xref: /openbmc/linux/net/sched/sch_netem.c (revision 520ac30f)
1 /*
2  * net/sched/sch_netem.c	Network emulator
3  *
4  * 		This program is free software; you can redistribute it and/or
5  * 		modify it under the terms of the GNU General Public License
6  * 		as published by the Free Software Foundation; either version
7  * 		2 of the License.
8  *
9  *  		Many of the algorithms and ideas for this came from
10  *		NIST Net which is not copyrighted.
11  *
12  * Authors:	Stephen Hemminger <shemminger@osdl.org>
13  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
27 
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
31 
32 #define VERSION "1.3"
33 
34 /*	Network Emulation Queuing algorithm.
35 	====================================
36 
37 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 		 Network Emulation Tool
39 		 [2] Luigi Rizzo, DummyNet for FreeBSD
40 
41 	 ----------------------------------------------------------------
42 
43 	 This started out as a simple way to delay outgoing packets to
44 	 test TCP but has grown to include most of the functionality
45 	 of a full blown network emulator like NISTnet. It can delay
46 	 packets and add random jitter (and correlation). The random
47 	 distribution can be loaded from a table as well to provide
48 	 normal, Pareto, or experimental curves. Packet loss,
49 	 duplication, and reordering can also be emulated.
50 
51 	 This qdisc does not do classification that can be handled in
52 	 layering other disciplines.  It does not need to do bandwidth
53 	 control either since that can be handled by using token
54 	 bucket or other rate control.
55 
56      Correlated Loss Generator models
57 
58 	Added generation of correlated loss according to the
59 	"Gilbert-Elliot" model, a 4-state markov model.
60 
61 	References:
62 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 	and intuitive loss model for packet networks and its implementation
65 	in the Netem module in the Linux kernel", available in [1]
66 
67 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
69 */
70 
71 struct netem_sched_data {
72 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 	struct rb_root t_root;
74 
75 	/* optional qdisc for classful handling (NULL at netem init) */
76 	struct Qdisc	*qdisc;
77 
78 	struct qdisc_watchdog watchdog;
79 
80 	psched_tdiff_t latency;
81 	psched_tdiff_t jitter;
82 
83 	u32 loss;
84 	u32 ecn;
85 	u32 limit;
86 	u32 counter;
87 	u32 gap;
88 	u32 duplicate;
89 	u32 reorder;
90 	u32 corrupt;
91 	u64 rate;
92 	s32 packet_overhead;
93 	u32 cell_size;
94 	struct reciprocal_value cell_size_reciprocal;
95 	s32 cell_overhead;
96 
97 	struct crndstate {
98 		u32 last;
99 		u32 rho;
100 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
101 
102 	struct disttable {
103 		u32  size;
104 		s16 table[0];
105 	} *delay_dist;
106 
107 	enum  {
108 		CLG_RANDOM,
109 		CLG_4_STATES,
110 		CLG_GILB_ELL,
111 	} loss_model;
112 
113 	enum {
114 		TX_IN_GAP_PERIOD = 1,
115 		TX_IN_BURST_PERIOD,
116 		LOST_IN_GAP_PERIOD,
117 		LOST_IN_BURST_PERIOD,
118 	} _4_state_model;
119 
120 	enum {
121 		GOOD_STATE = 1,
122 		BAD_STATE,
123 	} GE_state_model;
124 
125 	/* Correlated Loss Generation models */
126 	struct clgstate {
127 		/* state of the Markov chain */
128 		u8 state;
129 
130 		/* 4-states and Gilbert-Elliot models */
131 		u32 a1;	/* p13 for 4-states or p for GE */
132 		u32 a2;	/* p31 for 4-states or r for GE */
133 		u32 a3;	/* p32 for 4-states or h for GE */
134 		u32 a4;	/* p14 for 4-states or 1-k for GE */
135 		u32 a5; /* p23 used only in 4-states */
136 	} clg;
137 
138 };
139 
140 /* Time stamp put into socket buffer control block
141  * Only valid when skbs are in our internal t(ime)fifo queue.
142  *
143  * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
144  * and skb->next & skb->prev are scratch space for a qdisc,
145  * we save skb->tstamp value in skb->cb[] before destroying it.
146  */
147 struct netem_skb_cb {
148 	psched_time_t	time_to_send;
149 	ktime_t		tstamp_save;
150 };
151 
152 
153 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
154 {
155 	return container_of(rb, struct sk_buff, rbnode);
156 }
157 
158 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
159 {
160 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
161 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
162 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
163 }
164 
165 /* init_crandom - initialize correlated random number generator
166  * Use entropy source for initial seed.
167  */
168 static void init_crandom(struct crndstate *state, unsigned long rho)
169 {
170 	state->rho = rho;
171 	state->last = prandom_u32();
172 }
173 
174 /* get_crandom - correlated random number generator
175  * Next number depends on last value.
176  * rho is scaled to avoid floating point.
177  */
178 static u32 get_crandom(struct crndstate *state)
179 {
180 	u64 value, rho;
181 	unsigned long answer;
182 
183 	if (state->rho == 0)	/* no correlation */
184 		return prandom_u32();
185 
186 	value = prandom_u32();
187 	rho = (u64)state->rho + 1;
188 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
189 	state->last = answer;
190 	return answer;
191 }
192 
193 /* loss_4state - 4-state model loss generator
194  * Generates losses according to the 4-state Markov chain adopted in
195  * the GI (General and Intuitive) loss model.
196  */
197 static bool loss_4state(struct netem_sched_data *q)
198 {
199 	struct clgstate *clg = &q->clg;
200 	u32 rnd = prandom_u32();
201 
202 	/*
203 	 * Makes a comparison between rnd and the transition
204 	 * probabilities outgoing from the current state, then decides the
205 	 * next state and if the next packet has to be transmitted or lost.
206 	 * The four states correspond to:
207 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
208 	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
209 	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
210 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
211 	 */
212 	switch (clg->state) {
213 	case TX_IN_GAP_PERIOD:
214 		if (rnd < clg->a4) {
215 			clg->state = LOST_IN_BURST_PERIOD;
216 			return true;
217 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
218 			clg->state = LOST_IN_GAP_PERIOD;
219 			return true;
220 		} else if (clg->a1 + clg->a4 < rnd) {
221 			clg->state = TX_IN_GAP_PERIOD;
222 		}
223 
224 		break;
225 	case TX_IN_BURST_PERIOD:
226 		if (rnd < clg->a5) {
227 			clg->state = LOST_IN_GAP_PERIOD;
228 			return true;
229 		} else {
230 			clg->state = TX_IN_BURST_PERIOD;
231 		}
232 
233 		break;
234 	case LOST_IN_GAP_PERIOD:
235 		if (rnd < clg->a3)
236 			clg->state = TX_IN_BURST_PERIOD;
237 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
238 			clg->state = TX_IN_GAP_PERIOD;
239 		} else if (clg->a2 + clg->a3 < rnd) {
240 			clg->state = LOST_IN_GAP_PERIOD;
241 			return true;
242 		}
243 		break;
244 	case LOST_IN_BURST_PERIOD:
245 		clg->state = TX_IN_GAP_PERIOD;
246 		break;
247 	}
248 
249 	return false;
250 }
251 
252 /* loss_gilb_ell - Gilbert-Elliot model loss generator
253  * Generates losses according to the Gilbert-Elliot loss model or
254  * its special cases  (Gilbert or Simple Gilbert)
255  *
256  * Makes a comparison between random number and the transition
257  * probabilities outgoing from the current state, then decides the
258  * next state. A second random number is extracted and the comparison
259  * with the loss probability of the current state decides if the next
260  * packet will be transmitted or lost.
261  */
262 static bool loss_gilb_ell(struct netem_sched_data *q)
263 {
264 	struct clgstate *clg = &q->clg;
265 
266 	switch (clg->state) {
267 	case GOOD_STATE:
268 		if (prandom_u32() < clg->a1)
269 			clg->state = BAD_STATE;
270 		if (prandom_u32() < clg->a4)
271 			return true;
272 		break;
273 	case BAD_STATE:
274 		if (prandom_u32() < clg->a2)
275 			clg->state = GOOD_STATE;
276 		if (prandom_u32() > clg->a3)
277 			return true;
278 	}
279 
280 	return false;
281 }
282 
283 static bool loss_event(struct netem_sched_data *q)
284 {
285 	switch (q->loss_model) {
286 	case CLG_RANDOM:
287 		/* Random packet drop 0 => none, ~0 => all */
288 		return q->loss && q->loss >= get_crandom(&q->loss_cor);
289 
290 	case CLG_4_STATES:
291 		/* 4state loss model algorithm (used also for GI model)
292 		* Extracts a value from the markov 4 state loss generator,
293 		* if it is 1 drops a packet and if needed writes the event in
294 		* the kernel logs
295 		*/
296 		return loss_4state(q);
297 
298 	case CLG_GILB_ELL:
299 		/* Gilbert-Elliot loss model algorithm
300 		* Extracts a value from the Gilbert-Elliot loss generator,
301 		* if it is 1 drops a packet and if needed writes the event in
302 		* the kernel logs
303 		*/
304 		return loss_gilb_ell(q);
305 	}
306 
307 	return false;	/* not reached */
308 }
309 
310 
311 /* tabledist - return a pseudo-randomly distributed value with mean mu and
312  * std deviation sigma.  Uses table lookup to approximate the desired
313  * distribution, and a uniformly-distributed pseudo-random source.
314  */
315 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
316 				struct crndstate *state,
317 				const struct disttable *dist)
318 {
319 	psched_tdiff_t x;
320 	long t;
321 	u32 rnd;
322 
323 	if (sigma == 0)
324 		return mu;
325 
326 	rnd = get_crandom(state);
327 
328 	/* default uniform distribution */
329 	if (dist == NULL)
330 		return (rnd % (2*sigma)) - sigma + mu;
331 
332 	t = dist->table[rnd % dist->size];
333 	x = (sigma % NETEM_DIST_SCALE) * t;
334 	if (x >= 0)
335 		x += NETEM_DIST_SCALE/2;
336 	else
337 		x -= NETEM_DIST_SCALE/2;
338 
339 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
340 }
341 
342 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
343 {
344 	u64 ticks;
345 
346 	len += q->packet_overhead;
347 
348 	if (q->cell_size) {
349 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
350 
351 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
352 			cells++;
353 		len = cells * (q->cell_size + q->cell_overhead);
354 	}
355 
356 	ticks = (u64)len * NSEC_PER_SEC;
357 
358 	do_div(ticks, q->rate);
359 	return PSCHED_NS2TICKS(ticks);
360 }
361 
362 static void tfifo_reset(struct Qdisc *sch)
363 {
364 	struct netem_sched_data *q = qdisc_priv(sch);
365 	struct rb_node *p;
366 
367 	while ((p = rb_first(&q->t_root))) {
368 		struct sk_buff *skb = netem_rb_to_skb(p);
369 
370 		rb_erase(p, &q->t_root);
371 		rtnl_kfree_skbs(skb, skb);
372 	}
373 }
374 
375 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
376 {
377 	struct netem_sched_data *q = qdisc_priv(sch);
378 	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
379 	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
380 
381 	while (*p) {
382 		struct sk_buff *skb;
383 
384 		parent = *p;
385 		skb = netem_rb_to_skb(parent);
386 		if (tnext >= netem_skb_cb(skb)->time_to_send)
387 			p = &parent->rb_right;
388 		else
389 			p = &parent->rb_left;
390 	}
391 	rb_link_node(&nskb->rbnode, parent, p);
392 	rb_insert_color(&nskb->rbnode, &q->t_root);
393 	sch->q.qlen++;
394 }
395 
396 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
397  * when we statistically choose to corrupt one, we instead segment it, returning
398  * the first packet to be corrupted, and re-enqueue the remaining frames
399  */
400 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
401 				     struct sk_buff **to_free)
402 {
403 	struct sk_buff *segs;
404 	netdev_features_t features = netif_skb_features(skb);
405 
406 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
407 
408 	if (IS_ERR_OR_NULL(segs)) {
409 		qdisc_drop(skb, sch, to_free);
410 		return NULL;
411 	}
412 	consume_skb(skb);
413 	return segs;
414 }
415 
416 /*
417  * Insert one skb into qdisc.
418  * Note: parent depends on return value to account for queue length.
419  * 	NET_XMIT_DROP: queue length didn't change.
420  *      NET_XMIT_SUCCESS: one skb was queued.
421  */
422 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
423 			 struct sk_buff **to_free)
424 {
425 	struct netem_sched_data *q = qdisc_priv(sch);
426 	/* We don't fill cb now as skb_unshare() may invalidate it */
427 	struct netem_skb_cb *cb;
428 	struct sk_buff *skb2;
429 	struct sk_buff *segs = NULL;
430 	unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb);
431 	int nb = 0;
432 	int count = 1;
433 	int rc = NET_XMIT_SUCCESS;
434 
435 	/* Random duplication */
436 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
437 		++count;
438 
439 	/* Drop packet? */
440 	if (loss_event(q)) {
441 		if (q->ecn && INET_ECN_set_ce(skb))
442 			qdisc_qstats_drop(sch); /* mark packet */
443 		else
444 			--count;
445 	}
446 	if (count == 0) {
447 		qdisc_qstats_drop(sch);
448 		__qdisc_drop(skb, to_free);
449 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
450 	}
451 
452 	/* If a delay is expected, orphan the skb. (orphaning usually takes
453 	 * place at TX completion time, so _before_ the link transit delay)
454 	 */
455 	if (q->latency || q->jitter)
456 		skb_orphan_partial(skb);
457 
458 	/*
459 	 * If we need to duplicate packet, then re-insert at top of the
460 	 * qdisc tree, since parent queuer expects that only one
461 	 * skb will be queued.
462 	 */
463 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
464 		struct Qdisc *rootq = qdisc_root(sch);
465 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
466 
467 		q->duplicate = 0;
468 		rootq->enqueue(skb2, rootq, to_free);
469 		q->duplicate = dupsave;
470 	}
471 
472 	/*
473 	 * Randomized packet corruption.
474 	 * Make copy if needed since we are modifying
475 	 * If packet is going to be hardware checksummed, then
476 	 * do it now in software before we mangle it.
477 	 */
478 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
479 		if (skb_is_gso(skb)) {
480 			segs = netem_segment(skb, sch, to_free);
481 			if (!segs)
482 				return NET_XMIT_DROP;
483 		} else {
484 			segs = skb;
485 		}
486 
487 		skb = segs;
488 		segs = segs->next;
489 
490 		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
491 		    (skb->ip_summed == CHECKSUM_PARTIAL &&
492 		     skb_checksum_help(skb))) {
493 			rc = qdisc_drop(skb, sch, to_free);
494 			goto finish_segs;
495 		}
496 
497 		skb->data[prandom_u32() % skb_headlen(skb)] ^=
498 			1<<(prandom_u32() % 8);
499 	}
500 
501 	if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
502 		return qdisc_drop(skb, sch, to_free);
503 
504 	qdisc_qstats_backlog_inc(sch, skb);
505 
506 	cb = netem_skb_cb(skb);
507 	if (q->gap == 0 ||		/* not doing reordering */
508 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
509 	    q->reorder < get_crandom(&q->reorder_cor)) {
510 		psched_time_t now;
511 		psched_tdiff_t delay;
512 
513 		delay = tabledist(q->latency, q->jitter,
514 				  &q->delay_cor, q->delay_dist);
515 
516 		now = psched_get_time();
517 
518 		if (q->rate) {
519 			struct sk_buff *last;
520 
521 			if (!skb_queue_empty(&sch->q))
522 				last = skb_peek_tail(&sch->q);
523 			else
524 				last = netem_rb_to_skb(rb_last(&q->t_root));
525 			if (last) {
526 				/*
527 				 * Last packet in queue is reference point (now),
528 				 * calculate this time bonus and subtract
529 				 * from delay.
530 				 */
531 				delay -= netem_skb_cb(last)->time_to_send - now;
532 				delay = max_t(psched_tdiff_t, 0, delay);
533 				now = netem_skb_cb(last)->time_to_send;
534 			}
535 
536 			delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
537 		}
538 
539 		cb->time_to_send = now + delay;
540 		cb->tstamp_save = skb->tstamp;
541 		++q->counter;
542 		tfifo_enqueue(skb, sch);
543 	} else {
544 		/*
545 		 * Do re-ordering by putting one out of N packets at the front
546 		 * of the queue.
547 		 */
548 		cb->time_to_send = psched_get_time();
549 		q->counter = 0;
550 
551 		__skb_queue_head(&sch->q, skb);
552 		sch->qstats.requeues++;
553 	}
554 
555 finish_segs:
556 	if (segs) {
557 		while (segs) {
558 			skb2 = segs->next;
559 			segs->next = NULL;
560 			qdisc_skb_cb(segs)->pkt_len = segs->len;
561 			last_len = segs->len;
562 			rc = qdisc_enqueue(segs, sch, to_free);
563 			if (rc != NET_XMIT_SUCCESS) {
564 				if (net_xmit_drop_count(rc))
565 					qdisc_qstats_drop(sch);
566 			} else {
567 				nb++;
568 				len += last_len;
569 			}
570 			segs = skb2;
571 		}
572 		sch->q.qlen += nb;
573 		if (nb > 1)
574 			qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
575 	}
576 	return NET_XMIT_SUCCESS;
577 }
578 
579 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
580 {
581 	struct netem_sched_data *q = qdisc_priv(sch);
582 	struct sk_buff *skb;
583 	struct rb_node *p;
584 
585 tfifo_dequeue:
586 	skb = __skb_dequeue(&sch->q);
587 	if (skb) {
588 		qdisc_qstats_backlog_dec(sch, skb);
589 deliver:
590 		qdisc_bstats_update(sch, skb);
591 		return skb;
592 	}
593 	p = rb_first(&q->t_root);
594 	if (p) {
595 		psched_time_t time_to_send;
596 
597 		skb = netem_rb_to_skb(p);
598 
599 		/* if more time remaining? */
600 		time_to_send = netem_skb_cb(skb)->time_to_send;
601 		if (time_to_send <= psched_get_time()) {
602 			rb_erase(p, &q->t_root);
603 
604 			sch->q.qlen--;
605 			qdisc_qstats_backlog_dec(sch, skb);
606 			skb->next = NULL;
607 			skb->prev = NULL;
608 			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
609 
610 #ifdef CONFIG_NET_CLS_ACT
611 			/*
612 			 * If it's at ingress let's pretend the delay is
613 			 * from the network (tstamp will be updated).
614 			 */
615 			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
616 				skb->tstamp.tv64 = 0;
617 #endif
618 
619 			if (q->qdisc) {
620 				struct sk_buff *to_free = NULL;
621 				int err;
622 
623 				err = qdisc_enqueue(skb, q->qdisc, &to_free);
624 				kfree_skb_list(to_free);
625 				if (unlikely(err != NET_XMIT_SUCCESS)) {
626 					if (net_xmit_drop_count(err)) {
627 						qdisc_qstats_drop(sch);
628 						qdisc_tree_reduce_backlog(sch, 1,
629 									  qdisc_pkt_len(skb));
630 					}
631 				}
632 				goto tfifo_dequeue;
633 			}
634 			goto deliver;
635 		}
636 
637 		if (q->qdisc) {
638 			skb = q->qdisc->ops->dequeue(q->qdisc);
639 			if (skb)
640 				goto deliver;
641 		}
642 		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
643 	}
644 
645 	if (q->qdisc) {
646 		skb = q->qdisc->ops->dequeue(q->qdisc);
647 		if (skb)
648 			goto deliver;
649 	}
650 	return NULL;
651 }
652 
653 static void netem_reset(struct Qdisc *sch)
654 {
655 	struct netem_sched_data *q = qdisc_priv(sch);
656 
657 	qdisc_reset_queue(sch);
658 	tfifo_reset(sch);
659 	if (q->qdisc)
660 		qdisc_reset(q->qdisc);
661 	qdisc_watchdog_cancel(&q->watchdog);
662 }
663 
664 static void dist_free(struct disttable *d)
665 {
666 	kvfree(d);
667 }
668 
669 /*
670  * Distribution data is a variable size payload containing
671  * signed 16 bit values.
672  */
673 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
674 {
675 	struct netem_sched_data *q = qdisc_priv(sch);
676 	size_t n = nla_len(attr)/sizeof(__s16);
677 	const __s16 *data = nla_data(attr);
678 	spinlock_t *root_lock;
679 	struct disttable *d;
680 	int i;
681 	size_t s;
682 
683 	if (n > NETEM_DIST_MAX)
684 		return -EINVAL;
685 
686 	s = sizeof(struct disttable) + n * sizeof(s16);
687 	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
688 	if (!d)
689 		d = vmalloc(s);
690 	if (!d)
691 		return -ENOMEM;
692 
693 	d->size = n;
694 	for (i = 0; i < n; i++)
695 		d->table[i] = data[i];
696 
697 	root_lock = qdisc_root_sleeping_lock(sch);
698 
699 	spin_lock_bh(root_lock);
700 	swap(q->delay_dist, d);
701 	spin_unlock_bh(root_lock);
702 
703 	dist_free(d);
704 	return 0;
705 }
706 
707 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
708 {
709 	const struct tc_netem_corr *c = nla_data(attr);
710 
711 	init_crandom(&q->delay_cor, c->delay_corr);
712 	init_crandom(&q->loss_cor, c->loss_corr);
713 	init_crandom(&q->dup_cor, c->dup_corr);
714 }
715 
716 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
717 {
718 	const struct tc_netem_reorder *r = nla_data(attr);
719 
720 	q->reorder = r->probability;
721 	init_crandom(&q->reorder_cor, r->correlation);
722 }
723 
724 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
725 {
726 	const struct tc_netem_corrupt *r = nla_data(attr);
727 
728 	q->corrupt = r->probability;
729 	init_crandom(&q->corrupt_cor, r->correlation);
730 }
731 
732 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
733 {
734 	const struct tc_netem_rate *r = nla_data(attr);
735 
736 	q->rate = r->rate;
737 	q->packet_overhead = r->packet_overhead;
738 	q->cell_size = r->cell_size;
739 	q->cell_overhead = r->cell_overhead;
740 	if (q->cell_size)
741 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
742 	else
743 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
744 }
745 
746 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
747 {
748 	const struct nlattr *la;
749 	int rem;
750 
751 	nla_for_each_nested(la, attr, rem) {
752 		u16 type = nla_type(la);
753 
754 		switch (type) {
755 		case NETEM_LOSS_GI: {
756 			const struct tc_netem_gimodel *gi = nla_data(la);
757 
758 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
759 				pr_info("netem: incorrect gi model size\n");
760 				return -EINVAL;
761 			}
762 
763 			q->loss_model = CLG_4_STATES;
764 
765 			q->clg.state = TX_IN_GAP_PERIOD;
766 			q->clg.a1 = gi->p13;
767 			q->clg.a2 = gi->p31;
768 			q->clg.a3 = gi->p32;
769 			q->clg.a4 = gi->p14;
770 			q->clg.a5 = gi->p23;
771 			break;
772 		}
773 
774 		case NETEM_LOSS_GE: {
775 			const struct tc_netem_gemodel *ge = nla_data(la);
776 
777 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
778 				pr_info("netem: incorrect ge model size\n");
779 				return -EINVAL;
780 			}
781 
782 			q->loss_model = CLG_GILB_ELL;
783 			q->clg.state = GOOD_STATE;
784 			q->clg.a1 = ge->p;
785 			q->clg.a2 = ge->r;
786 			q->clg.a3 = ge->h;
787 			q->clg.a4 = ge->k1;
788 			break;
789 		}
790 
791 		default:
792 			pr_info("netem: unknown loss type %u\n", type);
793 			return -EINVAL;
794 		}
795 	}
796 
797 	return 0;
798 }
799 
800 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
801 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
802 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
803 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
804 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
805 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
806 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
807 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
808 };
809 
810 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
811 		      const struct nla_policy *policy, int len)
812 {
813 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
814 
815 	if (nested_len < 0) {
816 		pr_info("netem: invalid attributes len %d\n", nested_len);
817 		return -EINVAL;
818 	}
819 
820 	if (nested_len >= nla_attr_size(0))
821 		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
822 				 nested_len, policy);
823 
824 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
825 	return 0;
826 }
827 
828 /* Parse netlink message to set options */
829 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
830 {
831 	struct netem_sched_data *q = qdisc_priv(sch);
832 	struct nlattr *tb[TCA_NETEM_MAX + 1];
833 	struct tc_netem_qopt *qopt;
834 	struct clgstate old_clg;
835 	int old_loss_model = CLG_RANDOM;
836 	int ret;
837 
838 	if (opt == NULL)
839 		return -EINVAL;
840 
841 	qopt = nla_data(opt);
842 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
843 	if (ret < 0)
844 		return ret;
845 
846 	/* backup q->clg and q->loss_model */
847 	old_clg = q->clg;
848 	old_loss_model = q->loss_model;
849 
850 	if (tb[TCA_NETEM_LOSS]) {
851 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
852 		if (ret) {
853 			q->loss_model = old_loss_model;
854 			return ret;
855 		}
856 	} else {
857 		q->loss_model = CLG_RANDOM;
858 	}
859 
860 	if (tb[TCA_NETEM_DELAY_DIST]) {
861 		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
862 		if (ret) {
863 			/* recover clg and loss_model, in case of
864 			 * q->clg and q->loss_model were modified
865 			 * in get_loss_clg()
866 			 */
867 			q->clg = old_clg;
868 			q->loss_model = old_loss_model;
869 			return ret;
870 		}
871 	}
872 
873 	sch->limit = qopt->limit;
874 
875 	q->latency = qopt->latency;
876 	q->jitter = qopt->jitter;
877 	q->limit = qopt->limit;
878 	q->gap = qopt->gap;
879 	q->counter = 0;
880 	q->loss = qopt->loss;
881 	q->duplicate = qopt->duplicate;
882 
883 	/* for compatibility with earlier versions.
884 	 * if gap is set, need to assume 100% probability
885 	 */
886 	if (q->gap)
887 		q->reorder = ~0;
888 
889 	if (tb[TCA_NETEM_CORR])
890 		get_correlation(q, tb[TCA_NETEM_CORR]);
891 
892 	if (tb[TCA_NETEM_REORDER])
893 		get_reorder(q, tb[TCA_NETEM_REORDER]);
894 
895 	if (tb[TCA_NETEM_CORRUPT])
896 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
897 
898 	if (tb[TCA_NETEM_RATE])
899 		get_rate(q, tb[TCA_NETEM_RATE]);
900 
901 	if (tb[TCA_NETEM_RATE64])
902 		q->rate = max_t(u64, q->rate,
903 				nla_get_u64(tb[TCA_NETEM_RATE64]));
904 
905 	if (tb[TCA_NETEM_ECN])
906 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
907 
908 	return ret;
909 }
910 
911 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
912 {
913 	struct netem_sched_data *q = qdisc_priv(sch);
914 	int ret;
915 
916 	if (!opt)
917 		return -EINVAL;
918 
919 	qdisc_watchdog_init(&q->watchdog, sch);
920 
921 	q->loss_model = CLG_RANDOM;
922 	ret = netem_change(sch, opt);
923 	if (ret)
924 		pr_info("netem: change failed\n");
925 	return ret;
926 }
927 
928 static void netem_destroy(struct Qdisc *sch)
929 {
930 	struct netem_sched_data *q = qdisc_priv(sch);
931 
932 	qdisc_watchdog_cancel(&q->watchdog);
933 	if (q->qdisc)
934 		qdisc_destroy(q->qdisc);
935 	dist_free(q->delay_dist);
936 }
937 
938 static int dump_loss_model(const struct netem_sched_data *q,
939 			   struct sk_buff *skb)
940 {
941 	struct nlattr *nest;
942 
943 	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
944 	if (nest == NULL)
945 		goto nla_put_failure;
946 
947 	switch (q->loss_model) {
948 	case CLG_RANDOM:
949 		/* legacy loss model */
950 		nla_nest_cancel(skb, nest);
951 		return 0;	/* no data */
952 
953 	case CLG_4_STATES: {
954 		struct tc_netem_gimodel gi = {
955 			.p13 = q->clg.a1,
956 			.p31 = q->clg.a2,
957 			.p32 = q->clg.a3,
958 			.p14 = q->clg.a4,
959 			.p23 = q->clg.a5,
960 		};
961 
962 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
963 			goto nla_put_failure;
964 		break;
965 	}
966 	case CLG_GILB_ELL: {
967 		struct tc_netem_gemodel ge = {
968 			.p = q->clg.a1,
969 			.r = q->clg.a2,
970 			.h = q->clg.a3,
971 			.k1 = q->clg.a4,
972 		};
973 
974 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
975 			goto nla_put_failure;
976 		break;
977 	}
978 	}
979 
980 	nla_nest_end(skb, nest);
981 	return 0;
982 
983 nla_put_failure:
984 	nla_nest_cancel(skb, nest);
985 	return -1;
986 }
987 
988 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
989 {
990 	const struct netem_sched_data *q = qdisc_priv(sch);
991 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
992 	struct tc_netem_qopt qopt;
993 	struct tc_netem_corr cor;
994 	struct tc_netem_reorder reorder;
995 	struct tc_netem_corrupt corrupt;
996 	struct tc_netem_rate rate;
997 
998 	qopt.latency = q->latency;
999 	qopt.jitter = q->jitter;
1000 	qopt.limit = q->limit;
1001 	qopt.loss = q->loss;
1002 	qopt.gap = q->gap;
1003 	qopt.duplicate = q->duplicate;
1004 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1005 		goto nla_put_failure;
1006 
1007 	cor.delay_corr = q->delay_cor.rho;
1008 	cor.loss_corr = q->loss_cor.rho;
1009 	cor.dup_corr = q->dup_cor.rho;
1010 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1011 		goto nla_put_failure;
1012 
1013 	reorder.probability = q->reorder;
1014 	reorder.correlation = q->reorder_cor.rho;
1015 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1016 		goto nla_put_failure;
1017 
1018 	corrupt.probability = q->corrupt;
1019 	corrupt.correlation = q->corrupt_cor.rho;
1020 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1021 		goto nla_put_failure;
1022 
1023 	if (q->rate >= (1ULL << 32)) {
1024 		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1025 				      TCA_NETEM_PAD))
1026 			goto nla_put_failure;
1027 		rate.rate = ~0U;
1028 	} else {
1029 		rate.rate = q->rate;
1030 	}
1031 	rate.packet_overhead = q->packet_overhead;
1032 	rate.cell_size = q->cell_size;
1033 	rate.cell_overhead = q->cell_overhead;
1034 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1035 		goto nla_put_failure;
1036 
1037 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1038 		goto nla_put_failure;
1039 
1040 	if (dump_loss_model(q, skb) != 0)
1041 		goto nla_put_failure;
1042 
1043 	return nla_nest_end(skb, nla);
1044 
1045 nla_put_failure:
1046 	nlmsg_trim(skb, nla);
1047 	return -1;
1048 }
1049 
1050 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1051 			  struct sk_buff *skb, struct tcmsg *tcm)
1052 {
1053 	struct netem_sched_data *q = qdisc_priv(sch);
1054 
1055 	if (cl != 1 || !q->qdisc) 	/* only one class */
1056 		return -ENOENT;
1057 
1058 	tcm->tcm_handle |= TC_H_MIN(1);
1059 	tcm->tcm_info = q->qdisc->handle;
1060 
1061 	return 0;
1062 }
1063 
1064 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1065 		     struct Qdisc **old)
1066 {
1067 	struct netem_sched_data *q = qdisc_priv(sch);
1068 
1069 	*old = qdisc_replace(sch, new, &q->qdisc);
1070 	return 0;
1071 }
1072 
1073 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1074 {
1075 	struct netem_sched_data *q = qdisc_priv(sch);
1076 	return q->qdisc;
1077 }
1078 
1079 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1080 {
1081 	return 1;
1082 }
1083 
1084 static void netem_put(struct Qdisc *sch, unsigned long arg)
1085 {
1086 }
1087 
1088 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1089 {
1090 	if (!walker->stop) {
1091 		if (walker->count >= walker->skip)
1092 			if (walker->fn(sch, 1, walker) < 0) {
1093 				walker->stop = 1;
1094 				return;
1095 			}
1096 		walker->count++;
1097 	}
1098 }
1099 
1100 static const struct Qdisc_class_ops netem_class_ops = {
1101 	.graft		=	netem_graft,
1102 	.leaf		=	netem_leaf,
1103 	.get		=	netem_get,
1104 	.put		=	netem_put,
1105 	.walk		=	netem_walk,
1106 	.dump		=	netem_dump_class,
1107 };
1108 
1109 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1110 	.id		=	"netem",
1111 	.cl_ops		=	&netem_class_ops,
1112 	.priv_size	=	sizeof(struct netem_sched_data),
1113 	.enqueue	=	netem_enqueue,
1114 	.dequeue	=	netem_dequeue,
1115 	.peek		=	qdisc_peek_dequeued,
1116 	.init		=	netem_init,
1117 	.reset		=	netem_reset,
1118 	.destroy	=	netem_destroy,
1119 	.change		=	netem_change,
1120 	.dump		=	netem_dump,
1121 	.owner		=	THIS_MODULE,
1122 };
1123 
1124 
1125 static int __init netem_module_init(void)
1126 {
1127 	pr_info("netem: version " VERSION "\n");
1128 	return register_qdisc(&netem_qdisc_ops);
1129 }
1130 static void __exit netem_module_exit(void)
1131 {
1132 	unregister_qdisc(&netem_qdisc_ops);
1133 }
1134 module_init(netem_module_init)
1135 module_exit(netem_module_exit)
1136 MODULE_LICENSE("GPL");
1137