xref: /openbmc/linux/net/sched/sch_netem.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  * net/sched/sch_netem.c	Network emulator
3  *
4  * 		This program is free software; you can redistribute it and/or
5  * 		modify it under the terms of the GNU General Public License
6  * 		as published by the Free Software Foundation; either version
7  * 		2 of the License.
8  *
9  *  		Many of the algorithms and ideas for this came from
10  *		NIST Net which is not copyrighted.
11  *
12  * Authors:	Stephen Hemminger <shemminger@osdl.org>
13  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
27 
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
31 
32 #define VERSION "1.3"
33 
34 /*	Network Emulation Queuing algorithm.
35 	====================================
36 
37 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 		 Network Emulation Tool
39 		 [2] Luigi Rizzo, DummyNet for FreeBSD
40 
41 	 ----------------------------------------------------------------
42 
43 	 This started out as a simple way to delay outgoing packets to
44 	 test TCP but has grown to include most of the functionality
45 	 of a full blown network emulator like NISTnet. It can delay
46 	 packets and add random jitter (and correlation). The random
47 	 distribution can be loaded from a table as well to provide
48 	 normal, Pareto, or experimental curves. Packet loss,
49 	 duplication, and reordering can also be emulated.
50 
51 	 This qdisc does not do classification that can be handled in
52 	 layering other disciplines.  It does not need to do bandwidth
53 	 control either since that can be handled by using token
54 	 bucket or other rate control.
55 
56      Correlated Loss Generator models
57 
58 	Added generation of correlated loss according to the
59 	"Gilbert-Elliot" model, a 4-state markov model.
60 
61 	References:
62 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 	and intuitive loss model for packet networks and its implementation
65 	in the Netem module in the Linux kernel", available in [1]
66 
67 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
69 */
70 
71 struct netem_sched_data {
72 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 	struct rb_root t_root;
74 
75 	/* optional qdisc for classful handling (NULL at netem init) */
76 	struct Qdisc	*qdisc;
77 
78 	struct qdisc_watchdog watchdog;
79 
80 	psched_tdiff_t latency;
81 	psched_tdiff_t jitter;
82 
83 	u32 loss;
84 	u32 ecn;
85 	u32 limit;
86 	u32 counter;
87 	u32 gap;
88 	u32 duplicate;
89 	u32 reorder;
90 	u32 corrupt;
91 	u64 rate;
92 	s32 packet_overhead;
93 	u32 cell_size;
94 	struct reciprocal_value cell_size_reciprocal;
95 	s32 cell_overhead;
96 
97 	struct crndstate {
98 		u32 last;
99 		u32 rho;
100 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
101 
102 	struct disttable {
103 		u32  size;
104 		s16 table[0];
105 	} *delay_dist;
106 
107 	enum  {
108 		CLG_RANDOM,
109 		CLG_4_STATES,
110 		CLG_GILB_ELL,
111 	} loss_model;
112 
113 	enum {
114 		TX_IN_GAP_PERIOD = 1,
115 		TX_IN_BURST_PERIOD,
116 		LOST_IN_GAP_PERIOD,
117 		LOST_IN_BURST_PERIOD,
118 	} _4_state_model;
119 
120 	enum {
121 		GOOD_STATE = 1,
122 		BAD_STATE,
123 	} GE_state_model;
124 
125 	/* Correlated Loss Generation models */
126 	struct clgstate {
127 		/* state of the Markov chain */
128 		u8 state;
129 
130 		/* 4-states and Gilbert-Elliot models */
131 		u32 a1;	/* p13 for 4-states or p for GE */
132 		u32 a2;	/* p31 for 4-states or r for GE */
133 		u32 a3;	/* p32 for 4-states or h for GE */
134 		u32 a4;	/* p14 for 4-states or 1-k for GE */
135 		u32 a5; /* p23 used only in 4-states */
136 	} clg;
137 
138 };
139 
140 /* Time stamp put into socket buffer control block
141  * Only valid when skbs are in our internal t(ime)fifo queue.
142  *
143  * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
144  * and skb->next & skb->prev are scratch space for a qdisc,
145  * we save skb->tstamp value in skb->cb[] before destroying it.
146  */
147 struct netem_skb_cb {
148 	psched_time_t	time_to_send;
149 	ktime_t		tstamp_save;
150 };
151 
152 
153 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
154 {
155 	return rb_entry(rb, struct sk_buff, rbnode);
156 }
157 
158 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
159 {
160 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
161 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
162 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
163 }
164 
165 /* init_crandom - initialize correlated random number generator
166  * Use entropy source for initial seed.
167  */
168 static void init_crandom(struct crndstate *state, unsigned long rho)
169 {
170 	state->rho = rho;
171 	state->last = prandom_u32();
172 }
173 
174 /* get_crandom - correlated random number generator
175  * Next number depends on last value.
176  * rho is scaled to avoid floating point.
177  */
178 static u32 get_crandom(struct crndstate *state)
179 {
180 	u64 value, rho;
181 	unsigned long answer;
182 
183 	if (state->rho == 0)	/* no correlation */
184 		return prandom_u32();
185 
186 	value = prandom_u32();
187 	rho = (u64)state->rho + 1;
188 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
189 	state->last = answer;
190 	return answer;
191 }
192 
193 /* loss_4state - 4-state model loss generator
194  * Generates losses according to the 4-state Markov chain adopted in
195  * the GI (General and Intuitive) loss model.
196  */
197 static bool loss_4state(struct netem_sched_data *q)
198 {
199 	struct clgstate *clg = &q->clg;
200 	u32 rnd = prandom_u32();
201 
202 	/*
203 	 * Makes a comparison between rnd and the transition
204 	 * probabilities outgoing from the current state, then decides the
205 	 * next state and if the next packet has to be transmitted or lost.
206 	 * The four states correspond to:
207 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
208 	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
209 	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
210 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
211 	 */
212 	switch (clg->state) {
213 	case TX_IN_GAP_PERIOD:
214 		if (rnd < clg->a4) {
215 			clg->state = LOST_IN_BURST_PERIOD;
216 			return true;
217 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
218 			clg->state = LOST_IN_GAP_PERIOD;
219 			return true;
220 		} else if (clg->a1 + clg->a4 < rnd) {
221 			clg->state = TX_IN_GAP_PERIOD;
222 		}
223 
224 		break;
225 	case TX_IN_BURST_PERIOD:
226 		if (rnd < clg->a5) {
227 			clg->state = LOST_IN_GAP_PERIOD;
228 			return true;
229 		} else {
230 			clg->state = TX_IN_BURST_PERIOD;
231 		}
232 
233 		break;
234 	case LOST_IN_GAP_PERIOD:
235 		if (rnd < clg->a3)
236 			clg->state = TX_IN_BURST_PERIOD;
237 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
238 			clg->state = TX_IN_GAP_PERIOD;
239 		} else if (clg->a2 + clg->a3 < rnd) {
240 			clg->state = LOST_IN_GAP_PERIOD;
241 			return true;
242 		}
243 		break;
244 	case LOST_IN_BURST_PERIOD:
245 		clg->state = TX_IN_GAP_PERIOD;
246 		break;
247 	}
248 
249 	return false;
250 }
251 
252 /* loss_gilb_ell - Gilbert-Elliot model loss generator
253  * Generates losses according to the Gilbert-Elliot loss model or
254  * its special cases  (Gilbert or Simple Gilbert)
255  *
256  * Makes a comparison between random number and the transition
257  * probabilities outgoing from the current state, then decides the
258  * next state. A second random number is extracted and the comparison
259  * with the loss probability of the current state decides if the next
260  * packet will be transmitted or lost.
261  */
262 static bool loss_gilb_ell(struct netem_sched_data *q)
263 {
264 	struct clgstate *clg = &q->clg;
265 
266 	switch (clg->state) {
267 	case GOOD_STATE:
268 		if (prandom_u32() < clg->a1)
269 			clg->state = BAD_STATE;
270 		if (prandom_u32() < clg->a4)
271 			return true;
272 		break;
273 	case BAD_STATE:
274 		if (prandom_u32() < clg->a2)
275 			clg->state = GOOD_STATE;
276 		if (prandom_u32() > clg->a3)
277 			return true;
278 	}
279 
280 	return false;
281 }
282 
283 static bool loss_event(struct netem_sched_data *q)
284 {
285 	switch (q->loss_model) {
286 	case CLG_RANDOM:
287 		/* Random packet drop 0 => none, ~0 => all */
288 		return q->loss && q->loss >= get_crandom(&q->loss_cor);
289 
290 	case CLG_4_STATES:
291 		/* 4state loss model algorithm (used also for GI model)
292 		* Extracts a value from the markov 4 state loss generator,
293 		* if it is 1 drops a packet and if needed writes the event in
294 		* the kernel logs
295 		*/
296 		return loss_4state(q);
297 
298 	case CLG_GILB_ELL:
299 		/* Gilbert-Elliot loss model algorithm
300 		* Extracts a value from the Gilbert-Elliot loss generator,
301 		* if it is 1 drops a packet and if needed writes the event in
302 		* the kernel logs
303 		*/
304 		return loss_gilb_ell(q);
305 	}
306 
307 	return false;	/* not reached */
308 }
309 
310 
311 /* tabledist - return a pseudo-randomly distributed value with mean mu and
312  * std deviation sigma.  Uses table lookup to approximate the desired
313  * distribution, and a uniformly-distributed pseudo-random source.
314  */
315 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
316 				struct crndstate *state,
317 				const struct disttable *dist)
318 {
319 	psched_tdiff_t x;
320 	long t;
321 	u32 rnd;
322 
323 	if (sigma == 0)
324 		return mu;
325 
326 	rnd = get_crandom(state);
327 
328 	/* default uniform distribution */
329 	if (dist == NULL)
330 		return (rnd % (2*sigma)) - sigma + mu;
331 
332 	t = dist->table[rnd % dist->size];
333 	x = (sigma % NETEM_DIST_SCALE) * t;
334 	if (x >= 0)
335 		x += NETEM_DIST_SCALE/2;
336 	else
337 		x -= NETEM_DIST_SCALE/2;
338 
339 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
340 }
341 
342 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
343 {
344 	u64 ticks;
345 
346 	len += q->packet_overhead;
347 
348 	if (q->cell_size) {
349 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
350 
351 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
352 			cells++;
353 		len = cells * (q->cell_size + q->cell_overhead);
354 	}
355 
356 	ticks = (u64)len * NSEC_PER_SEC;
357 
358 	do_div(ticks, q->rate);
359 	return PSCHED_NS2TICKS(ticks);
360 }
361 
362 static void tfifo_reset(struct Qdisc *sch)
363 {
364 	struct netem_sched_data *q = qdisc_priv(sch);
365 	struct rb_node *p;
366 
367 	while ((p = rb_first(&q->t_root))) {
368 		struct sk_buff *skb = netem_rb_to_skb(p);
369 
370 		rb_erase(p, &q->t_root);
371 		rtnl_kfree_skbs(skb, skb);
372 	}
373 }
374 
375 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
376 {
377 	struct netem_sched_data *q = qdisc_priv(sch);
378 	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
379 	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
380 
381 	while (*p) {
382 		struct sk_buff *skb;
383 
384 		parent = *p;
385 		skb = netem_rb_to_skb(parent);
386 		if (tnext >= netem_skb_cb(skb)->time_to_send)
387 			p = &parent->rb_right;
388 		else
389 			p = &parent->rb_left;
390 	}
391 	rb_link_node(&nskb->rbnode, parent, p);
392 	rb_insert_color(&nskb->rbnode, &q->t_root);
393 	sch->q.qlen++;
394 }
395 
396 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
397  * when we statistically choose to corrupt one, we instead segment it, returning
398  * the first packet to be corrupted, and re-enqueue the remaining frames
399  */
400 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
401 				     struct sk_buff **to_free)
402 {
403 	struct sk_buff *segs;
404 	netdev_features_t features = netif_skb_features(skb);
405 
406 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
407 
408 	if (IS_ERR_OR_NULL(segs)) {
409 		qdisc_drop(skb, sch, to_free);
410 		return NULL;
411 	}
412 	consume_skb(skb);
413 	return segs;
414 }
415 
416 static void netem_enqueue_skb_head(struct qdisc_skb_head *qh, struct sk_buff *skb)
417 {
418 	skb->next = qh->head;
419 
420 	if (!qh->head)
421 		qh->tail = skb;
422 	qh->head = skb;
423 	qh->qlen++;
424 }
425 
426 /*
427  * Insert one skb into qdisc.
428  * Note: parent depends on return value to account for queue length.
429  * 	NET_XMIT_DROP: queue length didn't change.
430  *      NET_XMIT_SUCCESS: one skb was queued.
431  */
432 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
433 			 struct sk_buff **to_free)
434 {
435 	struct netem_sched_data *q = qdisc_priv(sch);
436 	/* We don't fill cb now as skb_unshare() may invalidate it */
437 	struct netem_skb_cb *cb;
438 	struct sk_buff *skb2;
439 	struct sk_buff *segs = NULL;
440 	unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb);
441 	int nb = 0;
442 	int count = 1;
443 	int rc = NET_XMIT_SUCCESS;
444 
445 	/* Random duplication */
446 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
447 		++count;
448 
449 	/* Drop packet? */
450 	if (loss_event(q)) {
451 		if (q->ecn && INET_ECN_set_ce(skb))
452 			qdisc_qstats_drop(sch); /* mark packet */
453 		else
454 			--count;
455 	}
456 	if (count == 0) {
457 		qdisc_qstats_drop(sch);
458 		__qdisc_drop(skb, to_free);
459 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
460 	}
461 
462 	/* If a delay is expected, orphan the skb. (orphaning usually takes
463 	 * place at TX completion time, so _before_ the link transit delay)
464 	 */
465 	if (q->latency || q->jitter)
466 		skb_orphan_partial(skb);
467 
468 	/*
469 	 * If we need to duplicate packet, then re-insert at top of the
470 	 * qdisc tree, since parent queuer expects that only one
471 	 * skb will be queued.
472 	 */
473 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
474 		struct Qdisc *rootq = qdisc_root(sch);
475 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
476 
477 		q->duplicate = 0;
478 		rootq->enqueue(skb2, rootq, to_free);
479 		q->duplicate = dupsave;
480 	}
481 
482 	/*
483 	 * Randomized packet corruption.
484 	 * Make copy if needed since we are modifying
485 	 * If packet is going to be hardware checksummed, then
486 	 * do it now in software before we mangle it.
487 	 */
488 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
489 		if (skb_is_gso(skb)) {
490 			segs = netem_segment(skb, sch, to_free);
491 			if (!segs)
492 				return NET_XMIT_DROP;
493 		} else {
494 			segs = skb;
495 		}
496 
497 		skb = segs;
498 		segs = segs->next;
499 
500 		skb = skb_unshare(skb, GFP_ATOMIC);
501 		if (unlikely(!skb)) {
502 			qdisc_qstats_drop(sch);
503 			goto finish_segs;
504 		}
505 		if (skb->ip_summed == CHECKSUM_PARTIAL &&
506 		    skb_checksum_help(skb)) {
507 			qdisc_drop(skb, sch, to_free);
508 			goto finish_segs;
509 		}
510 
511 		skb->data[prandom_u32() % skb_headlen(skb)] ^=
512 			1<<(prandom_u32() % 8);
513 	}
514 
515 	if (unlikely(sch->q.qlen >= sch->limit))
516 		return qdisc_drop(skb, sch, to_free);
517 
518 	qdisc_qstats_backlog_inc(sch, skb);
519 
520 	cb = netem_skb_cb(skb);
521 	if (q->gap == 0 ||		/* not doing reordering */
522 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
523 	    q->reorder < get_crandom(&q->reorder_cor)) {
524 		psched_time_t now;
525 		psched_tdiff_t delay;
526 
527 		delay = tabledist(q->latency, q->jitter,
528 				  &q->delay_cor, q->delay_dist);
529 
530 		now = psched_get_time();
531 
532 		if (q->rate) {
533 			struct sk_buff *last;
534 
535 			if (sch->q.qlen)
536 				last = sch->q.tail;
537 			else
538 				last = netem_rb_to_skb(rb_last(&q->t_root));
539 			if (last) {
540 				/*
541 				 * Last packet in queue is reference point (now),
542 				 * calculate this time bonus and subtract
543 				 * from delay.
544 				 */
545 				delay -= netem_skb_cb(last)->time_to_send - now;
546 				delay = max_t(psched_tdiff_t, 0, delay);
547 				now = netem_skb_cb(last)->time_to_send;
548 			}
549 
550 			delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
551 		}
552 
553 		cb->time_to_send = now + delay;
554 		cb->tstamp_save = skb->tstamp;
555 		++q->counter;
556 		tfifo_enqueue(skb, sch);
557 	} else {
558 		/*
559 		 * Do re-ordering by putting one out of N packets at the front
560 		 * of the queue.
561 		 */
562 		cb->time_to_send = psched_get_time();
563 		q->counter = 0;
564 
565 		netem_enqueue_skb_head(&sch->q, skb);
566 		sch->qstats.requeues++;
567 	}
568 
569 finish_segs:
570 	if (segs) {
571 		while (segs) {
572 			skb2 = segs->next;
573 			segs->next = NULL;
574 			qdisc_skb_cb(segs)->pkt_len = segs->len;
575 			last_len = segs->len;
576 			rc = qdisc_enqueue(segs, sch, to_free);
577 			if (rc != NET_XMIT_SUCCESS) {
578 				if (net_xmit_drop_count(rc))
579 					qdisc_qstats_drop(sch);
580 			} else {
581 				nb++;
582 				len += last_len;
583 			}
584 			segs = skb2;
585 		}
586 		sch->q.qlen += nb;
587 		if (nb > 1)
588 			qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
589 	}
590 	return NET_XMIT_SUCCESS;
591 }
592 
593 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
594 {
595 	struct netem_sched_data *q = qdisc_priv(sch);
596 	struct sk_buff *skb;
597 	struct rb_node *p;
598 
599 tfifo_dequeue:
600 	skb = __qdisc_dequeue_head(&sch->q);
601 	if (skb) {
602 		qdisc_qstats_backlog_dec(sch, skb);
603 deliver:
604 		qdisc_bstats_update(sch, skb);
605 		return skb;
606 	}
607 	p = rb_first(&q->t_root);
608 	if (p) {
609 		psched_time_t time_to_send;
610 
611 		skb = netem_rb_to_skb(p);
612 
613 		/* if more time remaining? */
614 		time_to_send = netem_skb_cb(skb)->time_to_send;
615 		if (time_to_send <= psched_get_time()) {
616 			rb_erase(p, &q->t_root);
617 
618 			sch->q.qlen--;
619 			qdisc_qstats_backlog_dec(sch, skb);
620 			skb->next = NULL;
621 			skb->prev = NULL;
622 			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
623 
624 #ifdef CONFIG_NET_CLS_ACT
625 			/*
626 			 * If it's at ingress let's pretend the delay is
627 			 * from the network (tstamp will be updated).
628 			 */
629 			if (skb->tc_redirected && skb->tc_from_ingress)
630 				skb->tstamp = 0;
631 #endif
632 
633 			if (q->qdisc) {
634 				unsigned int pkt_len = qdisc_pkt_len(skb);
635 				struct sk_buff *to_free = NULL;
636 				int err;
637 
638 				err = qdisc_enqueue(skb, q->qdisc, &to_free);
639 				kfree_skb_list(to_free);
640 				if (err != NET_XMIT_SUCCESS &&
641 				    net_xmit_drop_count(err)) {
642 					qdisc_qstats_drop(sch);
643 					qdisc_tree_reduce_backlog(sch, 1,
644 								  pkt_len);
645 				}
646 				goto tfifo_dequeue;
647 			}
648 			goto deliver;
649 		}
650 
651 		if (q->qdisc) {
652 			skb = q->qdisc->ops->dequeue(q->qdisc);
653 			if (skb)
654 				goto deliver;
655 		}
656 		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
657 	}
658 
659 	if (q->qdisc) {
660 		skb = q->qdisc->ops->dequeue(q->qdisc);
661 		if (skb)
662 			goto deliver;
663 	}
664 	return NULL;
665 }
666 
667 static void netem_reset(struct Qdisc *sch)
668 {
669 	struct netem_sched_data *q = qdisc_priv(sch);
670 
671 	qdisc_reset_queue(sch);
672 	tfifo_reset(sch);
673 	if (q->qdisc)
674 		qdisc_reset(q->qdisc);
675 	qdisc_watchdog_cancel(&q->watchdog);
676 }
677 
678 static void dist_free(struct disttable *d)
679 {
680 	kvfree(d);
681 }
682 
683 /*
684  * Distribution data is a variable size payload containing
685  * signed 16 bit values.
686  */
687 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
688 {
689 	struct netem_sched_data *q = qdisc_priv(sch);
690 	size_t n = nla_len(attr)/sizeof(__s16);
691 	const __s16 *data = nla_data(attr);
692 	spinlock_t *root_lock;
693 	struct disttable *d;
694 	int i;
695 	size_t s;
696 
697 	if (n > NETEM_DIST_MAX)
698 		return -EINVAL;
699 
700 	s = sizeof(struct disttable) + n * sizeof(s16);
701 	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
702 	if (!d)
703 		d = vmalloc(s);
704 	if (!d)
705 		return -ENOMEM;
706 
707 	d->size = n;
708 	for (i = 0; i < n; i++)
709 		d->table[i] = data[i];
710 
711 	root_lock = qdisc_root_sleeping_lock(sch);
712 
713 	spin_lock_bh(root_lock);
714 	swap(q->delay_dist, d);
715 	spin_unlock_bh(root_lock);
716 
717 	dist_free(d);
718 	return 0;
719 }
720 
721 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
722 {
723 	const struct tc_netem_corr *c = nla_data(attr);
724 
725 	init_crandom(&q->delay_cor, c->delay_corr);
726 	init_crandom(&q->loss_cor, c->loss_corr);
727 	init_crandom(&q->dup_cor, c->dup_corr);
728 }
729 
730 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
731 {
732 	const struct tc_netem_reorder *r = nla_data(attr);
733 
734 	q->reorder = r->probability;
735 	init_crandom(&q->reorder_cor, r->correlation);
736 }
737 
738 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
739 {
740 	const struct tc_netem_corrupt *r = nla_data(attr);
741 
742 	q->corrupt = r->probability;
743 	init_crandom(&q->corrupt_cor, r->correlation);
744 }
745 
746 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
747 {
748 	const struct tc_netem_rate *r = nla_data(attr);
749 
750 	q->rate = r->rate;
751 	q->packet_overhead = r->packet_overhead;
752 	q->cell_size = r->cell_size;
753 	q->cell_overhead = r->cell_overhead;
754 	if (q->cell_size)
755 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
756 	else
757 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
758 }
759 
760 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
761 {
762 	const struct nlattr *la;
763 	int rem;
764 
765 	nla_for_each_nested(la, attr, rem) {
766 		u16 type = nla_type(la);
767 
768 		switch (type) {
769 		case NETEM_LOSS_GI: {
770 			const struct tc_netem_gimodel *gi = nla_data(la);
771 
772 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
773 				pr_info("netem: incorrect gi model size\n");
774 				return -EINVAL;
775 			}
776 
777 			q->loss_model = CLG_4_STATES;
778 
779 			q->clg.state = TX_IN_GAP_PERIOD;
780 			q->clg.a1 = gi->p13;
781 			q->clg.a2 = gi->p31;
782 			q->clg.a3 = gi->p32;
783 			q->clg.a4 = gi->p14;
784 			q->clg.a5 = gi->p23;
785 			break;
786 		}
787 
788 		case NETEM_LOSS_GE: {
789 			const struct tc_netem_gemodel *ge = nla_data(la);
790 
791 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
792 				pr_info("netem: incorrect ge model size\n");
793 				return -EINVAL;
794 			}
795 
796 			q->loss_model = CLG_GILB_ELL;
797 			q->clg.state = GOOD_STATE;
798 			q->clg.a1 = ge->p;
799 			q->clg.a2 = ge->r;
800 			q->clg.a3 = ge->h;
801 			q->clg.a4 = ge->k1;
802 			break;
803 		}
804 
805 		default:
806 			pr_info("netem: unknown loss type %u\n", type);
807 			return -EINVAL;
808 		}
809 	}
810 
811 	return 0;
812 }
813 
814 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
815 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
816 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
817 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
818 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
819 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
820 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
821 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
822 };
823 
824 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
825 		      const struct nla_policy *policy, int len)
826 {
827 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
828 
829 	if (nested_len < 0) {
830 		pr_info("netem: invalid attributes len %d\n", nested_len);
831 		return -EINVAL;
832 	}
833 
834 	if (nested_len >= nla_attr_size(0))
835 		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
836 				 nested_len, policy);
837 
838 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
839 	return 0;
840 }
841 
842 /* Parse netlink message to set options */
843 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
844 {
845 	struct netem_sched_data *q = qdisc_priv(sch);
846 	struct nlattr *tb[TCA_NETEM_MAX + 1];
847 	struct tc_netem_qopt *qopt;
848 	struct clgstate old_clg;
849 	int old_loss_model = CLG_RANDOM;
850 	int ret;
851 
852 	if (opt == NULL)
853 		return -EINVAL;
854 
855 	qopt = nla_data(opt);
856 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
857 	if (ret < 0)
858 		return ret;
859 
860 	/* backup q->clg and q->loss_model */
861 	old_clg = q->clg;
862 	old_loss_model = q->loss_model;
863 
864 	if (tb[TCA_NETEM_LOSS]) {
865 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
866 		if (ret) {
867 			q->loss_model = old_loss_model;
868 			return ret;
869 		}
870 	} else {
871 		q->loss_model = CLG_RANDOM;
872 	}
873 
874 	if (tb[TCA_NETEM_DELAY_DIST]) {
875 		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
876 		if (ret) {
877 			/* recover clg and loss_model, in case of
878 			 * q->clg and q->loss_model were modified
879 			 * in get_loss_clg()
880 			 */
881 			q->clg = old_clg;
882 			q->loss_model = old_loss_model;
883 			return ret;
884 		}
885 	}
886 
887 	sch->limit = qopt->limit;
888 
889 	q->latency = qopt->latency;
890 	q->jitter = qopt->jitter;
891 	q->limit = qopt->limit;
892 	q->gap = qopt->gap;
893 	q->counter = 0;
894 	q->loss = qopt->loss;
895 	q->duplicate = qopt->duplicate;
896 
897 	/* for compatibility with earlier versions.
898 	 * if gap is set, need to assume 100% probability
899 	 */
900 	if (q->gap)
901 		q->reorder = ~0;
902 
903 	if (tb[TCA_NETEM_CORR])
904 		get_correlation(q, tb[TCA_NETEM_CORR]);
905 
906 	if (tb[TCA_NETEM_REORDER])
907 		get_reorder(q, tb[TCA_NETEM_REORDER]);
908 
909 	if (tb[TCA_NETEM_CORRUPT])
910 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
911 
912 	if (tb[TCA_NETEM_RATE])
913 		get_rate(q, tb[TCA_NETEM_RATE]);
914 
915 	if (tb[TCA_NETEM_RATE64])
916 		q->rate = max_t(u64, q->rate,
917 				nla_get_u64(tb[TCA_NETEM_RATE64]));
918 
919 	if (tb[TCA_NETEM_ECN])
920 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
921 
922 	return ret;
923 }
924 
925 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
926 {
927 	struct netem_sched_data *q = qdisc_priv(sch);
928 	int ret;
929 
930 	if (!opt)
931 		return -EINVAL;
932 
933 	qdisc_watchdog_init(&q->watchdog, sch);
934 
935 	q->loss_model = CLG_RANDOM;
936 	ret = netem_change(sch, opt);
937 	if (ret)
938 		pr_info("netem: change failed\n");
939 	return ret;
940 }
941 
942 static void netem_destroy(struct Qdisc *sch)
943 {
944 	struct netem_sched_data *q = qdisc_priv(sch);
945 
946 	qdisc_watchdog_cancel(&q->watchdog);
947 	if (q->qdisc)
948 		qdisc_destroy(q->qdisc);
949 	dist_free(q->delay_dist);
950 }
951 
952 static int dump_loss_model(const struct netem_sched_data *q,
953 			   struct sk_buff *skb)
954 {
955 	struct nlattr *nest;
956 
957 	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
958 	if (nest == NULL)
959 		goto nla_put_failure;
960 
961 	switch (q->loss_model) {
962 	case CLG_RANDOM:
963 		/* legacy loss model */
964 		nla_nest_cancel(skb, nest);
965 		return 0;	/* no data */
966 
967 	case CLG_4_STATES: {
968 		struct tc_netem_gimodel gi = {
969 			.p13 = q->clg.a1,
970 			.p31 = q->clg.a2,
971 			.p32 = q->clg.a3,
972 			.p14 = q->clg.a4,
973 			.p23 = q->clg.a5,
974 		};
975 
976 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
977 			goto nla_put_failure;
978 		break;
979 	}
980 	case CLG_GILB_ELL: {
981 		struct tc_netem_gemodel ge = {
982 			.p = q->clg.a1,
983 			.r = q->clg.a2,
984 			.h = q->clg.a3,
985 			.k1 = q->clg.a4,
986 		};
987 
988 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
989 			goto nla_put_failure;
990 		break;
991 	}
992 	}
993 
994 	nla_nest_end(skb, nest);
995 	return 0;
996 
997 nla_put_failure:
998 	nla_nest_cancel(skb, nest);
999 	return -1;
1000 }
1001 
1002 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1003 {
1004 	const struct netem_sched_data *q = qdisc_priv(sch);
1005 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1006 	struct tc_netem_qopt qopt;
1007 	struct tc_netem_corr cor;
1008 	struct tc_netem_reorder reorder;
1009 	struct tc_netem_corrupt corrupt;
1010 	struct tc_netem_rate rate;
1011 
1012 	qopt.latency = q->latency;
1013 	qopt.jitter = q->jitter;
1014 	qopt.limit = q->limit;
1015 	qopt.loss = q->loss;
1016 	qopt.gap = q->gap;
1017 	qopt.duplicate = q->duplicate;
1018 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1019 		goto nla_put_failure;
1020 
1021 	cor.delay_corr = q->delay_cor.rho;
1022 	cor.loss_corr = q->loss_cor.rho;
1023 	cor.dup_corr = q->dup_cor.rho;
1024 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1025 		goto nla_put_failure;
1026 
1027 	reorder.probability = q->reorder;
1028 	reorder.correlation = q->reorder_cor.rho;
1029 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1030 		goto nla_put_failure;
1031 
1032 	corrupt.probability = q->corrupt;
1033 	corrupt.correlation = q->corrupt_cor.rho;
1034 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1035 		goto nla_put_failure;
1036 
1037 	if (q->rate >= (1ULL << 32)) {
1038 		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1039 				      TCA_NETEM_PAD))
1040 			goto nla_put_failure;
1041 		rate.rate = ~0U;
1042 	} else {
1043 		rate.rate = q->rate;
1044 	}
1045 	rate.packet_overhead = q->packet_overhead;
1046 	rate.cell_size = q->cell_size;
1047 	rate.cell_overhead = q->cell_overhead;
1048 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1049 		goto nla_put_failure;
1050 
1051 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1052 		goto nla_put_failure;
1053 
1054 	if (dump_loss_model(q, skb) != 0)
1055 		goto nla_put_failure;
1056 
1057 	return nla_nest_end(skb, nla);
1058 
1059 nla_put_failure:
1060 	nlmsg_trim(skb, nla);
1061 	return -1;
1062 }
1063 
1064 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1065 			  struct sk_buff *skb, struct tcmsg *tcm)
1066 {
1067 	struct netem_sched_data *q = qdisc_priv(sch);
1068 
1069 	if (cl != 1 || !q->qdisc) 	/* only one class */
1070 		return -ENOENT;
1071 
1072 	tcm->tcm_handle |= TC_H_MIN(1);
1073 	tcm->tcm_info = q->qdisc->handle;
1074 
1075 	return 0;
1076 }
1077 
1078 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1079 		     struct Qdisc **old)
1080 {
1081 	struct netem_sched_data *q = qdisc_priv(sch);
1082 
1083 	*old = qdisc_replace(sch, new, &q->qdisc);
1084 	return 0;
1085 }
1086 
1087 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1088 {
1089 	struct netem_sched_data *q = qdisc_priv(sch);
1090 	return q->qdisc;
1091 }
1092 
1093 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1094 {
1095 	return 1;
1096 }
1097 
1098 static void netem_put(struct Qdisc *sch, unsigned long arg)
1099 {
1100 }
1101 
1102 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1103 {
1104 	if (!walker->stop) {
1105 		if (walker->count >= walker->skip)
1106 			if (walker->fn(sch, 1, walker) < 0) {
1107 				walker->stop = 1;
1108 				return;
1109 			}
1110 		walker->count++;
1111 	}
1112 }
1113 
1114 static const struct Qdisc_class_ops netem_class_ops = {
1115 	.graft		=	netem_graft,
1116 	.leaf		=	netem_leaf,
1117 	.get		=	netem_get,
1118 	.put		=	netem_put,
1119 	.walk		=	netem_walk,
1120 	.dump		=	netem_dump_class,
1121 };
1122 
1123 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1124 	.id		=	"netem",
1125 	.cl_ops		=	&netem_class_ops,
1126 	.priv_size	=	sizeof(struct netem_sched_data),
1127 	.enqueue	=	netem_enqueue,
1128 	.dequeue	=	netem_dequeue,
1129 	.peek		=	qdisc_peek_dequeued,
1130 	.init		=	netem_init,
1131 	.reset		=	netem_reset,
1132 	.destroy	=	netem_destroy,
1133 	.change		=	netem_change,
1134 	.dump		=	netem_dump,
1135 	.owner		=	THIS_MODULE,
1136 };
1137 
1138 
1139 static int __init netem_module_init(void)
1140 {
1141 	pr_info("netem: version " VERSION "\n");
1142 	return register_qdisc(&netem_qdisc_ops);
1143 }
1144 static void __exit netem_module_exit(void)
1145 {
1146 	unregister_qdisc(&netem_qdisc_ops);
1147 }
1148 module_init(netem_module_init)
1149 module_exit(netem_module_exit)
1150 MODULE_LICENSE("GPL");
1151