1 /* 2 * net/sched/sch_netem.c Network emulator 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License. 8 * 9 * Many of the algorithms and ideas for this came from 10 * NIST Net which is not copyrighted. 11 * 12 * Authors: Stephen Hemminger <shemminger@osdl.org> 13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro> 14 */ 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/kernel.h> 21 #include <linux/errno.h> 22 #include <linux/skbuff.h> 23 #include <linux/vmalloc.h> 24 #include <linux/rtnetlink.h> 25 #include <linux/reciprocal_div.h> 26 #include <linux/rbtree.h> 27 28 #include <net/netlink.h> 29 #include <net/pkt_sched.h> 30 #include <net/inet_ecn.h> 31 32 #define VERSION "1.3" 33 34 /* Network Emulation Queuing algorithm. 35 ==================================== 36 37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based 38 Network Emulation Tool 39 [2] Luigi Rizzo, DummyNet for FreeBSD 40 41 ---------------------------------------------------------------- 42 43 This started out as a simple way to delay outgoing packets to 44 test TCP but has grown to include most of the functionality 45 of a full blown network emulator like NISTnet. It can delay 46 packets and add random jitter (and correlation). The random 47 distribution can be loaded from a table as well to provide 48 normal, Pareto, or experimental curves. Packet loss, 49 duplication, and reordering can also be emulated. 50 51 This qdisc does not do classification that can be handled in 52 layering other disciplines. It does not need to do bandwidth 53 control either since that can be handled by using token 54 bucket or other rate control. 55 56 Correlated Loss Generator models 57 58 Added generation of correlated loss according to the 59 "Gilbert-Elliot" model, a 4-state markov model. 60 61 References: 62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG 63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general 64 and intuitive loss model for packet networks and its implementation 65 in the Netem module in the Linux kernel", available in [1] 66 67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it 68 Fabio Ludovici <fabio.ludovici at yahoo.it> 69 */ 70 71 struct disttable { 72 u32 size; 73 s16 table[0]; 74 }; 75 76 struct netem_sched_data { 77 /* internal t(ime)fifo qdisc uses t_root and sch->limit */ 78 struct rb_root t_root; 79 80 /* optional qdisc for classful handling (NULL at netem init) */ 81 struct Qdisc *qdisc; 82 83 struct qdisc_watchdog watchdog; 84 85 s64 latency; 86 s64 jitter; 87 88 u32 loss; 89 u32 ecn; 90 u32 limit; 91 u32 counter; 92 u32 gap; 93 u32 duplicate; 94 u32 reorder; 95 u32 corrupt; 96 u64 rate; 97 s32 packet_overhead; 98 u32 cell_size; 99 struct reciprocal_value cell_size_reciprocal; 100 s32 cell_overhead; 101 102 struct crndstate { 103 u32 last; 104 u32 rho; 105 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor; 106 107 struct disttable *delay_dist; 108 109 enum { 110 CLG_RANDOM, 111 CLG_4_STATES, 112 CLG_GILB_ELL, 113 } loss_model; 114 115 enum { 116 TX_IN_GAP_PERIOD = 1, 117 TX_IN_BURST_PERIOD, 118 LOST_IN_GAP_PERIOD, 119 LOST_IN_BURST_PERIOD, 120 } _4_state_model; 121 122 enum { 123 GOOD_STATE = 1, 124 BAD_STATE, 125 } GE_state_model; 126 127 /* Correlated Loss Generation models */ 128 struct clgstate { 129 /* state of the Markov chain */ 130 u8 state; 131 132 /* 4-states and Gilbert-Elliot models */ 133 u32 a1; /* p13 for 4-states or p for GE */ 134 u32 a2; /* p31 for 4-states or r for GE */ 135 u32 a3; /* p32 for 4-states or h for GE */ 136 u32 a4; /* p14 for 4-states or 1-k for GE */ 137 u32 a5; /* p23 used only in 4-states */ 138 } clg; 139 140 struct tc_netem_slot slot_config; 141 struct slotstate { 142 u64 slot_next; 143 s32 packets_left; 144 s32 bytes_left; 145 } slot; 146 147 struct disttable *slot_dist; 148 }; 149 150 /* Time stamp put into socket buffer control block 151 * Only valid when skbs are in our internal t(ime)fifo queue. 152 * 153 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp, 154 * and skb->next & skb->prev are scratch space for a qdisc, 155 * we save skb->tstamp value in skb->cb[] before destroying it. 156 */ 157 struct netem_skb_cb { 158 u64 time_to_send; 159 }; 160 161 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb) 162 { 163 /* we assume we can use skb next/prev/tstamp as storage for rb_node */ 164 qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb)); 165 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data; 166 } 167 168 /* init_crandom - initialize correlated random number generator 169 * Use entropy source for initial seed. 170 */ 171 static void init_crandom(struct crndstate *state, unsigned long rho) 172 { 173 state->rho = rho; 174 state->last = prandom_u32(); 175 } 176 177 /* get_crandom - correlated random number generator 178 * Next number depends on last value. 179 * rho is scaled to avoid floating point. 180 */ 181 static u32 get_crandom(struct crndstate *state) 182 { 183 u64 value, rho; 184 unsigned long answer; 185 186 if (!state || state->rho == 0) /* no correlation */ 187 return prandom_u32(); 188 189 value = prandom_u32(); 190 rho = (u64)state->rho + 1; 191 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32; 192 state->last = answer; 193 return answer; 194 } 195 196 /* loss_4state - 4-state model loss generator 197 * Generates losses according to the 4-state Markov chain adopted in 198 * the GI (General and Intuitive) loss model. 199 */ 200 static bool loss_4state(struct netem_sched_data *q) 201 { 202 struct clgstate *clg = &q->clg; 203 u32 rnd = prandom_u32(); 204 205 /* 206 * Makes a comparison between rnd and the transition 207 * probabilities outgoing from the current state, then decides the 208 * next state and if the next packet has to be transmitted or lost. 209 * The four states correspond to: 210 * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period 211 * LOST_IN_BURST_PERIOD => isolated losses within a gap period 212 * LOST_IN_GAP_PERIOD => lost packets within a burst period 213 * TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period 214 */ 215 switch (clg->state) { 216 case TX_IN_GAP_PERIOD: 217 if (rnd < clg->a4) { 218 clg->state = LOST_IN_BURST_PERIOD; 219 return true; 220 } else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) { 221 clg->state = LOST_IN_GAP_PERIOD; 222 return true; 223 } else if (clg->a1 + clg->a4 < rnd) { 224 clg->state = TX_IN_GAP_PERIOD; 225 } 226 227 break; 228 case TX_IN_BURST_PERIOD: 229 if (rnd < clg->a5) { 230 clg->state = LOST_IN_GAP_PERIOD; 231 return true; 232 } else { 233 clg->state = TX_IN_BURST_PERIOD; 234 } 235 236 break; 237 case LOST_IN_GAP_PERIOD: 238 if (rnd < clg->a3) 239 clg->state = TX_IN_BURST_PERIOD; 240 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) { 241 clg->state = TX_IN_GAP_PERIOD; 242 } else if (clg->a2 + clg->a3 < rnd) { 243 clg->state = LOST_IN_GAP_PERIOD; 244 return true; 245 } 246 break; 247 case LOST_IN_BURST_PERIOD: 248 clg->state = TX_IN_GAP_PERIOD; 249 break; 250 } 251 252 return false; 253 } 254 255 /* loss_gilb_ell - Gilbert-Elliot model loss generator 256 * Generates losses according to the Gilbert-Elliot loss model or 257 * its special cases (Gilbert or Simple Gilbert) 258 * 259 * Makes a comparison between random number and the transition 260 * probabilities outgoing from the current state, then decides the 261 * next state. A second random number is extracted and the comparison 262 * with the loss probability of the current state decides if the next 263 * packet will be transmitted or lost. 264 */ 265 static bool loss_gilb_ell(struct netem_sched_data *q) 266 { 267 struct clgstate *clg = &q->clg; 268 269 switch (clg->state) { 270 case GOOD_STATE: 271 if (prandom_u32() < clg->a1) 272 clg->state = BAD_STATE; 273 if (prandom_u32() < clg->a4) 274 return true; 275 break; 276 case BAD_STATE: 277 if (prandom_u32() < clg->a2) 278 clg->state = GOOD_STATE; 279 if (prandom_u32() > clg->a3) 280 return true; 281 } 282 283 return false; 284 } 285 286 static bool loss_event(struct netem_sched_data *q) 287 { 288 switch (q->loss_model) { 289 case CLG_RANDOM: 290 /* Random packet drop 0 => none, ~0 => all */ 291 return q->loss && q->loss >= get_crandom(&q->loss_cor); 292 293 case CLG_4_STATES: 294 /* 4state loss model algorithm (used also for GI model) 295 * Extracts a value from the markov 4 state loss generator, 296 * if it is 1 drops a packet and if needed writes the event in 297 * the kernel logs 298 */ 299 return loss_4state(q); 300 301 case CLG_GILB_ELL: 302 /* Gilbert-Elliot loss model algorithm 303 * Extracts a value from the Gilbert-Elliot loss generator, 304 * if it is 1 drops a packet and if needed writes the event in 305 * the kernel logs 306 */ 307 return loss_gilb_ell(q); 308 } 309 310 return false; /* not reached */ 311 } 312 313 314 /* tabledist - return a pseudo-randomly distributed value with mean mu and 315 * std deviation sigma. Uses table lookup to approximate the desired 316 * distribution, and a uniformly-distributed pseudo-random source. 317 */ 318 static s64 tabledist(s64 mu, s32 sigma, 319 struct crndstate *state, 320 const struct disttable *dist) 321 { 322 s64 x; 323 long t; 324 u32 rnd; 325 326 if (sigma == 0) 327 return mu; 328 329 rnd = get_crandom(state); 330 331 /* default uniform distribution */ 332 if (dist == NULL) 333 return ((rnd % (2 * sigma)) + mu) - sigma; 334 335 t = dist->table[rnd % dist->size]; 336 x = (sigma % NETEM_DIST_SCALE) * t; 337 if (x >= 0) 338 x += NETEM_DIST_SCALE/2; 339 else 340 x -= NETEM_DIST_SCALE/2; 341 342 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu; 343 } 344 345 static u64 packet_time_ns(u64 len, const struct netem_sched_data *q) 346 { 347 len += q->packet_overhead; 348 349 if (q->cell_size) { 350 u32 cells = reciprocal_divide(len, q->cell_size_reciprocal); 351 352 if (len > cells * q->cell_size) /* extra cell needed for remainder */ 353 cells++; 354 len = cells * (q->cell_size + q->cell_overhead); 355 } 356 357 return div64_u64(len * NSEC_PER_SEC, q->rate); 358 } 359 360 static void tfifo_reset(struct Qdisc *sch) 361 { 362 struct netem_sched_data *q = qdisc_priv(sch); 363 struct rb_node *p = rb_first(&q->t_root); 364 365 while (p) { 366 struct sk_buff *skb = rb_to_skb(p); 367 368 p = rb_next(p); 369 rb_erase(&skb->rbnode, &q->t_root); 370 rtnl_kfree_skbs(skb, skb); 371 } 372 } 373 374 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch) 375 { 376 struct netem_sched_data *q = qdisc_priv(sch); 377 u64 tnext = netem_skb_cb(nskb)->time_to_send; 378 struct rb_node **p = &q->t_root.rb_node, *parent = NULL; 379 380 while (*p) { 381 struct sk_buff *skb; 382 383 parent = *p; 384 skb = rb_to_skb(parent); 385 if (tnext >= netem_skb_cb(skb)->time_to_send) 386 p = &parent->rb_right; 387 else 388 p = &parent->rb_left; 389 } 390 rb_link_node(&nskb->rbnode, parent, p); 391 rb_insert_color(&nskb->rbnode, &q->t_root); 392 sch->q.qlen++; 393 } 394 395 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead 396 * when we statistically choose to corrupt one, we instead segment it, returning 397 * the first packet to be corrupted, and re-enqueue the remaining frames 398 */ 399 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch, 400 struct sk_buff **to_free) 401 { 402 struct sk_buff *segs; 403 netdev_features_t features = netif_skb_features(skb); 404 405 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); 406 407 if (IS_ERR_OR_NULL(segs)) { 408 qdisc_drop(skb, sch, to_free); 409 return NULL; 410 } 411 consume_skb(skb); 412 return segs; 413 } 414 415 /* 416 * Insert one skb into qdisc. 417 * Note: parent depends on return value to account for queue length. 418 * NET_XMIT_DROP: queue length didn't change. 419 * NET_XMIT_SUCCESS: one skb was queued. 420 */ 421 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch, 422 struct sk_buff **to_free) 423 { 424 struct netem_sched_data *q = qdisc_priv(sch); 425 /* We don't fill cb now as skb_unshare() may invalidate it */ 426 struct netem_skb_cb *cb; 427 struct sk_buff *skb2; 428 struct sk_buff *segs = NULL; 429 unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb); 430 int nb = 0; 431 int count = 1; 432 int rc = NET_XMIT_SUCCESS; 433 434 /* Do not fool qdisc_drop_all() */ 435 skb->prev = NULL; 436 437 /* Random duplication */ 438 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor)) 439 ++count; 440 441 /* Drop packet? */ 442 if (loss_event(q)) { 443 if (q->ecn && INET_ECN_set_ce(skb)) 444 qdisc_qstats_drop(sch); /* mark packet */ 445 else 446 --count; 447 } 448 if (count == 0) { 449 qdisc_qstats_drop(sch); 450 __qdisc_drop(skb, to_free); 451 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 452 } 453 454 /* If a delay is expected, orphan the skb. (orphaning usually takes 455 * place at TX completion time, so _before_ the link transit delay) 456 */ 457 if (q->latency || q->jitter || q->rate) 458 skb_orphan_partial(skb); 459 460 /* 461 * If we need to duplicate packet, then re-insert at top of the 462 * qdisc tree, since parent queuer expects that only one 463 * skb will be queued. 464 */ 465 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) { 466 struct Qdisc *rootq = qdisc_root(sch); 467 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */ 468 469 q->duplicate = 0; 470 rootq->enqueue(skb2, rootq, to_free); 471 q->duplicate = dupsave; 472 } 473 474 /* 475 * Randomized packet corruption. 476 * Make copy if needed since we are modifying 477 * If packet is going to be hardware checksummed, then 478 * do it now in software before we mangle it. 479 */ 480 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) { 481 if (skb_is_gso(skb)) { 482 segs = netem_segment(skb, sch, to_free); 483 if (!segs) 484 return NET_XMIT_DROP; 485 } else { 486 segs = skb; 487 } 488 489 skb = segs; 490 segs = segs->next; 491 492 skb = skb_unshare(skb, GFP_ATOMIC); 493 if (unlikely(!skb)) { 494 qdisc_qstats_drop(sch); 495 goto finish_segs; 496 } 497 if (skb->ip_summed == CHECKSUM_PARTIAL && 498 skb_checksum_help(skb)) { 499 qdisc_drop(skb, sch, to_free); 500 goto finish_segs; 501 } 502 503 skb->data[prandom_u32() % skb_headlen(skb)] ^= 504 1<<(prandom_u32() % 8); 505 } 506 507 if (unlikely(sch->q.qlen >= sch->limit)) 508 return qdisc_drop_all(skb, sch, to_free); 509 510 qdisc_qstats_backlog_inc(sch, skb); 511 512 cb = netem_skb_cb(skb); 513 if (q->gap == 0 || /* not doing reordering */ 514 q->counter < q->gap - 1 || /* inside last reordering gap */ 515 q->reorder < get_crandom(&q->reorder_cor)) { 516 u64 now; 517 s64 delay; 518 519 delay = tabledist(q->latency, q->jitter, 520 &q->delay_cor, q->delay_dist); 521 522 now = ktime_get_ns(); 523 524 if (q->rate) { 525 struct netem_skb_cb *last = NULL; 526 527 if (sch->q.tail) 528 last = netem_skb_cb(sch->q.tail); 529 if (q->t_root.rb_node) { 530 struct sk_buff *t_skb; 531 struct netem_skb_cb *t_last; 532 533 t_skb = skb_rb_last(&q->t_root); 534 t_last = netem_skb_cb(t_skb); 535 if (!last || 536 t_last->time_to_send > last->time_to_send) { 537 last = t_last; 538 } 539 } 540 541 if (last) { 542 /* 543 * Last packet in queue is reference point (now), 544 * calculate this time bonus and subtract 545 * from delay. 546 */ 547 delay -= last->time_to_send - now; 548 delay = max_t(s64, 0, delay); 549 now = last->time_to_send; 550 } 551 552 delay += packet_time_ns(qdisc_pkt_len(skb), q); 553 } 554 555 cb->time_to_send = now + delay; 556 ++q->counter; 557 tfifo_enqueue(skb, sch); 558 } else { 559 /* 560 * Do re-ordering by putting one out of N packets at the front 561 * of the queue. 562 */ 563 cb->time_to_send = ktime_get_ns(); 564 q->counter = 0; 565 566 __qdisc_enqueue_head(skb, &sch->q); 567 sch->qstats.requeues++; 568 } 569 570 finish_segs: 571 if (segs) { 572 while (segs) { 573 skb2 = segs->next; 574 skb_mark_not_on_list(segs); 575 qdisc_skb_cb(segs)->pkt_len = segs->len; 576 last_len = segs->len; 577 rc = qdisc_enqueue(segs, sch, to_free); 578 if (rc != NET_XMIT_SUCCESS) { 579 if (net_xmit_drop_count(rc)) 580 qdisc_qstats_drop(sch); 581 } else { 582 nb++; 583 len += last_len; 584 } 585 segs = skb2; 586 } 587 sch->q.qlen += nb; 588 if (nb > 1) 589 qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len); 590 } 591 return NET_XMIT_SUCCESS; 592 } 593 594 /* Delay the next round with a new future slot with a 595 * correct number of bytes and packets. 596 */ 597 598 static void get_slot_next(struct netem_sched_data *q, u64 now) 599 { 600 s64 next_delay; 601 602 if (!q->slot_dist) 603 next_delay = q->slot_config.min_delay + 604 (prandom_u32() * 605 (q->slot_config.max_delay - 606 q->slot_config.min_delay) >> 32); 607 else 608 next_delay = tabledist(q->slot_config.dist_delay, 609 (s32)(q->slot_config.dist_jitter), 610 NULL, q->slot_dist); 611 612 q->slot.slot_next = now + next_delay; 613 q->slot.packets_left = q->slot_config.max_packets; 614 q->slot.bytes_left = q->slot_config.max_bytes; 615 } 616 617 static struct sk_buff *netem_dequeue(struct Qdisc *sch) 618 { 619 struct netem_sched_data *q = qdisc_priv(sch); 620 struct sk_buff *skb; 621 struct rb_node *p; 622 623 tfifo_dequeue: 624 skb = __qdisc_dequeue_head(&sch->q); 625 if (skb) { 626 qdisc_qstats_backlog_dec(sch, skb); 627 deliver: 628 qdisc_bstats_update(sch, skb); 629 return skb; 630 } 631 p = rb_first(&q->t_root); 632 if (p) { 633 u64 time_to_send; 634 u64 now = ktime_get_ns(); 635 636 skb = rb_to_skb(p); 637 638 /* if more time remaining? */ 639 time_to_send = netem_skb_cb(skb)->time_to_send; 640 if (q->slot.slot_next && q->slot.slot_next < time_to_send) 641 get_slot_next(q, now); 642 643 if (time_to_send <= now && q->slot.slot_next <= now) { 644 rb_erase(p, &q->t_root); 645 sch->q.qlen--; 646 qdisc_qstats_backlog_dec(sch, skb); 647 skb->next = NULL; 648 skb->prev = NULL; 649 /* skb->dev shares skb->rbnode area, 650 * we need to restore its value. 651 */ 652 skb->dev = qdisc_dev(sch); 653 654 if (q->slot.slot_next) { 655 q->slot.packets_left--; 656 q->slot.bytes_left -= qdisc_pkt_len(skb); 657 if (q->slot.packets_left <= 0 || 658 q->slot.bytes_left <= 0) 659 get_slot_next(q, now); 660 } 661 662 if (q->qdisc) { 663 unsigned int pkt_len = qdisc_pkt_len(skb); 664 struct sk_buff *to_free = NULL; 665 int err; 666 667 err = qdisc_enqueue(skb, q->qdisc, &to_free); 668 kfree_skb_list(to_free); 669 if (err != NET_XMIT_SUCCESS && 670 net_xmit_drop_count(err)) { 671 qdisc_qstats_drop(sch); 672 qdisc_tree_reduce_backlog(sch, 1, 673 pkt_len); 674 } 675 goto tfifo_dequeue; 676 } 677 goto deliver; 678 } 679 680 if (q->qdisc) { 681 skb = q->qdisc->ops->dequeue(q->qdisc); 682 if (skb) 683 goto deliver; 684 } 685 686 qdisc_watchdog_schedule_ns(&q->watchdog, 687 max(time_to_send, 688 q->slot.slot_next)); 689 } 690 691 if (q->qdisc) { 692 skb = q->qdisc->ops->dequeue(q->qdisc); 693 if (skb) 694 goto deliver; 695 } 696 return NULL; 697 } 698 699 static void netem_reset(struct Qdisc *sch) 700 { 701 struct netem_sched_data *q = qdisc_priv(sch); 702 703 qdisc_reset_queue(sch); 704 tfifo_reset(sch); 705 if (q->qdisc) 706 qdisc_reset(q->qdisc); 707 qdisc_watchdog_cancel(&q->watchdog); 708 } 709 710 static void dist_free(struct disttable *d) 711 { 712 kvfree(d); 713 } 714 715 /* 716 * Distribution data is a variable size payload containing 717 * signed 16 bit values. 718 */ 719 720 static int get_dist_table(struct Qdisc *sch, struct disttable **tbl, 721 const struct nlattr *attr) 722 { 723 size_t n = nla_len(attr)/sizeof(__s16); 724 const __s16 *data = nla_data(attr); 725 spinlock_t *root_lock; 726 struct disttable *d; 727 int i; 728 729 if (n > NETEM_DIST_MAX) 730 return -EINVAL; 731 732 d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL); 733 if (!d) 734 return -ENOMEM; 735 736 d->size = n; 737 for (i = 0; i < n; i++) 738 d->table[i] = data[i]; 739 740 root_lock = qdisc_root_sleeping_lock(sch); 741 742 spin_lock_bh(root_lock); 743 swap(*tbl, d); 744 spin_unlock_bh(root_lock); 745 746 dist_free(d); 747 return 0; 748 } 749 750 static void get_slot(struct netem_sched_data *q, const struct nlattr *attr) 751 { 752 const struct tc_netem_slot *c = nla_data(attr); 753 754 q->slot_config = *c; 755 if (q->slot_config.max_packets == 0) 756 q->slot_config.max_packets = INT_MAX; 757 if (q->slot_config.max_bytes == 0) 758 q->slot_config.max_bytes = INT_MAX; 759 q->slot.packets_left = q->slot_config.max_packets; 760 q->slot.bytes_left = q->slot_config.max_bytes; 761 if (q->slot_config.min_delay | q->slot_config.max_delay | 762 q->slot_config.dist_jitter) 763 q->slot.slot_next = ktime_get_ns(); 764 else 765 q->slot.slot_next = 0; 766 } 767 768 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr) 769 { 770 const struct tc_netem_corr *c = nla_data(attr); 771 772 init_crandom(&q->delay_cor, c->delay_corr); 773 init_crandom(&q->loss_cor, c->loss_corr); 774 init_crandom(&q->dup_cor, c->dup_corr); 775 } 776 777 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr) 778 { 779 const struct tc_netem_reorder *r = nla_data(attr); 780 781 q->reorder = r->probability; 782 init_crandom(&q->reorder_cor, r->correlation); 783 } 784 785 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr) 786 { 787 const struct tc_netem_corrupt *r = nla_data(attr); 788 789 q->corrupt = r->probability; 790 init_crandom(&q->corrupt_cor, r->correlation); 791 } 792 793 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr) 794 { 795 const struct tc_netem_rate *r = nla_data(attr); 796 797 q->rate = r->rate; 798 q->packet_overhead = r->packet_overhead; 799 q->cell_size = r->cell_size; 800 q->cell_overhead = r->cell_overhead; 801 if (q->cell_size) 802 q->cell_size_reciprocal = reciprocal_value(q->cell_size); 803 else 804 q->cell_size_reciprocal = (struct reciprocal_value) { 0 }; 805 } 806 807 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr) 808 { 809 const struct nlattr *la; 810 int rem; 811 812 nla_for_each_nested(la, attr, rem) { 813 u16 type = nla_type(la); 814 815 switch (type) { 816 case NETEM_LOSS_GI: { 817 const struct tc_netem_gimodel *gi = nla_data(la); 818 819 if (nla_len(la) < sizeof(struct tc_netem_gimodel)) { 820 pr_info("netem: incorrect gi model size\n"); 821 return -EINVAL; 822 } 823 824 q->loss_model = CLG_4_STATES; 825 826 q->clg.state = TX_IN_GAP_PERIOD; 827 q->clg.a1 = gi->p13; 828 q->clg.a2 = gi->p31; 829 q->clg.a3 = gi->p32; 830 q->clg.a4 = gi->p14; 831 q->clg.a5 = gi->p23; 832 break; 833 } 834 835 case NETEM_LOSS_GE: { 836 const struct tc_netem_gemodel *ge = nla_data(la); 837 838 if (nla_len(la) < sizeof(struct tc_netem_gemodel)) { 839 pr_info("netem: incorrect ge model size\n"); 840 return -EINVAL; 841 } 842 843 q->loss_model = CLG_GILB_ELL; 844 q->clg.state = GOOD_STATE; 845 q->clg.a1 = ge->p; 846 q->clg.a2 = ge->r; 847 q->clg.a3 = ge->h; 848 q->clg.a4 = ge->k1; 849 break; 850 } 851 852 default: 853 pr_info("netem: unknown loss type %u\n", type); 854 return -EINVAL; 855 } 856 } 857 858 return 0; 859 } 860 861 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = { 862 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) }, 863 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) }, 864 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) }, 865 [TCA_NETEM_RATE] = { .len = sizeof(struct tc_netem_rate) }, 866 [TCA_NETEM_LOSS] = { .type = NLA_NESTED }, 867 [TCA_NETEM_ECN] = { .type = NLA_U32 }, 868 [TCA_NETEM_RATE64] = { .type = NLA_U64 }, 869 [TCA_NETEM_LATENCY64] = { .type = NLA_S64 }, 870 [TCA_NETEM_JITTER64] = { .type = NLA_S64 }, 871 [TCA_NETEM_SLOT] = { .len = sizeof(struct tc_netem_slot) }, 872 }; 873 874 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla, 875 const struct nla_policy *policy, int len) 876 { 877 int nested_len = nla_len(nla) - NLA_ALIGN(len); 878 879 if (nested_len < 0) { 880 pr_info("netem: invalid attributes len %d\n", nested_len); 881 return -EINVAL; 882 } 883 884 if (nested_len >= nla_attr_size(0)) 885 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len), 886 nested_len, policy, NULL); 887 888 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1)); 889 return 0; 890 } 891 892 /* Parse netlink message to set options */ 893 static int netem_change(struct Qdisc *sch, struct nlattr *opt, 894 struct netlink_ext_ack *extack) 895 { 896 struct netem_sched_data *q = qdisc_priv(sch); 897 struct nlattr *tb[TCA_NETEM_MAX + 1]; 898 struct tc_netem_qopt *qopt; 899 struct clgstate old_clg; 900 int old_loss_model = CLG_RANDOM; 901 int ret; 902 903 if (opt == NULL) 904 return -EINVAL; 905 906 qopt = nla_data(opt); 907 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt)); 908 if (ret < 0) 909 return ret; 910 911 /* backup q->clg and q->loss_model */ 912 old_clg = q->clg; 913 old_loss_model = q->loss_model; 914 915 if (tb[TCA_NETEM_LOSS]) { 916 ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]); 917 if (ret) { 918 q->loss_model = old_loss_model; 919 return ret; 920 } 921 } else { 922 q->loss_model = CLG_RANDOM; 923 } 924 925 if (tb[TCA_NETEM_DELAY_DIST]) { 926 ret = get_dist_table(sch, &q->delay_dist, 927 tb[TCA_NETEM_DELAY_DIST]); 928 if (ret) 929 goto get_table_failure; 930 } 931 932 if (tb[TCA_NETEM_SLOT_DIST]) { 933 ret = get_dist_table(sch, &q->slot_dist, 934 tb[TCA_NETEM_SLOT_DIST]); 935 if (ret) 936 goto get_table_failure; 937 } 938 939 sch->limit = qopt->limit; 940 941 q->latency = PSCHED_TICKS2NS(qopt->latency); 942 q->jitter = PSCHED_TICKS2NS(qopt->jitter); 943 q->limit = qopt->limit; 944 q->gap = qopt->gap; 945 q->counter = 0; 946 q->loss = qopt->loss; 947 q->duplicate = qopt->duplicate; 948 949 /* for compatibility with earlier versions. 950 * if gap is set, need to assume 100% probability 951 */ 952 if (q->gap) 953 q->reorder = ~0; 954 955 if (tb[TCA_NETEM_CORR]) 956 get_correlation(q, tb[TCA_NETEM_CORR]); 957 958 if (tb[TCA_NETEM_REORDER]) 959 get_reorder(q, tb[TCA_NETEM_REORDER]); 960 961 if (tb[TCA_NETEM_CORRUPT]) 962 get_corrupt(q, tb[TCA_NETEM_CORRUPT]); 963 964 if (tb[TCA_NETEM_RATE]) 965 get_rate(q, tb[TCA_NETEM_RATE]); 966 967 if (tb[TCA_NETEM_RATE64]) 968 q->rate = max_t(u64, q->rate, 969 nla_get_u64(tb[TCA_NETEM_RATE64])); 970 971 if (tb[TCA_NETEM_LATENCY64]) 972 q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]); 973 974 if (tb[TCA_NETEM_JITTER64]) 975 q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]); 976 977 if (tb[TCA_NETEM_ECN]) 978 q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]); 979 980 if (tb[TCA_NETEM_SLOT]) 981 get_slot(q, tb[TCA_NETEM_SLOT]); 982 983 return ret; 984 985 get_table_failure: 986 /* recover clg and loss_model, in case of 987 * q->clg and q->loss_model were modified 988 * in get_loss_clg() 989 */ 990 q->clg = old_clg; 991 q->loss_model = old_loss_model; 992 return ret; 993 } 994 995 static int netem_init(struct Qdisc *sch, struct nlattr *opt, 996 struct netlink_ext_ack *extack) 997 { 998 struct netem_sched_data *q = qdisc_priv(sch); 999 int ret; 1000 1001 qdisc_watchdog_init(&q->watchdog, sch); 1002 1003 if (!opt) 1004 return -EINVAL; 1005 1006 q->loss_model = CLG_RANDOM; 1007 ret = netem_change(sch, opt, extack); 1008 if (ret) 1009 pr_info("netem: change failed\n"); 1010 return ret; 1011 } 1012 1013 static void netem_destroy(struct Qdisc *sch) 1014 { 1015 struct netem_sched_data *q = qdisc_priv(sch); 1016 1017 qdisc_watchdog_cancel(&q->watchdog); 1018 if (q->qdisc) 1019 qdisc_put(q->qdisc); 1020 dist_free(q->delay_dist); 1021 dist_free(q->slot_dist); 1022 } 1023 1024 static int dump_loss_model(const struct netem_sched_data *q, 1025 struct sk_buff *skb) 1026 { 1027 struct nlattr *nest; 1028 1029 nest = nla_nest_start(skb, TCA_NETEM_LOSS); 1030 if (nest == NULL) 1031 goto nla_put_failure; 1032 1033 switch (q->loss_model) { 1034 case CLG_RANDOM: 1035 /* legacy loss model */ 1036 nla_nest_cancel(skb, nest); 1037 return 0; /* no data */ 1038 1039 case CLG_4_STATES: { 1040 struct tc_netem_gimodel gi = { 1041 .p13 = q->clg.a1, 1042 .p31 = q->clg.a2, 1043 .p32 = q->clg.a3, 1044 .p14 = q->clg.a4, 1045 .p23 = q->clg.a5, 1046 }; 1047 1048 if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi)) 1049 goto nla_put_failure; 1050 break; 1051 } 1052 case CLG_GILB_ELL: { 1053 struct tc_netem_gemodel ge = { 1054 .p = q->clg.a1, 1055 .r = q->clg.a2, 1056 .h = q->clg.a3, 1057 .k1 = q->clg.a4, 1058 }; 1059 1060 if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge)) 1061 goto nla_put_failure; 1062 break; 1063 } 1064 } 1065 1066 nla_nest_end(skb, nest); 1067 return 0; 1068 1069 nla_put_failure: 1070 nla_nest_cancel(skb, nest); 1071 return -1; 1072 } 1073 1074 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb) 1075 { 1076 const struct netem_sched_data *q = qdisc_priv(sch); 1077 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb); 1078 struct tc_netem_qopt qopt; 1079 struct tc_netem_corr cor; 1080 struct tc_netem_reorder reorder; 1081 struct tc_netem_corrupt corrupt; 1082 struct tc_netem_rate rate; 1083 struct tc_netem_slot slot; 1084 1085 qopt.latency = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->latency), 1086 UINT_MAX); 1087 qopt.jitter = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->jitter), 1088 UINT_MAX); 1089 qopt.limit = q->limit; 1090 qopt.loss = q->loss; 1091 qopt.gap = q->gap; 1092 qopt.duplicate = q->duplicate; 1093 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt)) 1094 goto nla_put_failure; 1095 1096 if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency)) 1097 goto nla_put_failure; 1098 1099 if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter)) 1100 goto nla_put_failure; 1101 1102 cor.delay_corr = q->delay_cor.rho; 1103 cor.loss_corr = q->loss_cor.rho; 1104 cor.dup_corr = q->dup_cor.rho; 1105 if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor)) 1106 goto nla_put_failure; 1107 1108 reorder.probability = q->reorder; 1109 reorder.correlation = q->reorder_cor.rho; 1110 if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder)) 1111 goto nla_put_failure; 1112 1113 corrupt.probability = q->corrupt; 1114 corrupt.correlation = q->corrupt_cor.rho; 1115 if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt)) 1116 goto nla_put_failure; 1117 1118 if (q->rate >= (1ULL << 32)) { 1119 if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate, 1120 TCA_NETEM_PAD)) 1121 goto nla_put_failure; 1122 rate.rate = ~0U; 1123 } else { 1124 rate.rate = q->rate; 1125 } 1126 rate.packet_overhead = q->packet_overhead; 1127 rate.cell_size = q->cell_size; 1128 rate.cell_overhead = q->cell_overhead; 1129 if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate)) 1130 goto nla_put_failure; 1131 1132 if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn)) 1133 goto nla_put_failure; 1134 1135 if (dump_loss_model(q, skb) != 0) 1136 goto nla_put_failure; 1137 1138 if (q->slot_config.min_delay | q->slot_config.max_delay | 1139 q->slot_config.dist_jitter) { 1140 slot = q->slot_config; 1141 if (slot.max_packets == INT_MAX) 1142 slot.max_packets = 0; 1143 if (slot.max_bytes == INT_MAX) 1144 slot.max_bytes = 0; 1145 if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot)) 1146 goto nla_put_failure; 1147 } 1148 1149 return nla_nest_end(skb, nla); 1150 1151 nla_put_failure: 1152 nlmsg_trim(skb, nla); 1153 return -1; 1154 } 1155 1156 static int netem_dump_class(struct Qdisc *sch, unsigned long cl, 1157 struct sk_buff *skb, struct tcmsg *tcm) 1158 { 1159 struct netem_sched_data *q = qdisc_priv(sch); 1160 1161 if (cl != 1 || !q->qdisc) /* only one class */ 1162 return -ENOENT; 1163 1164 tcm->tcm_handle |= TC_H_MIN(1); 1165 tcm->tcm_info = q->qdisc->handle; 1166 1167 return 0; 1168 } 1169 1170 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 1171 struct Qdisc **old, struct netlink_ext_ack *extack) 1172 { 1173 struct netem_sched_data *q = qdisc_priv(sch); 1174 1175 *old = qdisc_replace(sch, new, &q->qdisc); 1176 return 0; 1177 } 1178 1179 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg) 1180 { 1181 struct netem_sched_data *q = qdisc_priv(sch); 1182 return q->qdisc; 1183 } 1184 1185 static unsigned long netem_find(struct Qdisc *sch, u32 classid) 1186 { 1187 return 1; 1188 } 1189 1190 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker) 1191 { 1192 if (!walker->stop) { 1193 if (walker->count >= walker->skip) 1194 if (walker->fn(sch, 1, walker) < 0) { 1195 walker->stop = 1; 1196 return; 1197 } 1198 walker->count++; 1199 } 1200 } 1201 1202 static const struct Qdisc_class_ops netem_class_ops = { 1203 .graft = netem_graft, 1204 .leaf = netem_leaf, 1205 .find = netem_find, 1206 .walk = netem_walk, 1207 .dump = netem_dump_class, 1208 }; 1209 1210 static struct Qdisc_ops netem_qdisc_ops __read_mostly = { 1211 .id = "netem", 1212 .cl_ops = &netem_class_ops, 1213 .priv_size = sizeof(struct netem_sched_data), 1214 .enqueue = netem_enqueue, 1215 .dequeue = netem_dequeue, 1216 .peek = qdisc_peek_dequeued, 1217 .init = netem_init, 1218 .reset = netem_reset, 1219 .destroy = netem_destroy, 1220 .change = netem_change, 1221 .dump = netem_dump, 1222 .owner = THIS_MODULE, 1223 }; 1224 1225 1226 static int __init netem_module_init(void) 1227 { 1228 pr_info("netem: version " VERSION "\n"); 1229 return register_qdisc(&netem_qdisc_ops); 1230 } 1231 static void __exit netem_module_exit(void) 1232 { 1233 unregister_qdisc(&netem_qdisc_ops); 1234 } 1235 module_init(netem_module_init) 1236 module_exit(netem_module_exit) 1237 MODULE_LICENSE("GPL"); 1238