb);
553 			kfree_skb(skb);
554 		}
555 	}
556 	if (!len && q->qdisc && q->qdisc->ops->drop)
557 	    len = q->qdisc->ops->drop(q->qdisc);
558 	if (len)
559 		qdisc_qstats_drop(sch);
560 
561 	return len;
562 }
563 
564 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
565 {
566 	struct netem_sched_data *q = qdisc_priv(sch);
567 	struct sk_buff *skb;
568 	struct rb_node *p;
569 
570 	if (qdisc_is_throttled(sch))
571 		return NULL;
572 
573 tfifo_dequeue:
574 	skb = __skb_dequeue(&sch->q);
575 	if (skb) {
576 deliver:
577 		qdisc_qstats_backlog_dec(sch, skb);
578 		qdisc_unthrottled(sch);
579 		qdisc_bstats_update(sch, skb);
580 		return skb;
581 	}
582 	p = rb_first(&q->t_root);
583 	if (p) {
584 		psched_time_t time_to_send;
585 
586 		skb = netem_rb_to_skb(p);
587 
588 		/* if more time remaining? */
589 		time_to_send = netem_skb_cb(skb)->time_to_send;
590 		if (time_to_send <= psched_get_time()) {
591 			rb_erase(p, &q->t_root);
592 
593 			sch->q.qlen--;
594 			skb->next = NULL;
595 			skb->prev = NULL;
596 			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
597 
598 #ifdef CONFIG_NET_CLS_ACT
599 			/*
600 			 * If it's at ingress let's pretend the delay is
601 			 * from the network (tstamp will be updated).
602 			 */
603 			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
604 				skb->tstamp.tv64 = 0;
605 #endif
606 
607 			if (q->qdisc) {
608 				int err = qdisc_enqueue(skb, q->qdisc);
609 
610 				if (unlikely(err != NET_XMIT_SUCCESS)) {
611 					if (net_xmit_drop_count(err)) {
612 						qdisc_qstats_drop(sch);
613 						qdisc_tree_decrease_qlen(sch, 1);
614 					}
615 				}
616 				goto tfifo_dequeue;
617 			}
618 			goto deliver;
619 		}
620 
621 		if (q->qdisc) {
622 			skb = q->qdisc->ops->dequeue(q->qdisc);
623 			if (skb)
624 				goto deliver;
625 		}
626 		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
627 	}
628 
629 	if (q->qdisc) {
630 		skb = q->qdisc->ops->dequeue(q->qdisc);
631 		if (skb)
632 			goto deliver;
633 	}
634 	return NULL;
635 }
636 
637 static void netem_reset(struct Qdisc *sch)
638 {
639 	struct netem_sched_data *q = qdisc_priv(sch);
640 
641 	qdisc_reset_queue(sch);
642 	tfifo_reset(sch);
643 	if (q->qdisc)
644 		qdisc_reset(q->qdisc);
645 	qdisc_watchdog_cancel(&q->watchdog);
646 }
647 
648 static void dist_free(struct disttable *d)
649 {
650 	kvfree(d);
651 }
652 
653 /*
654  * Distribution data is a variable size payload containing
655  * signed 16 bit values.
656  */
657 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
658 {
659 	struct netem_sched_data *q = qdisc_priv(sch);
660 	size_t n = nla_len(attr)/sizeof(__s16);
661 	const __s16 *data = nla_data(attr);
662 	spinlock_t *root_lock;
663 	struct disttable *d;
664 	int i;
665 	size_t s;
666 
667 	if (n > NETEM_DIST_MAX)
668 		return -EINVAL;
669 
670 	s = sizeof(struct disttable) + n * sizeof(s16);
671 	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
672 	if (!d)
673 		d = vmalloc(s);
674 	if (!d)
675 		return -ENOMEM;
676 
677 	d->size = n;
678 	for (i = 0; i < n; i++)
679 		d->table[i] = data[i];
680 
681 	root_lock = qdisc_root_sleeping_lock(sch);
682 
683 	spin_lock_bh(root_lock);
684 	swap(q->delay_dist, d);
685 	spin_unlock_bh(root_lock);
686 
687 	dist_free(d);
688 	return 0;
689 }
690 
691 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
692 {
693 	const struct tc_netem_corr *c = nla_data(attr);
694 
695 	init_crandom(&q->delay_cor, c->delay_corr);
696 	init_crandom(&q->loss_cor, c->loss_corr);
697 	init_crandom(&q->dup_cor, c->dup_corr);
698 }
699 
700 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
701 {
702 	const struct tc_netem_reorder *r = nla_data(attr);
703 
704 	q->reorder = r->probability;
705 	init_crandom(&q->reorder_cor, r->correlation);
706 }
707 
708 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
709 {
710 	const struct tc_netem_corrupt *r = nla_data(attr);
711 
712 	q->corrupt = r->probability;
713 	init_crandom(&q->corrupt_cor, r->correlation);
714 }
715 
716 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
717 {
718 	const struct tc_netem_rate *r = nla_data(attr);
719 
720 	q->rate = r->rate;
721 	q->packet_overhead = r->packet_overhead;
722 	q->cell_size = r->cell_size;
723 	q->cell_overhead = r->cell_overhead;
724 	if (q->cell_size)
725 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
726 	else
727 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
728 }
729 
730 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
731 {
732 	const struct nlattr *la;
733 	int rem;
734 
735 	nla_for_each_nested(la, attr, rem) {
736 		u16 type = nla_type(la);
737 
738 		switch (type) {
739 		case NETEM_LOSS_GI: {
740 			const struct tc_netem_gimodel *gi = nla_data(la);
741 
742 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
743 				pr_info("netem: incorrect gi model size\n");
744 				return -EINVAL;
745 			}
746 
747 			q->loss_model = CLG_4_STATES;
748 
749 			q->clg.state = TX_IN_GAP_PERIOD;
750 			q->clg.a1 = gi->p13;
751 			q->clg.a2 = gi->p31;
752 			q->clg.a3 = gi->p32;
753 			q->clg.a4 = gi->p14;
754 			q->clg.a5 = gi->p23;
755 			break;
756 		}
757 
758 		case NETEM_LOSS_GE: {
759 			const struct tc_netem_gemodel *ge = nla_data(la);
760 
761 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
762 				pr_info("netem: incorrect ge model size\n");
763 				return -EINVAL;
764 			}
765 
766 			q->loss_model = CLG_GILB_ELL;
767 			q->clg.state = GOOD_STATE;
768 			q->clg.a1 = ge->p;
769 			q->clg.a2 = ge->r;
770 			q->clg.a3 = ge->h;
771 			q->clg.a4 = ge->k1;
772 			break;
773 		}
774 
775 		default:
776 			pr_info("netem: unknown loss type %u\n", type);
777 			return -EINVAL;
778 		}
779 	}
780 
781 	return 0;
782 }
783 
784 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
785 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
786 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
787 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
788 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
789 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
790 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
791 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
792 };
793 
794 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
795 		      const struct nla_policy *policy, int len)
796 {
797 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
798 
799 	if (nested_len < 0) {
800 		pr_info("netem: invalid attributes len %d\n", nested_len);
801 		return -EINVAL;
802 	}
803 
804 	if (nested_len >= nla_attr_size(0))
805 		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
806 				 nested_len, policy);
807 
808 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
809 	return 0;
810 }
811 
812 /* Parse netlink message to set options */
813 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
814 {
815 	struct netem_sched_data *q = qdisc_priv(sch);
816 	struct nlattr *tb[TCA_NETEM_MAX + 1];
817 	struct tc_netem_qopt *qopt;
818 	struct clgstate old_clg;
819 	int old_loss_model = CLG_RANDOM;
820 	int ret;
821 
822 	if (opt == NULL)
823 		return -EINVAL;
824 
825 	qopt = nla_data(opt);
826 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
827 	if (ret < 0)
828 		return ret;
829 
830 	/* backup q->clg and q->loss_model */
831 	old_clg = q->clg;
832 	old_loss_model = q->loss_model;
833 
834 	if (tb[TCA_NETEM_LOSS]) {
835 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
836 		if (ret) {
837 			q->loss_model = old_loss_model;
838 			return ret;
839 		}
840 	} else {
841 		q->loss_model = CLG_RANDOM;
842 	}
843 
844 	if (tb[TCA_NETEM_DELAY_DIST]) {
845 		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
846 		if (ret) {
847 			/* recover clg and loss_model, in case of
848 			 * q->clg and q->loss_model were modified
849 			 * in get_loss_clg()
850 			 */
851 			q->clg = old_clg;
852 			q->loss_model = old_loss_model;
853 			return ret;
854 		}
855 	}
856 
857 	sch->limit = qopt->limit;
858 
859 	q->latency = qopt->latency;
860 	q->jitter = qopt->jitter;
861 	q->limit = qopt->limit;
862 	q->gap = qopt->gap;
863 	q->counter = 0;
864 	q->loss = qopt->loss;
865 	q->duplicate = qopt->duplicate;
866 
867 	/* for compatibility with earlier versions.
868 	 * if gap is set, need to assume 100% probability
869 	 */
870 	if (q->gap)
871 		q->reorder = ~0;
872 
873 	if (tb[TCA_NETEM_CORR])
874 		get_correlation(q, tb[TCA_NETEM_CORR]);
875 
876 	if (tb[TCA_NETEM_REORDER])
877 		get_reorder(q, tb[TCA_NETEM_REORDER]);
878 
879 	if (tb[TCA_NETEM_CORRUPT])
880 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
881 
882 	if (tb[TCA_NETEM_RATE])
883 		get_rate(q, tb[TCA_NETEM_RATE]);
884 
885 	if (tb[TCA_NETEM_RATE64])
886 		q->rate = max_t(u64, q->rate,
887 				nla_get_u64(tb[TCA_NETEM_RATE64]));
888 
889 	if (tb[TCA_NETEM_ECN])
890 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
891 
892 	return ret;
893 }
894 
895 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
896 {
897 	struct netem_sched_data *q = qdisc_priv(sch);
898 	int ret;
899 
900 	if (!opt)
901 		return -EINVAL;
902 
903 	qdisc_watchdog_init(&q->watchdog, sch);
904 
905 	q->loss_model = CLG_RANDOM;
906 	ret = netem_change(sch, opt);
907 	if (ret)
908 		pr_info("netem: change failed\n");
909 	return ret;
910 }
911 
912 static void netem_destroy(struct Qdisc *sch)
913 {
914 	struct netem_sched_data *q = qdisc_priv(sch);
915 
916 	qdisc_watchdog_cancel(&q->watchdog);
917 	if (q->qdisc)
918 		qdisc_destroy(q->qdisc);
919 	dist_free(q->delay_dist);
920 }
921 
922 static int dump_loss_model(const struct netem_sched_data *q,
923 			   struct sk_buff *skb)
924 {
925 	struct nlattr *nest;
926 
927 	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
928 	if (nest == NULL)
929 		goto nla_put_failure;
930 
931 	switch (q->loss_model) {
932 	case CLG_RANDOM:
933 		/* legacy loss model */
934 		nla_nest_cancel(skb, nest);
935 		return 0;	/* no data */
936 
937 	case CLG_4_STATES: {
938 		struct tc_netem_gimodel gi = {
939 			.p13 = q->clg.a1,
940 			.p31 = q->clg.a2,
941 			.p32 = q->clg.a3,
942 			.p14 = q->clg.a4,
943 			.p23 = q->clg.a5,
944 		};
945 
946 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
947 			goto nla_put_failure;
948 		break;
949 	}
950 	case CLG_GILB_ELL: {
951 		struct tc_netem_gemodel ge = {
952 			.p = q->clg.a1,
953 			.r = q->clg.a2,
954 			.h = q->clg.a3,
955 			.k1 = q->clg.a4,
956 		};
957 
958 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
959 			goto nla_put_failure;
960 		break;
961 	}
962 	}
963 
964 	nla_nest_end(skb, nest);
965 	return 0;
966 
967 nla_put_failure:
968 	nla_nest_cancel(skb, nest);
969 	return -1;
970 }
971 
972 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
973 {
974 	const struct netem_sched_data *q = qdisc_priv(sch);
975 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
976 	struct tc_netem_qopt qopt;
977 	struct tc_netem_corr cor;
978 	struct tc_netem_reorder reorder;
979 	struct tc_netem_corrupt corrupt;
980 	struct tc_netem_rate rate;
981 
982 	qopt.latency = q->latency;
983 	qopt.jitter = q->jitter;
984 	qopt.limit = q->limit;
985 	qopt.loss = q->loss;
986 	qopt.gap = q->gap;
987 	qopt.duplicate = q->duplicate;
988 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
989 		goto nla_put_failure;
990 
991 	cor.delay_corr = q->delay_cor.rho;
992 	cor.loss_corr = q->loss_cor.rho;
993 	cor.dup_corr = q->dup_cor.rho;
994 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
995 		goto nla_put_failure;
996 
997 	reorder.probability = q->reorder;
998 	reorder.correlation = q->reorder_cor.rho;
999 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1000 		goto nla_put_failure;
1001 
1002 	corrupt.probability = q->corrupt;
1003 	corrupt.correlation = q->corrupt_cor.rho;
1004 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1005 		goto nla_put_failure;
1006 
1007 	if (q->rate >= (1ULL << 32)) {
1008 		if (nla_put_u64(skb, TCA_NETEM_RATE64, q->rate))
1009 			goto nla_put_failure;
1010 		rate.rate = ~0U;
1011 	} else {
1012 		rate.rate = q->rate;
1013 	}
1014 	rate.packet_overhead = q->packet_overhead;
1015 	rate.cell_size = q->cell_size;
1016 	rate.cell_overhead = q->cell_overhead;
1017 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1018 		goto nla_put_failure;
1019 
1020 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1021 		goto nla_put_failure;
1022 
1023 	if (dump_loss_model(q, skb) != 0)
1024 		goto nla_put_failure;
1025 
1026 	return nla_nest_end(skb, nla);
1027 
1028 nla_put_failure:
1029 	nlmsg_trim(skb, nla);
1030 	return -1;
1031 }
1032 
1033 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1034 			  struct sk_buff *skb, struct tcmsg *tcm)
1035 {
1036 	struct netem_sched_data *q = qdisc_priv(sch);
1037 
1038 	if (cl != 1 || !q->qdisc) 	/* only one class */
1039 		return -ENOENT;
1040 
1041 	tcm->tcm_handle |= TC_H_MIN(1);
1042 	tcm->tcm_info = q->qdisc->handle;
1043 
1044 	return 0;
1045 }
1046 
1047 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1048 		     struct Qdisc **old)
1049 {
1050 	struct netem_sched_data *q = qdisc_priv(sch);
1051 
1052 	sch_tree_lock(sch);
1053 	*old = q->qdisc;
1054 	q->qdisc = new;
1055 	if (*old) {
1056 		qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
1057 		qdisc_reset(*old);
1058 	}
1059 	sch_tree_unlock(sch);
1060 
1061 	return 0;
1062 }
1063 
1064 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1065 {
1066 	struct netem_sched_data *q = qdisc_priv(sch);
1067 	return q->qdisc;
1068 }
1069 
1070 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1071 {
1072 	return 1;
1073 }
1074 
1075 static void netem_put(struct Qdisc *sch, unsigned long arg)
1076 {
1077 }
1078 
1079 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1080 {
1081 	if (!walker->stop) {
1082 		if (walker->count >= walker->skip)
1083 			if (walker->fn(sch, 1, walker) < 0) {
1084 				walker->stop = 1;
1085 				return;
1086 			}
1087 		walker->count++;
1088 	}
1089 }
1090 
1091 static const struct Qdisc_class_ops netem_class_ops = {
1092 	.graft		=	netem_graft,
1093 	.leaf		=	netem_leaf,
1094 	.get		=	netem_get,
1095 	.put		=	netem_put,
1096 	.walk		=	netem_walk,
1097 	.dump		=	netem_dump_class,
1098 };
1099 
1100 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1101 	.id		=	"netem",
1102 	.cl_ops		=	&netem_class_ops,
1103 	.priv_size	=	sizeof(struct netem_sched_data),
1104 	.enqueue	=	netem_enqueue,
1105 	.dequeue	=	netem_dequeue,
1106 	.peek		=	qdisc_peek_dequeued,
1107 	.drop		=	netem_drop,
1108 	.init		=	netem_init,
1109 	.reset		=	netem_reset,
1110 	.destroy	=	netem_destroy,
1111 	.change		=	netem_change,
1112 	.dump		=	netem_dump,
1113 	.owner		=	THIS_MODULE,
1114 };
1115 
1116 
1117 static int __init netem_module_init(void)
1118 {
1119 	pr_info("netem: version " VERSION "\n");
1120 	return register_qdisc(&netem_qdisc_ops);
1121 }
1122 static void __exit netem_module_exit(void)
1123 {
1124 	unregister_qdisc(&netem_qdisc_ops);
1125 }
1126 module_init(netem_module_init)
1127 module_exit(netem_module_exit)
1128 MODULE_LICENSE("GPL");
1129