xref: /openbmc/linux/net/sched/sch_netem.c (revision 5bd8e16d)
1 /*
2  * net/sched/sch_netem.c	Network emulator
3  *
4  * 		This program is free software; you can redistribute it and/or
5  * 		modify it under the terms of the GNU General Public License
6  * 		as published by the Free Software Foundation; either version
7  * 		2 of the License.
8  *
9  *  		Many of the algorithms and ideas for this came from
10  *		NIST Net which is not copyrighted.
11  *
12  * Authors:	Stephen Hemminger <shemminger@osdl.org>
13  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
27 
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
31 
32 #define VERSION "1.3"
33 
34 /*	Network Emulation Queuing algorithm.
35 	====================================
36 
37 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 		 Network Emulation Tool
39 		 [2] Luigi Rizzo, DummyNet for FreeBSD
40 
41 	 ----------------------------------------------------------------
42 
43 	 This started out as a simple way to delay outgoing packets to
44 	 test TCP but has grown to include most of the functionality
45 	 of a full blown network emulator like NISTnet. It can delay
46 	 packets and add random jitter (and correlation). The random
47 	 distribution can be loaded from a table as well to provide
48 	 normal, Pareto, or experimental curves. Packet loss,
49 	 duplication, and reordering can also be emulated.
50 
51 	 This qdisc does not do classification that can be handled in
52 	 layering other disciplines.  It does not need to do bandwidth
53 	 control either since that can be handled by using token
54 	 bucket or other rate control.
55 
56      Correlated Loss Generator models
57 
58 	Added generation of correlated loss according to the
59 	"Gilbert-Elliot" model, a 4-state markov model.
60 
61 	References:
62 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 	and intuitive loss model for packet networks and its implementation
65 	in the Netem module in the Linux kernel", available in [1]
66 
67 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
69 */
70 
71 struct netem_sched_data {
72 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 	struct rb_root t_root;
74 
75 	/* optional qdisc for classful handling (NULL at netem init) */
76 	struct Qdisc	*qdisc;
77 
78 	struct qdisc_watchdog watchdog;
79 
80 	psched_tdiff_t latency;
81 	psched_tdiff_t jitter;
82 
83 	u32 loss;
84 	u32 ecn;
85 	u32 limit;
86 	u32 counter;
87 	u32 gap;
88 	u32 duplicate;
89 	u32 reorder;
90 	u32 corrupt;
91 	u32 rate;
92 	s32 packet_overhead;
93 	u32 cell_size;
94 	u32 cell_size_reciprocal;
95 	s32 cell_overhead;
96 
97 	struct crndstate {
98 		u32 last;
99 		u32 rho;
100 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
101 
102 	struct disttable {
103 		u32  size;
104 		s16 table[0];
105 	} *delay_dist;
106 
107 	enum  {
108 		CLG_RANDOM,
109 		CLG_4_STATES,
110 		CLG_GILB_ELL,
111 	} loss_model;
112 
113 	/* Correlated Loss Generation models */
114 	struct clgstate {
115 		/* state of the Markov chain */
116 		u8 state;
117 
118 		/* 4-states and Gilbert-Elliot models */
119 		u32 a1;	/* p13 for 4-states or p for GE */
120 		u32 a2;	/* p31 for 4-states or r for GE */
121 		u32 a3;	/* p32 for 4-states or h for GE */
122 		u32 a4;	/* p14 for 4-states or 1-k for GE */
123 		u32 a5; /* p23 used only in 4-states */
124 	} clg;
125 
126 };
127 
128 /* Time stamp put into socket buffer control block
129  * Only valid when skbs are in our internal t(ime)fifo queue.
130  */
131 struct netem_skb_cb {
132 	psched_time_t	time_to_send;
133 	ktime_t		tstamp_save;
134 };
135 
136 /* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp
137  * to hold a rb_node structure.
138  *
139  * If struct sk_buff layout is changed, the following checks will complain.
140  */
141 static struct rb_node *netem_rb_node(struct sk_buff *skb)
142 {
143 	BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0);
144 	BUILD_BUG_ON(offsetof(struct sk_buff, prev) !=
145 		     offsetof(struct sk_buff, next) + sizeof(skb->next));
146 	BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) !=
147 		     offsetof(struct sk_buff, prev) + sizeof(skb->prev));
148 	BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) +
149 					      sizeof(skb->prev) +
150 					      sizeof(skb->tstamp));
151 	return (struct rb_node *)&skb->next;
152 }
153 
154 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
155 {
156 	return (struct sk_buff *)rb;
157 }
158 
159 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
160 {
161 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
162 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
163 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
164 }
165 
166 /* init_crandom - initialize correlated random number generator
167  * Use entropy source for initial seed.
168  */
169 static void init_crandom(struct crndstate *state, unsigned long rho)
170 {
171 	state->rho = rho;
172 	state->last = net_random();
173 }
174 
175 /* get_crandom - correlated random number generator
176  * Next number depends on last value.
177  * rho is scaled to avoid floating point.
178  */
179 static u32 get_crandom(struct crndstate *state)
180 {
181 	u64 value, rho;
182 	unsigned long answer;
183 
184 	if (state->rho == 0)	/* no correlation */
185 		return net_random();
186 
187 	value = net_random();
188 	rho = (u64)state->rho + 1;
189 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
190 	state->last = answer;
191 	return answer;
192 }
193 
194 /* loss_4state - 4-state model loss generator
195  * Generates losses according to the 4-state Markov chain adopted in
196  * the GI (General and Intuitive) loss model.
197  */
198 static bool loss_4state(struct netem_sched_data *q)
199 {
200 	struct clgstate *clg = &q->clg;
201 	u32 rnd = net_random();
202 
203 	/*
204 	 * Makes a comparison between rnd and the transition
205 	 * probabilities outgoing from the current state, then decides the
206 	 * next state and if the next packet has to be transmitted or lost.
207 	 * The four states correspond to:
208 	 *   1 => successfully transmitted packets within a gap period
209 	 *   4 => isolated losses within a gap period
210 	 *   3 => lost packets within a burst period
211 	 *   2 => successfully transmitted packets within a burst period
212 	 */
213 	switch (clg->state) {
214 	case 1:
215 		if (rnd < clg->a4) {
216 			clg->state = 4;
217 			return true;
218 		} else if (clg->a4 < rnd && rnd < clg->a1) {
219 			clg->state = 3;
220 			return true;
221 		} else if (clg->a1 < rnd)
222 			clg->state = 1;
223 
224 		break;
225 	case 2:
226 		if (rnd < clg->a5) {
227 			clg->state = 3;
228 			return true;
229 		} else
230 			clg->state = 2;
231 
232 		break;
233 	case 3:
234 		if (rnd < clg->a3)
235 			clg->state = 2;
236 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
237 			clg->state = 1;
238 			return true;
239 		} else if (clg->a2 + clg->a3 < rnd) {
240 			clg->state = 3;
241 			return true;
242 		}
243 		break;
244 	case 4:
245 		clg->state = 1;
246 		break;
247 	}
248 
249 	return false;
250 }
251 
252 /* loss_gilb_ell - Gilbert-Elliot model loss generator
253  * Generates losses according to the Gilbert-Elliot loss model or
254  * its special cases  (Gilbert or Simple Gilbert)
255  *
256  * Makes a comparison between random number and the transition
257  * probabilities outgoing from the current state, then decides the
258  * next state. A second random number is extracted and the comparison
259  * with the loss probability of the current state decides if the next
260  * packet will be transmitted or lost.
261  */
262 static bool loss_gilb_ell(struct netem_sched_data *q)
263 {
264 	struct clgstate *clg = &q->clg;
265 
266 	switch (clg->state) {
267 	case 1:
268 		if (net_random() < clg->a1)
269 			clg->state = 2;
270 		if (net_random() < clg->a4)
271 			return true;
272 	case 2:
273 		if (net_random() < clg->a2)
274 			clg->state = 1;
275 		if (clg->a3 > net_random())
276 			return true;
277 	}
278 
279 	return false;
280 }
281 
282 static bool loss_event(struct netem_sched_data *q)
283 {
284 	switch (q->loss_model) {
285 	case CLG_RANDOM:
286 		/* Random packet drop 0 => none, ~0 => all */
287 		return q->loss && q->loss >= get_crandom(&q->loss_cor);
288 
289 	case CLG_4_STATES:
290 		/* 4state loss model algorithm (used also for GI model)
291 		* Extracts a value from the markov 4 state loss generator,
292 		* if it is 1 drops a packet and if needed writes the event in
293 		* the kernel logs
294 		*/
295 		return loss_4state(q);
296 
297 	case CLG_GILB_ELL:
298 		/* Gilbert-Elliot loss model algorithm
299 		* Extracts a value from the Gilbert-Elliot loss generator,
300 		* if it is 1 drops a packet and if needed writes the event in
301 		* the kernel logs
302 		*/
303 		return loss_gilb_ell(q);
304 	}
305 
306 	return false;	/* not reached */
307 }
308 
309 
310 /* tabledist - return a pseudo-randomly distributed value with mean mu and
311  * std deviation sigma.  Uses table lookup to approximate the desired
312  * distribution, and a uniformly-distributed pseudo-random source.
313  */
314 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
315 				struct crndstate *state,
316 				const struct disttable *dist)
317 {
318 	psched_tdiff_t x;
319 	long t;
320 	u32 rnd;
321 
322 	if (sigma == 0)
323 		return mu;
324 
325 	rnd = get_crandom(state);
326 
327 	/* default uniform distribution */
328 	if (dist == NULL)
329 		return (rnd % (2*sigma)) - sigma + mu;
330 
331 	t = dist->table[rnd % dist->size];
332 	x = (sigma % NETEM_DIST_SCALE) * t;
333 	if (x >= 0)
334 		x += NETEM_DIST_SCALE/2;
335 	else
336 		x -= NETEM_DIST_SCALE/2;
337 
338 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
339 }
340 
341 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
342 {
343 	u64 ticks;
344 
345 	len += q->packet_overhead;
346 
347 	if (q->cell_size) {
348 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
349 
350 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
351 			cells++;
352 		len = cells * (q->cell_size + q->cell_overhead);
353 	}
354 
355 	ticks = (u64)len * NSEC_PER_SEC;
356 
357 	do_div(ticks, q->rate);
358 	return PSCHED_NS2TICKS(ticks);
359 }
360 
361 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
362 {
363 	struct netem_sched_data *q = qdisc_priv(sch);
364 	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
365 	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
366 
367 	while (*p) {
368 		struct sk_buff *skb;
369 
370 		parent = *p;
371 		skb = netem_rb_to_skb(parent);
372 		if (tnext >= netem_skb_cb(skb)->time_to_send)
373 			p = &parent->rb_right;
374 		else
375 			p = &parent->rb_left;
376 	}
377 	rb_link_node(netem_rb_node(nskb), parent, p);
378 	rb_insert_color(netem_rb_node(nskb), &q->t_root);
379 	sch->q.qlen++;
380 }
381 
382 /*
383  * Insert one skb into qdisc.
384  * Note: parent depends on return value to account for queue length.
385  * 	NET_XMIT_DROP: queue length didn't change.
386  *      NET_XMIT_SUCCESS: one skb was queued.
387  */
388 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
389 {
390 	struct netem_sched_data *q = qdisc_priv(sch);
391 	/* We don't fill cb now as skb_unshare() may invalidate it */
392 	struct netem_skb_cb *cb;
393 	struct sk_buff *skb2;
394 	int count = 1;
395 
396 	/* Random duplication */
397 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
398 		++count;
399 
400 	/* Drop packet? */
401 	if (loss_event(q)) {
402 		if (q->ecn && INET_ECN_set_ce(skb))
403 			sch->qstats.drops++; /* mark packet */
404 		else
405 			--count;
406 	}
407 	if (count == 0) {
408 		sch->qstats.drops++;
409 		kfree_skb(skb);
410 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
411 	}
412 
413 	/* If a delay is expected, orphan the skb. (orphaning usually takes
414 	 * place at TX completion time, so _before_ the link transit delay)
415 	 */
416 	if (q->latency || q->jitter)
417 		skb_orphan_partial(skb);
418 
419 	/*
420 	 * If we need to duplicate packet, then re-insert at top of the
421 	 * qdisc tree, since parent queuer expects that only one
422 	 * skb will be queued.
423 	 */
424 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
425 		struct Qdisc *rootq = qdisc_root(sch);
426 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
427 		q->duplicate = 0;
428 
429 		qdisc_enqueue_root(skb2, rootq);
430 		q->duplicate = dupsave;
431 	}
432 
433 	/*
434 	 * Randomized packet corruption.
435 	 * Make copy if needed since we are modifying
436 	 * If packet is going to be hardware checksummed, then
437 	 * do it now in software before we mangle it.
438 	 */
439 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
440 		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
441 		    (skb->ip_summed == CHECKSUM_PARTIAL &&
442 		     skb_checksum_help(skb)))
443 			return qdisc_drop(skb, sch);
444 
445 		skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8);
446 	}
447 
448 	if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
449 		return qdisc_reshape_fail(skb, sch);
450 
451 	sch->qstats.backlog += qdisc_pkt_len(skb);
452 
453 	cb = netem_skb_cb(skb);
454 	if (q->gap == 0 ||		/* not doing reordering */
455 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
456 	    q->reorder < get_crandom(&q->reorder_cor)) {
457 		psched_time_t now;
458 		psched_tdiff_t delay;
459 
460 		delay = tabledist(q->latency, q->jitter,
461 				  &q->delay_cor, q->delay_dist);
462 
463 		now = psched_get_time();
464 
465 		if (q->rate) {
466 			struct sk_buff *last;
467 
468 			if (!skb_queue_empty(&sch->q))
469 				last = skb_peek_tail(&sch->q);
470 			else
471 				last = netem_rb_to_skb(rb_last(&q->t_root));
472 			if (last) {
473 				/*
474 				 * Last packet in queue is reference point (now),
475 				 * calculate this time bonus and subtract
476 				 * from delay.
477 				 */
478 				delay -= netem_skb_cb(last)->time_to_send - now;
479 				delay = max_t(psched_tdiff_t, 0, delay);
480 				now = netem_skb_cb(last)->time_to_send;
481 			}
482 
483 			delay += packet_len_2_sched_time(skb->len, q);
484 		}
485 
486 		cb->time_to_send = now + delay;
487 		cb->tstamp_save = skb->tstamp;
488 		++q->counter;
489 		tfifo_enqueue(skb, sch);
490 	} else {
491 		/*
492 		 * Do re-ordering by putting one out of N packets at the front
493 		 * of the queue.
494 		 */
495 		cb->time_to_send = psched_get_time();
496 		q->counter = 0;
497 
498 		__skb_queue_head(&sch->q, skb);
499 		sch->qstats.requeues++;
500 	}
501 
502 	return NET_XMIT_SUCCESS;
503 }
504 
505 static unsigned int netem_drop(struct Qdisc *sch)
506 {
507 	struct netem_sched_data *q = qdisc_priv(sch);
508 	unsigned int len;
509 
510 	len = qdisc_queue_drop(sch);
511 
512 	if (!len) {
513 		struct rb_node *p = rb_first(&q->t_root);
514 
515 		if (p) {
516 			struct sk_buff *skb = netem_rb_to_skb(p);
517 
518 			rb_erase(p, &q->t_root);
519 			sch->q.qlen--;
520 			skb->next = NULL;
521 			skb->prev = NULL;
522 			len = qdisc_pkt_len(skb);
523 			kfree_skb(skb);
524 		}
525 	}
526 	if (!len && q->qdisc && q->qdisc->ops->drop)
527 	    len = q->qdisc->ops->drop(q->qdisc);
528 	if (len)
529 		sch->qstats.drops++;
530 
531 	return len;
532 }
533 
534 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
535 {
536 	struct netem_sched_data *q = qdisc_priv(sch);
537 	struct sk_buff *skb;
538 	struct rb_node *p;
539 
540 	if (qdisc_is_throttled(sch))
541 		return NULL;
542 
543 tfifo_dequeue:
544 	skb = __skb_dequeue(&sch->q);
545 	if (skb) {
546 deliver:
547 		sch->qstats.backlog -= qdisc_pkt_len(skb);
548 		qdisc_unthrottled(sch);
549 		qdisc_bstats_update(sch, skb);
550 		return skb;
551 	}
552 	p = rb_first(&q->t_root);
553 	if (p) {
554 		psched_time_t time_to_send;
555 
556 		skb = netem_rb_to_skb(p);
557 
558 		/* if more time remaining? */
559 		time_to_send = netem_skb_cb(skb)->time_to_send;
560 		if (time_to_send <= psched_get_time()) {
561 			rb_erase(p, &q->t_root);
562 
563 			sch->q.qlen--;
564 			skb->next = NULL;
565 			skb->prev = NULL;
566 			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
567 
568 #ifdef CONFIG_NET_CLS_ACT
569 			/*
570 			 * If it's at ingress let's pretend the delay is
571 			 * from the network (tstamp will be updated).
572 			 */
573 			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
574 				skb->tstamp.tv64 = 0;
575 #endif
576 
577 			if (q->qdisc) {
578 				int err = qdisc_enqueue(skb, q->qdisc);
579 
580 				if (unlikely(err != NET_XMIT_SUCCESS)) {
581 					if (net_xmit_drop_count(err)) {
582 						sch->qstats.drops++;
583 						qdisc_tree_decrease_qlen(sch, 1);
584 					}
585 				}
586 				goto tfifo_dequeue;
587 			}
588 			goto deliver;
589 		}
590 
591 		if (q->qdisc) {
592 			skb = q->qdisc->ops->dequeue(q->qdisc);
593 			if (skb)
594 				goto deliver;
595 		}
596 		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
597 	}
598 
599 	if (q->qdisc) {
600 		skb = q->qdisc->ops->dequeue(q->qdisc);
601 		if (skb)
602 			goto deliver;
603 	}
604 	return NULL;
605 }
606 
607 static void netem_reset(struct Qdisc *sch)
608 {
609 	struct netem_sched_data *q = qdisc_priv(sch);
610 
611 	qdisc_reset_queue(sch);
612 	if (q->qdisc)
613 		qdisc_reset(q->qdisc);
614 	qdisc_watchdog_cancel(&q->watchdog);
615 }
616 
617 static void dist_free(struct disttable *d)
618 {
619 	if (d) {
620 		if (is_vmalloc_addr(d))
621 			vfree(d);
622 		else
623 			kfree(d);
624 	}
625 }
626 
627 /*
628  * Distribution data is a variable size payload containing
629  * signed 16 bit values.
630  */
631 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
632 {
633 	struct netem_sched_data *q = qdisc_priv(sch);
634 	size_t n = nla_len(attr)/sizeof(__s16);
635 	const __s16 *data = nla_data(attr);
636 	spinlock_t *root_lock;
637 	struct disttable *d;
638 	int i;
639 	size_t s;
640 
641 	if (n > NETEM_DIST_MAX)
642 		return -EINVAL;
643 
644 	s = sizeof(struct disttable) + n * sizeof(s16);
645 	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
646 	if (!d)
647 		d = vmalloc(s);
648 	if (!d)
649 		return -ENOMEM;
650 
651 	d->size = n;
652 	for (i = 0; i < n; i++)
653 		d->table[i] = data[i];
654 
655 	root_lock = qdisc_root_sleeping_lock(sch);
656 
657 	spin_lock_bh(root_lock);
658 	swap(q->delay_dist, d);
659 	spin_unlock_bh(root_lock);
660 
661 	dist_free(d);
662 	return 0;
663 }
664 
665 static void get_correlation(struct Qdisc *sch, const struct nlattr *attr)
666 {
667 	struct netem_sched_data *q = qdisc_priv(sch);
668 	const struct tc_netem_corr *c = nla_data(attr);
669 
670 	init_crandom(&q->delay_cor, c->delay_corr);
671 	init_crandom(&q->loss_cor, c->loss_corr);
672 	init_crandom(&q->dup_cor, c->dup_corr);
673 }
674 
675 static void get_reorder(struct Qdisc *sch, const struct nlattr *attr)
676 {
677 	struct netem_sched_data *q = qdisc_priv(sch);
678 	const struct tc_netem_reorder *r = nla_data(attr);
679 
680 	q->reorder = r->probability;
681 	init_crandom(&q->reorder_cor, r->correlation);
682 }
683 
684 static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr)
685 {
686 	struct netem_sched_data *q = qdisc_priv(sch);
687 	const struct tc_netem_corrupt *r = nla_data(attr);
688 
689 	q->corrupt = r->probability;
690 	init_crandom(&q->corrupt_cor, r->correlation);
691 }
692 
693 static void get_rate(struct Qdisc *sch, const struct nlattr *attr)
694 {
695 	struct netem_sched_data *q = qdisc_priv(sch);
696 	const struct tc_netem_rate *r = nla_data(attr);
697 
698 	q->rate = r->rate;
699 	q->packet_overhead = r->packet_overhead;
700 	q->cell_size = r->cell_size;
701 	if (q->cell_size)
702 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
703 	q->cell_overhead = r->cell_overhead;
704 }
705 
706 static int get_loss_clg(struct Qdisc *sch, const struct nlattr *attr)
707 {
708 	struct netem_sched_data *q = qdisc_priv(sch);
709 	const struct nlattr *la;
710 	int rem;
711 
712 	nla_for_each_nested(la, attr, rem) {
713 		u16 type = nla_type(la);
714 
715 		switch(type) {
716 		case NETEM_LOSS_GI: {
717 			const struct tc_netem_gimodel *gi = nla_data(la);
718 
719 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
720 				pr_info("netem: incorrect gi model size\n");
721 				return -EINVAL;
722 			}
723 
724 			q->loss_model = CLG_4_STATES;
725 
726 			q->clg.state = 1;
727 			q->clg.a1 = gi->p13;
728 			q->clg.a2 = gi->p31;
729 			q->clg.a3 = gi->p32;
730 			q->clg.a4 = gi->p14;
731 			q->clg.a5 = gi->p23;
732 			break;
733 		}
734 
735 		case NETEM_LOSS_GE: {
736 			const struct tc_netem_gemodel *ge = nla_data(la);
737 
738 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
739 				pr_info("netem: incorrect ge model size\n");
740 				return -EINVAL;
741 			}
742 
743 			q->loss_model = CLG_GILB_ELL;
744 			q->clg.state = 1;
745 			q->clg.a1 = ge->p;
746 			q->clg.a2 = ge->r;
747 			q->clg.a3 = ge->h;
748 			q->clg.a4 = ge->k1;
749 			break;
750 		}
751 
752 		default:
753 			pr_info("netem: unknown loss type %u\n", type);
754 			return -EINVAL;
755 		}
756 	}
757 
758 	return 0;
759 }
760 
761 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
762 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
763 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
764 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
765 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
766 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
767 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
768 };
769 
770 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
771 		      const struct nla_policy *policy, int len)
772 {
773 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
774 
775 	if (nested_len < 0) {
776 		pr_info("netem: invalid attributes len %d\n", nested_len);
777 		return -EINVAL;
778 	}
779 
780 	if (nested_len >= nla_attr_size(0))
781 		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
782 				 nested_len, policy);
783 
784 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
785 	return 0;
786 }
787 
788 /* Parse netlink message to set options */
789 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
790 {
791 	struct netem_sched_data *q = qdisc_priv(sch);
792 	struct nlattr *tb[TCA_NETEM_MAX + 1];
793 	struct tc_netem_qopt *qopt;
794 	int ret;
795 
796 	if (opt == NULL)
797 		return -EINVAL;
798 
799 	qopt = nla_data(opt);
800 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
801 	if (ret < 0)
802 		return ret;
803 
804 	sch->limit = qopt->limit;
805 
806 	q->latency = qopt->latency;
807 	q->jitter = qopt->jitter;
808 	q->limit = qopt->limit;
809 	q->gap = qopt->gap;
810 	q->counter = 0;
811 	q->loss = qopt->loss;
812 	q->duplicate = qopt->duplicate;
813 
814 	/* for compatibility with earlier versions.
815 	 * if gap is set, need to assume 100% probability
816 	 */
817 	if (q->gap)
818 		q->reorder = ~0;
819 
820 	if (tb[TCA_NETEM_CORR])
821 		get_correlation(sch, tb[TCA_NETEM_CORR]);
822 
823 	if (tb[TCA_NETEM_DELAY_DIST]) {
824 		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
825 		if (ret)
826 			return ret;
827 	}
828 
829 	if (tb[TCA_NETEM_REORDER])
830 		get_reorder(sch, tb[TCA_NETEM_REORDER]);
831 
832 	if (tb[TCA_NETEM_CORRUPT])
833 		get_corrupt(sch, tb[TCA_NETEM_CORRUPT]);
834 
835 	if (tb[TCA_NETEM_RATE])
836 		get_rate(sch, tb[TCA_NETEM_RATE]);
837 
838 	if (tb[TCA_NETEM_ECN])
839 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
840 
841 	q->loss_model = CLG_RANDOM;
842 	if (tb[TCA_NETEM_LOSS])
843 		ret = get_loss_clg(sch, tb[TCA_NETEM_LOSS]);
844 
845 	return ret;
846 }
847 
848 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
849 {
850 	struct netem_sched_data *q = qdisc_priv(sch);
851 	int ret;
852 
853 	if (!opt)
854 		return -EINVAL;
855 
856 	qdisc_watchdog_init(&q->watchdog, sch);
857 
858 	q->loss_model = CLG_RANDOM;
859 	ret = netem_change(sch, opt);
860 	if (ret)
861 		pr_info("netem: change failed\n");
862 	return ret;
863 }
864 
865 static void netem_destroy(struct Qdisc *sch)
866 {
867 	struct netem_sched_data *q = qdisc_priv(sch);
868 
869 	qdisc_watchdog_cancel(&q->watchdog);
870 	if (q->qdisc)
871 		qdisc_destroy(q->qdisc);
872 	dist_free(q->delay_dist);
873 }
874 
875 static int dump_loss_model(const struct netem_sched_data *q,
876 			   struct sk_buff *skb)
877 {
878 	struct nlattr *nest;
879 
880 	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
881 	if (nest == NULL)
882 		goto nla_put_failure;
883 
884 	switch (q->loss_model) {
885 	case CLG_RANDOM:
886 		/* legacy loss model */
887 		nla_nest_cancel(skb, nest);
888 		return 0;	/* no data */
889 
890 	case CLG_4_STATES: {
891 		struct tc_netem_gimodel gi = {
892 			.p13 = q->clg.a1,
893 			.p31 = q->clg.a2,
894 			.p32 = q->clg.a3,
895 			.p14 = q->clg.a4,
896 			.p23 = q->clg.a5,
897 		};
898 
899 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
900 			goto nla_put_failure;
901 		break;
902 	}
903 	case CLG_GILB_ELL: {
904 		struct tc_netem_gemodel ge = {
905 			.p = q->clg.a1,
906 			.r = q->clg.a2,
907 			.h = q->clg.a3,
908 			.k1 = q->clg.a4,
909 		};
910 
911 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
912 			goto nla_put_failure;
913 		break;
914 	}
915 	}
916 
917 	nla_nest_end(skb, nest);
918 	return 0;
919 
920 nla_put_failure:
921 	nla_nest_cancel(skb, nest);
922 	return -1;
923 }
924 
925 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
926 {
927 	const struct netem_sched_data *q = qdisc_priv(sch);
928 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
929 	struct tc_netem_qopt qopt;
930 	struct tc_netem_corr cor;
931 	struct tc_netem_reorder reorder;
932 	struct tc_netem_corrupt corrupt;
933 	struct tc_netem_rate rate;
934 
935 	qopt.latency = q->latency;
936 	qopt.jitter = q->jitter;
937 	qopt.limit = q->limit;
938 	qopt.loss = q->loss;
939 	qopt.gap = q->gap;
940 	qopt.duplicate = q->duplicate;
941 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
942 		goto nla_put_failure;
943 
944 	cor.delay_corr = q->delay_cor.rho;
945 	cor.loss_corr = q->loss_cor.rho;
946 	cor.dup_corr = q->dup_cor.rho;
947 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
948 		goto nla_put_failure;
949 
950 	reorder.probability = q->reorder;
951 	reorder.correlation = q->reorder_cor.rho;
952 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
953 		goto nla_put_failure;
954 
955 	corrupt.probability = q->corrupt;
956 	corrupt.correlation = q->corrupt_cor.rho;
957 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
958 		goto nla_put_failure;
959 
960 	rate.rate = q->rate;
961 	rate.packet_overhead = q->packet_overhead;
962 	rate.cell_size = q->cell_size;
963 	rate.cell_overhead = q->cell_overhead;
964 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
965 		goto nla_put_failure;
966 
967 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
968 		goto nla_put_failure;
969 
970 	if (dump_loss_model(q, skb) != 0)
971 		goto nla_put_failure;
972 
973 	return nla_nest_end(skb, nla);
974 
975 nla_put_failure:
976 	nlmsg_trim(skb, nla);
977 	return -1;
978 }
979 
980 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
981 			  struct sk_buff *skb, struct tcmsg *tcm)
982 {
983 	struct netem_sched_data *q = qdisc_priv(sch);
984 
985 	if (cl != 1 || !q->qdisc) 	/* only one class */
986 		return -ENOENT;
987 
988 	tcm->tcm_handle |= TC_H_MIN(1);
989 	tcm->tcm_info = q->qdisc->handle;
990 
991 	return 0;
992 }
993 
994 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
995 		     struct Qdisc **old)
996 {
997 	struct netem_sched_data *q = qdisc_priv(sch);
998 
999 	sch_tree_lock(sch);
1000 	*old = q->qdisc;
1001 	q->qdisc = new;
1002 	if (*old) {
1003 		qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
1004 		qdisc_reset(*old);
1005 	}
1006 	sch_tree_unlock(sch);
1007 
1008 	return 0;
1009 }
1010 
1011 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1012 {
1013 	struct netem_sched_data *q = qdisc_priv(sch);
1014 	return q->qdisc;
1015 }
1016 
1017 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1018 {
1019 	return 1;
1020 }
1021 
1022 static void netem_put(struct Qdisc *sch, unsigned long arg)
1023 {
1024 }
1025 
1026 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1027 {
1028 	if (!walker->stop) {
1029 		if (walker->count >= walker->skip)
1030 			if (walker->fn(sch, 1, walker) < 0) {
1031 				walker->stop = 1;
1032 				return;
1033 			}
1034 		walker->count++;
1035 	}
1036 }
1037 
1038 static const struct Qdisc_class_ops netem_class_ops = {
1039 	.graft		=	netem_graft,
1040 	.leaf		=	netem_leaf,
1041 	.get		=	netem_get,
1042 	.put		=	netem_put,
1043 	.walk		=	netem_walk,
1044 	.dump		=	netem_dump_class,
1045 };
1046 
1047 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1048 	.id		=	"netem",
1049 	.cl_ops		=	&netem_class_ops,
1050 	.priv_size	=	sizeof(struct netem_sched_data),
1051 	.enqueue	=	netem_enqueue,
1052 	.dequeue	=	netem_dequeue,
1053 	.peek		=	qdisc_peek_dequeued,
1054 	.drop		=	netem_drop,
1055 	.init		=	netem_init,
1056 	.reset		=	netem_reset,
1057 	.destroy	=	netem_destroy,
1058 	.change		=	netem_change,
1059 	.dump		=	netem_dump,
1060 	.owner		=	THIS_MODULE,
1061 };
1062 
1063 
1064 static int __init netem_module_init(void)
1065 {
1066 	pr_info("netem: version " VERSION "\n");
1067 	return register_qdisc(&netem_qdisc_ops);
1068 }
1069 static void __exit netem_module_exit(void)
1070 {
1071 	unregister_qdisc(&netem_qdisc_ops);
1072 }
1073 module_init(netem_module_init)
1074 module_exit(netem_module_exit)
1075 MODULE_LICENSE("GPL");
1076