xref: /openbmc/linux/net/sched/sch_netem.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * net/sched/sch_netem.c	Network emulator
3  *
4  * 		This program is free software; you can redistribute it and/or
5  * 		modify it under the terms of the GNU General Public License
6  * 		as published by the Free Software Foundation; either version
7  * 		2 of the License.
8  *
9  *  		Many of the algorithms and ideas for this came from
10  *		NIST Net which is not copyrighted.
11  *
12  * Authors:	Stephen Hemminger <shemminger@osdl.org>
13  *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
14  */
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
27 
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
31 
32 #define VERSION "1.3"
33 
34 /*	Network Emulation Queuing algorithm.
35 	====================================
36 
37 	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 		 Network Emulation Tool
39 		 [2] Luigi Rizzo, DummyNet for FreeBSD
40 
41 	 ----------------------------------------------------------------
42 
43 	 This started out as a simple way to delay outgoing packets to
44 	 test TCP but has grown to include most of the functionality
45 	 of a full blown network emulator like NISTnet. It can delay
46 	 packets and add random jitter (and correlation). The random
47 	 distribution can be loaded from a table as well to provide
48 	 normal, Pareto, or experimental curves. Packet loss,
49 	 duplication, and reordering can also be emulated.
50 
51 	 This qdisc does not do classification that can be handled in
52 	 layering other disciplines.  It does not need to do bandwidth
53 	 control either since that can be handled by using token
54 	 bucket or other rate control.
55 
56      Correlated Loss Generator models
57 
58 	Added generation of correlated loss according to the
59 	"Gilbert-Elliot" model, a 4-state markov model.
60 
61 	References:
62 	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 	and intuitive loss model for packet networks and its implementation
65 	in the Netem module in the Linux kernel", available in [1]
66 
67 	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 		 Fabio Ludovici <fabio.ludovici at yahoo.it>
69 */
70 
71 struct netem_sched_data {
72 	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 	struct rb_root t_root;
74 
75 	/* optional qdisc for classful handling (NULL at netem init) */
76 	struct Qdisc	*qdisc;
77 
78 	struct qdisc_watchdog watchdog;
79 
80 	psched_tdiff_t latency;
81 	psched_tdiff_t jitter;
82 
83 	u32 loss;
84 	u32 ecn;
85 	u32 limit;
86 	u32 counter;
87 	u32 gap;
88 	u32 duplicate;
89 	u32 reorder;
90 	u32 corrupt;
91 	u64 rate;
92 	s32 packet_overhead;
93 	u32 cell_size;
94 	struct reciprocal_value cell_size_reciprocal;
95 	s32 cell_overhead;
96 
97 	struct crndstate {
98 		u32 last;
99 		u32 rho;
100 	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
101 
102 	struct disttable {
103 		u32  size;
104 		s16 table[0];
105 	} *delay_dist;
106 
107 	enum  {
108 		CLG_RANDOM,
109 		CLG_4_STATES,
110 		CLG_GILB_ELL,
111 	} loss_model;
112 
113 	enum {
114 		TX_IN_GAP_PERIOD = 1,
115 		TX_IN_BURST_PERIOD,
116 		LOST_IN_GAP_PERIOD,
117 		LOST_IN_BURST_PERIOD,
118 	} _4_state_model;
119 
120 	enum {
121 		GOOD_STATE = 1,
122 		BAD_STATE,
123 	} GE_state_model;
124 
125 	/* Correlated Loss Generation models */
126 	struct clgstate {
127 		/* state of the Markov chain */
128 		u8 state;
129 
130 		/* 4-states and Gilbert-Elliot models */
131 		u32 a1;	/* p13 for 4-states or p for GE */
132 		u32 a2;	/* p31 for 4-states or r for GE */
133 		u32 a3;	/* p32 for 4-states or h for GE */
134 		u32 a4;	/* p14 for 4-states or 1-k for GE */
135 		u32 a5; /* p23 used only in 4-states */
136 	} clg;
137 
138 };
139 
140 /* Time stamp put into socket buffer control block
141  * Only valid when skbs are in our internal t(ime)fifo queue.
142  *
143  * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
144  * and skb->next & skb->prev are scratch space for a qdisc,
145  * we save skb->tstamp value in skb->cb[] before destroying it.
146  */
147 struct netem_skb_cb {
148 	psched_time_t	time_to_send;
149 	ktime_t		tstamp_save;
150 };
151 
152 
153 static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
154 {
155 	return rb_entry(rb, struct sk_buff, rbnode);
156 }
157 
158 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
159 {
160 	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
161 	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
162 	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
163 }
164 
165 /* init_crandom - initialize correlated random number generator
166  * Use entropy source for initial seed.
167  */
168 static void init_crandom(struct crndstate *state, unsigned long rho)
169 {
170 	state->rho = rho;
171 	state->last = prandom_u32();
172 }
173 
174 /* get_crandom - correlated random number generator
175  * Next number depends on last value.
176  * rho is scaled to avoid floating point.
177  */
178 static u32 get_crandom(struct crndstate *state)
179 {
180 	u64 value, rho;
181 	unsigned long answer;
182 
183 	if (state->rho == 0)	/* no correlation */
184 		return prandom_u32();
185 
186 	value = prandom_u32();
187 	rho = (u64)state->rho + 1;
188 	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
189 	state->last = answer;
190 	return answer;
191 }
192 
193 /* loss_4state - 4-state model loss generator
194  * Generates losses according to the 4-state Markov chain adopted in
195  * the GI (General and Intuitive) loss model.
196  */
197 static bool loss_4state(struct netem_sched_data *q)
198 {
199 	struct clgstate *clg = &q->clg;
200 	u32 rnd = prandom_u32();
201 
202 	/*
203 	 * Makes a comparison between rnd and the transition
204 	 * probabilities outgoing from the current state, then decides the
205 	 * next state and if the next packet has to be transmitted or lost.
206 	 * The four states correspond to:
207 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
208 	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
209 	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
210 	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
211 	 */
212 	switch (clg->state) {
213 	case TX_IN_GAP_PERIOD:
214 		if (rnd < clg->a4) {
215 			clg->state = LOST_IN_BURST_PERIOD;
216 			return true;
217 		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
218 			clg->state = LOST_IN_GAP_PERIOD;
219 			return true;
220 		} else if (clg->a1 + clg->a4 < rnd) {
221 			clg->state = TX_IN_GAP_PERIOD;
222 		}
223 
224 		break;
225 	case TX_IN_BURST_PERIOD:
226 		if (rnd < clg->a5) {
227 			clg->state = LOST_IN_GAP_PERIOD;
228 			return true;
229 		} else {
230 			clg->state = TX_IN_BURST_PERIOD;
231 		}
232 
233 		break;
234 	case LOST_IN_GAP_PERIOD:
235 		if (rnd < clg->a3)
236 			clg->state = TX_IN_BURST_PERIOD;
237 		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
238 			clg->state = TX_IN_GAP_PERIOD;
239 		} else if (clg->a2 + clg->a3 < rnd) {
240 			clg->state = LOST_IN_GAP_PERIOD;
241 			return true;
242 		}
243 		break;
244 	case LOST_IN_BURST_PERIOD:
245 		clg->state = TX_IN_GAP_PERIOD;
246 		break;
247 	}
248 
249 	return false;
250 }
251 
252 /* loss_gilb_ell - Gilbert-Elliot model loss generator
253  * Generates losses according to the Gilbert-Elliot loss model or
254  * its special cases  (Gilbert or Simple Gilbert)
255  *
256  * Makes a comparison between random number and the transition
257  * probabilities outgoing from the current state, then decides the
258  * next state. A second random number is extracted and the comparison
259  * with the loss probability of the current state decides if the next
260  * packet will be transmitted or lost.
261  */
262 static bool loss_gilb_ell(struct netem_sched_data *q)
263 {
264 	struct clgstate *clg = &q->clg;
265 
266 	switch (clg->state) {
267 	case GOOD_STATE:
268 		if (prandom_u32() < clg->a1)
269 			clg->state = BAD_STATE;
270 		if (prandom_u32() < clg->a4)
271 			return true;
272 		break;
273 	case BAD_STATE:
274 		if (prandom_u32() < clg->a2)
275 			clg->state = GOOD_STATE;
276 		if (prandom_u32() > clg->a3)
277 			return true;
278 	}
279 
280 	return false;
281 }
282 
283 static bool loss_event(struct netem_sched_data *q)
284 {
285 	switch (q->loss_model) {
286 	case CLG_RANDOM:
287 		/* Random packet drop 0 => none, ~0 => all */
288 		return q->loss && q->loss >= get_crandom(&q->loss_cor);
289 
290 	case CLG_4_STATES:
291 		/* 4state loss model algorithm (used also for GI model)
292 		* Extracts a value from the markov 4 state loss generator,
293 		* if it is 1 drops a packet and if needed writes the event in
294 		* the kernel logs
295 		*/
296 		return loss_4state(q);
297 
298 	case CLG_GILB_ELL:
299 		/* Gilbert-Elliot loss model algorithm
300 		* Extracts a value from the Gilbert-Elliot loss generator,
301 		* if it is 1 drops a packet and if needed writes the event in
302 		* the kernel logs
303 		*/
304 		return loss_gilb_ell(q);
305 	}
306 
307 	return false;	/* not reached */
308 }
309 
310 
311 /* tabledist - return a pseudo-randomly distributed value with mean mu and
312  * std deviation sigma.  Uses table lookup to approximate the desired
313  * distribution, and a uniformly-distributed pseudo-random source.
314  */
315 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
316 				struct crndstate *state,
317 				const struct disttable *dist)
318 {
319 	psched_tdiff_t x;
320 	long t;
321 	u32 rnd;
322 
323 	if (sigma == 0)
324 		return mu;
325 
326 	rnd = get_crandom(state);
327 
328 	/* default uniform distribution */
329 	if (dist == NULL)
330 		return (rnd % (2*sigma)) - sigma + mu;
331 
332 	t = dist->table[rnd % dist->size];
333 	x = (sigma % NETEM_DIST_SCALE) * t;
334 	if (x >= 0)
335 		x += NETEM_DIST_SCALE/2;
336 	else
337 		x -= NETEM_DIST_SCALE/2;
338 
339 	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
340 }
341 
342 static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
343 {
344 	u64 ticks;
345 
346 	len += q->packet_overhead;
347 
348 	if (q->cell_size) {
349 		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
350 
351 		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
352 			cells++;
353 		len = cells * (q->cell_size + q->cell_overhead);
354 	}
355 
356 	ticks = (u64)len * NSEC_PER_SEC;
357 
358 	do_div(ticks, q->rate);
359 	return PSCHED_NS2TICKS(ticks);
360 }
361 
362 static void tfifo_reset(struct Qdisc *sch)
363 {
364 	struct netem_sched_data *q = qdisc_priv(sch);
365 	struct rb_node *p;
366 
367 	while ((p = rb_first(&q->t_root))) {
368 		struct sk_buff *skb = netem_rb_to_skb(p);
369 
370 		rb_erase(p, &q->t_root);
371 		rtnl_kfree_skbs(skb, skb);
372 	}
373 }
374 
375 static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
376 {
377 	struct netem_sched_data *q = qdisc_priv(sch);
378 	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
379 	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
380 
381 	while (*p) {
382 		struct sk_buff *skb;
383 
384 		parent = *p;
385 		skb = netem_rb_to_skb(parent);
386 		if (tnext >= netem_skb_cb(skb)->time_to_send)
387 			p = &parent->rb_right;
388 		else
389 			p = &parent->rb_left;
390 	}
391 	rb_link_node(&nskb->rbnode, parent, p);
392 	rb_insert_color(&nskb->rbnode, &q->t_root);
393 	sch->q.qlen++;
394 }
395 
396 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
397  * when we statistically choose to corrupt one, we instead segment it, returning
398  * the first packet to be corrupted, and re-enqueue the remaining frames
399  */
400 static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
401 				     struct sk_buff **to_free)
402 {
403 	struct sk_buff *segs;
404 	netdev_features_t features = netif_skb_features(skb);
405 
406 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
407 
408 	if (IS_ERR_OR_NULL(segs)) {
409 		qdisc_drop(skb, sch, to_free);
410 		return NULL;
411 	}
412 	consume_skb(skb);
413 	return segs;
414 }
415 
416 static void netem_enqueue_skb_head(struct qdisc_skb_head *qh, struct sk_buff *skb)
417 {
418 	skb->next = qh->head;
419 
420 	if (!qh->head)
421 		qh->tail = skb;
422 	qh->head = skb;
423 	qh->qlen++;
424 }
425 
426 /*
427  * Insert one skb into qdisc.
428  * Note: parent depends on return value to account for queue length.
429  * 	NET_XMIT_DROP: queue length didn't change.
430  *      NET_XMIT_SUCCESS: one skb was queued.
431  */
432 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
433 			 struct sk_buff **to_free)
434 {
435 	struct netem_sched_data *q = qdisc_priv(sch);
436 	/* We don't fill cb now as skb_unshare() may invalidate it */
437 	struct netem_skb_cb *cb;
438 	struct sk_buff *skb2;
439 	struct sk_buff *segs = NULL;
440 	unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb);
441 	int nb = 0;
442 	int count = 1;
443 	int rc = NET_XMIT_SUCCESS;
444 
445 	/* Random duplication */
446 	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
447 		++count;
448 
449 	/* Drop packet? */
450 	if (loss_event(q)) {
451 		if (q->ecn && INET_ECN_set_ce(skb))
452 			qdisc_qstats_drop(sch); /* mark packet */
453 		else
454 			--count;
455 	}
456 	if (count == 0) {
457 		qdisc_qstats_drop(sch);
458 		__qdisc_drop(skb, to_free);
459 		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
460 	}
461 
462 	/* If a delay is expected, orphan the skb. (orphaning usually takes
463 	 * place at TX completion time, so _before_ the link transit delay)
464 	 */
465 	if (q->latency || q->jitter || q->rate)
466 		skb_orphan_partial(skb);
467 
468 	/*
469 	 * If we need to duplicate packet, then re-insert at top of the
470 	 * qdisc tree, since parent queuer expects that only one
471 	 * skb will be queued.
472 	 */
473 	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
474 		struct Qdisc *rootq = qdisc_root(sch);
475 		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
476 
477 		q->duplicate = 0;
478 		rootq->enqueue(skb2, rootq, to_free);
479 		q->duplicate = dupsave;
480 	}
481 
482 	/*
483 	 * Randomized packet corruption.
484 	 * Make copy if needed since we are modifying
485 	 * If packet is going to be hardware checksummed, then
486 	 * do it now in software before we mangle it.
487 	 */
488 	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
489 		if (skb_is_gso(skb)) {
490 			segs = netem_segment(skb, sch, to_free);
491 			if (!segs)
492 				return NET_XMIT_DROP;
493 		} else {
494 			segs = skb;
495 		}
496 
497 		skb = segs;
498 		segs = segs->next;
499 
500 		skb = skb_unshare(skb, GFP_ATOMIC);
501 		if (unlikely(!skb)) {
502 			qdisc_qstats_drop(sch);
503 			goto finish_segs;
504 		}
505 		if (skb->ip_summed == CHECKSUM_PARTIAL &&
506 		    skb_checksum_help(skb)) {
507 			qdisc_drop(skb, sch, to_free);
508 			goto finish_segs;
509 		}
510 
511 		skb->data[prandom_u32() % skb_headlen(skb)] ^=
512 			1<<(prandom_u32() % 8);
513 	}
514 
515 	if (unlikely(sch->q.qlen >= sch->limit))
516 		return qdisc_drop(skb, sch, to_free);
517 
518 	qdisc_qstats_backlog_inc(sch, skb);
519 
520 	cb = netem_skb_cb(skb);
521 	if (q->gap == 0 ||		/* not doing reordering */
522 	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
523 	    q->reorder < get_crandom(&q->reorder_cor)) {
524 		psched_time_t now;
525 		psched_tdiff_t delay;
526 
527 		delay = tabledist(q->latency, q->jitter,
528 				  &q->delay_cor, q->delay_dist);
529 
530 		now = psched_get_time();
531 
532 		if (q->rate) {
533 			struct netem_skb_cb *last = NULL;
534 
535 			if (sch->q.tail)
536 				last = netem_skb_cb(sch->q.tail);
537 			if (q->t_root.rb_node) {
538 				struct sk_buff *t_skb;
539 				struct netem_skb_cb *t_last;
540 
541 				t_skb = netem_rb_to_skb(rb_last(&q->t_root));
542 				t_last = netem_skb_cb(t_skb);
543 				if (!last ||
544 				    t_last->time_to_send > last->time_to_send) {
545 					last = t_last;
546 				}
547 			}
548 
549 			if (last) {
550 				/*
551 				 * Last packet in queue is reference point (now),
552 				 * calculate this time bonus and subtract
553 				 * from delay.
554 				 */
555 				delay -= last->time_to_send - now;
556 				delay = max_t(psched_tdiff_t, 0, delay);
557 				now = last->time_to_send;
558 			}
559 
560 			delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
561 		}
562 
563 		cb->time_to_send = now + delay;
564 		cb->tstamp_save = skb->tstamp;
565 		++q->counter;
566 		tfifo_enqueue(skb, sch);
567 	} else {
568 		/*
569 		 * Do re-ordering by putting one out of N packets at the front
570 		 * of the queue.
571 		 */
572 		cb->time_to_send = psched_get_time();
573 		q->counter = 0;
574 
575 		netem_enqueue_skb_head(&sch->q, skb);
576 		sch->qstats.requeues++;
577 	}
578 
579 finish_segs:
580 	if (segs) {
581 		while (segs) {
582 			skb2 = segs->next;
583 			segs->next = NULL;
584 			qdisc_skb_cb(segs)->pkt_len = segs->len;
585 			last_len = segs->len;
586 			rc = qdisc_enqueue(segs, sch, to_free);
587 			if (rc != NET_XMIT_SUCCESS) {
588 				if (net_xmit_drop_count(rc))
589 					qdisc_qstats_drop(sch);
590 			} else {
591 				nb++;
592 				len += last_len;
593 			}
594 			segs = skb2;
595 		}
596 		sch->q.qlen += nb;
597 		if (nb > 1)
598 			qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
599 	}
600 	return NET_XMIT_SUCCESS;
601 }
602 
603 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
604 {
605 	struct netem_sched_data *q = qdisc_priv(sch);
606 	struct sk_buff *skb;
607 	struct rb_node *p;
608 
609 tfifo_dequeue:
610 	skb = __qdisc_dequeue_head(&sch->q);
611 	if (skb) {
612 		qdisc_qstats_backlog_dec(sch, skb);
613 deliver:
614 		qdisc_bstats_update(sch, skb);
615 		return skb;
616 	}
617 	p = rb_first(&q->t_root);
618 	if (p) {
619 		psched_time_t time_to_send;
620 
621 		skb = netem_rb_to_skb(p);
622 
623 		/* if more time remaining? */
624 		time_to_send = netem_skb_cb(skb)->time_to_send;
625 		if (time_to_send <= psched_get_time()) {
626 			rb_erase(p, &q->t_root);
627 
628 			sch->q.qlen--;
629 			qdisc_qstats_backlog_dec(sch, skb);
630 			skb->next = NULL;
631 			skb->prev = NULL;
632 			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
633 
634 #ifdef CONFIG_NET_CLS_ACT
635 			/*
636 			 * If it's at ingress let's pretend the delay is
637 			 * from the network (tstamp will be updated).
638 			 */
639 			if (skb->tc_redirected && skb->tc_from_ingress)
640 				skb->tstamp = 0;
641 #endif
642 
643 			if (q->qdisc) {
644 				unsigned int pkt_len = qdisc_pkt_len(skb);
645 				struct sk_buff *to_free = NULL;
646 				int err;
647 
648 				err = qdisc_enqueue(skb, q->qdisc, &to_free);
649 				kfree_skb_list(to_free);
650 				if (err != NET_XMIT_SUCCESS &&
651 				    net_xmit_drop_count(err)) {
652 					qdisc_qstats_drop(sch);
653 					qdisc_tree_reduce_backlog(sch, 1,
654 								  pkt_len);
655 				}
656 				goto tfifo_dequeue;
657 			}
658 			goto deliver;
659 		}
660 
661 		if (q->qdisc) {
662 			skb = q->qdisc->ops->dequeue(q->qdisc);
663 			if (skb)
664 				goto deliver;
665 		}
666 		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
667 	}
668 
669 	if (q->qdisc) {
670 		skb = q->qdisc->ops->dequeue(q->qdisc);
671 		if (skb)
672 			goto deliver;
673 	}
674 	return NULL;
675 }
676 
677 static void netem_reset(struct Qdisc *sch)
678 {
679 	struct netem_sched_data *q = qdisc_priv(sch);
680 
681 	qdisc_reset_queue(sch);
682 	tfifo_reset(sch);
683 	if (q->qdisc)
684 		qdisc_reset(q->qdisc);
685 	qdisc_watchdog_cancel(&q->watchdog);
686 }
687 
688 static void dist_free(struct disttable *d)
689 {
690 	kvfree(d);
691 }
692 
693 /*
694  * Distribution data is a variable size payload containing
695  * signed 16 bit values.
696  */
697 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
698 {
699 	struct netem_sched_data *q = qdisc_priv(sch);
700 	size_t n = nla_len(attr)/sizeof(__s16);
701 	const __s16 *data = nla_data(attr);
702 	spinlock_t *root_lock;
703 	struct disttable *d;
704 	int i;
705 
706 	if (n > NETEM_DIST_MAX)
707 		return -EINVAL;
708 
709 	d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
710 	if (!d)
711 		return -ENOMEM;
712 
713 	d->size = n;
714 	for (i = 0; i < n; i++)
715 		d->table[i] = data[i];
716 
717 	root_lock = qdisc_root_sleeping_lock(sch);
718 
719 	spin_lock_bh(root_lock);
720 	swap(q->delay_dist, d);
721 	spin_unlock_bh(root_lock);
722 
723 	dist_free(d);
724 	return 0;
725 }
726 
727 static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
728 {
729 	const struct tc_netem_corr *c = nla_data(attr);
730 
731 	init_crandom(&q->delay_cor, c->delay_corr);
732 	init_crandom(&q->loss_cor, c->loss_corr);
733 	init_crandom(&q->dup_cor, c->dup_corr);
734 }
735 
736 static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
737 {
738 	const struct tc_netem_reorder *r = nla_data(attr);
739 
740 	q->reorder = r->probability;
741 	init_crandom(&q->reorder_cor, r->correlation);
742 }
743 
744 static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
745 {
746 	const struct tc_netem_corrupt *r = nla_data(attr);
747 
748 	q->corrupt = r->probability;
749 	init_crandom(&q->corrupt_cor, r->correlation);
750 }
751 
752 static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
753 {
754 	const struct tc_netem_rate *r = nla_data(attr);
755 
756 	q->rate = r->rate;
757 	q->packet_overhead = r->packet_overhead;
758 	q->cell_size = r->cell_size;
759 	q->cell_overhead = r->cell_overhead;
760 	if (q->cell_size)
761 		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
762 	else
763 		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
764 }
765 
766 static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
767 {
768 	const struct nlattr *la;
769 	int rem;
770 
771 	nla_for_each_nested(la, attr, rem) {
772 		u16 type = nla_type(la);
773 
774 		switch (type) {
775 		case NETEM_LOSS_GI: {
776 			const struct tc_netem_gimodel *gi = nla_data(la);
777 
778 			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
779 				pr_info("netem: incorrect gi model size\n");
780 				return -EINVAL;
781 			}
782 
783 			q->loss_model = CLG_4_STATES;
784 
785 			q->clg.state = TX_IN_GAP_PERIOD;
786 			q->clg.a1 = gi->p13;
787 			q->clg.a2 = gi->p31;
788 			q->clg.a3 = gi->p32;
789 			q->clg.a4 = gi->p14;
790 			q->clg.a5 = gi->p23;
791 			break;
792 		}
793 
794 		case NETEM_LOSS_GE: {
795 			const struct tc_netem_gemodel *ge = nla_data(la);
796 
797 			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
798 				pr_info("netem: incorrect ge model size\n");
799 				return -EINVAL;
800 			}
801 
802 			q->loss_model = CLG_GILB_ELL;
803 			q->clg.state = GOOD_STATE;
804 			q->clg.a1 = ge->p;
805 			q->clg.a2 = ge->r;
806 			q->clg.a3 = ge->h;
807 			q->clg.a4 = ge->k1;
808 			break;
809 		}
810 
811 		default:
812 			pr_info("netem: unknown loss type %u\n", type);
813 			return -EINVAL;
814 		}
815 	}
816 
817 	return 0;
818 }
819 
820 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
821 	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
822 	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
823 	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
824 	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
825 	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
826 	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
827 	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
828 };
829 
830 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
831 		      const struct nla_policy *policy, int len)
832 {
833 	int nested_len = nla_len(nla) - NLA_ALIGN(len);
834 
835 	if (nested_len < 0) {
836 		pr_info("netem: invalid attributes len %d\n", nested_len);
837 		return -EINVAL;
838 	}
839 
840 	if (nested_len >= nla_attr_size(0))
841 		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
842 				 nested_len, policy, NULL);
843 
844 	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
845 	return 0;
846 }
847 
848 /* Parse netlink message to set options */
849 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
850 {
851 	struct netem_sched_data *q = qdisc_priv(sch);
852 	struct nlattr *tb[TCA_NETEM_MAX + 1];
853 	struct tc_netem_qopt *qopt;
854 	struct clgstate old_clg;
855 	int old_loss_model = CLG_RANDOM;
856 	int ret;
857 
858 	if (opt == NULL)
859 		return -EINVAL;
860 
861 	qopt = nla_data(opt);
862 	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
863 	if (ret < 0)
864 		return ret;
865 
866 	/* backup q->clg and q->loss_model */
867 	old_clg = q->clg;
868 	old_loss_model = q->loss_model;
869 
870 	if (tb[TCA_NETEM_LOSS]) {
871 		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
872 		if (ret) {
873 			q->loss_model = old_loss_model;
874 			return ret;
875 		}
876 	} else {
877 		q->loss_model = CLG_RANDOM;
878 	}
879 
880 	if (tb[TCA_NETEM_DELAY_DIST]) {
881 		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
882 		if (ret) {
883 			/* recover clg and loss_model, in case of
884 			 * q->clg and q->loss_model were modified
885 			 * in get_loss_clg()
886 			 */
887 			q->clg = old_clg;
888 			q->loss_model = old_loss_model;
889 			return ret;
890 		}
891 	}
892 
893 	sch->limit = qopt->limit;
894 
895 	q->latency = qopt->latency;
896 	q->jitter = qopt->jitter;
897 	q->limit = qopt->limit;
898 	q->gap = qopt->gap;
899 	q->counter = 0;
900 	q->loss = qopt->loss;
901 	q->duplicate = qopt->duplicate;
902 
903 	/* for compatibility with earlier versions.
904 	 * if gap is set, need to assume 100% probability
905 	 */
906 	if (q->gap)
907 		q->reorder = ~0;
908 
909 	if (tb[TCA_NETEM_CORR])
910 		get_correlation(q, tb[TCA_NETEM_CORR]);
911 
912 	if (tb[TCA_NETEM_REORDER])
913 		get_reorder(q, tb[TCA_NETEM_REORDER]);
914 
915 	if (tb[TCA_NETEM_CORRUPT])
916 		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
917 
918 	if (tb[TCA_NETEM_RATE])
919 		get_rate(q, tb[TCA_NETEM_RATE]);
920 
921 	if (tb[TCA_NETEM_RATE64])
922 		q->rate = max_t(u64, q->rate,
923 				nla_get_u64(tb[TCA_NETEM_RATE64]));
924 
925 	if (tb[TCA_NETEM_ECN])
926 		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
927 
928 	return ret;
929 }
930 
931 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
932 {
933 	struct netem_sched_data *q = qdisc_priv(sch);
934 	int ret;
935 
936 	if (!opt)
937 		return -EINVAL;
938 
939 	qdisc_watchdog_init(&q->watchdog, sch);
940 
941 	q->loss_model = CLG_RANDOM;
942 	ret = netem_change(sch, opt);
943 	if (ret)
944 		pr_info("netem: change failed\n");
945 	return ret;
946 }
947 
948 static void netem_destroy(struct Qdisc *sch)
949 {
950 	struct netem_sched_data *q = qdisc_priv(sch);
951 
952 	qdisc_watchdog_cancel(&q->watchdog);
953 	if (q->qdisc)
954 		qdisc_destroy(q->qdisc);
955 	dist_free(q->delay_dist);
956 }
957 
958 static int dump_loss_model(const struct netem_sched_data *q,
959 			   struct sk_buff *skb)
960 {
961 	struct nlattr *nest;
962 
963 	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
964 	if (nest == NULL)
965 		goto nla_put_failure;
966 
967 	switch (q->loss_model) {
968 	case CLG_RANDOM:
969 		/* legacy loss model */
970 		nla_nest_cancel(skb, nest);
971 		return 0;	/* no data */
972 
973 	case CLG_4_STATES: {
974 		struct tc_netem_gimodel gi = {
975 			.p13 = q->clg.a1,
976 			.p31 = q->clg.a2,
977 			.p32 = q->clg.a3,
978 			.p14 = q->clg.a4,
979 			.p23 = q->clg.a5,
980 		};
981 
982 		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
983 			goto nla_put_failure;
984 		break;
985 	}
986 	case CLG_GILB_ELL: {
987 		struct tc_netem_gemodel ge = {
988 			.p = q->clg.a1,
989 			.r = q->clg.a2,
990 			.h = q->clg.a3,
991 			.k1 = q->clg.a4,
992 		};
993 
994 		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
995 			goto nla_put_failure;
996 		break;
997 	}
998 	}
999 
1000 	nla_nest_end(skb, nest);
1001 	return 0;
1002 
1003 nla_put_failure:
1004 	nla_nest_cancel(skb, nest);
1005 	return -1;
1006 }
1007 
1008 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1009 {
1010 	const struct netem_sched_data *q = qdisc_priv(sch);
1011 	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1012 	struct tc_netem_qopt qopt;
1013 	struct tc_netem_corr cor;
1014 	struct tc_netem_reorder reorder;
1015 	struct tc_netem_corrupt corrupt;
1016 	struct tc_netem_rate rate;
1017 
1018 	qopt.latency = q->latency;
1019 	qopt.jitter = q->jitter;
1020 	qopt.limit = q->limit;
1021 	qopt.loss = q->loss;
1022 	qopt.gap = q->gap;
1023 	qopt.duplicate = q->duplicate;
1024 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1025 		goto nla_put_failure;
1026 
1027 	cor.delay_corr = q->delay_cor.rho;
1028 	cor.loss_corr = q->loss_cor.rho;
1029 	cor.dup_corr = q->dup_cor.rho;
1030 	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1031 		goto nla_put_failure;
1032 
1033 	reorder.probability = q->reorder;
1034 	reorder.correlation = q->reorder_cor.rho;
1035 	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1036 		goto nla_put_failure;
1037 
1038 	corrupt.probability = q->corrupt;
1039 	corrupt.correlation = q->corrupt_cor.rho;
1040 	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1041 		goto nla_put_failure;
1042 
1043 	if (q->rate >= (1ULL << 32)) {
1044 		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1045 				      TCA_NETEM_PAD))
1046 			goto nla_put_failure;
1047 		rate.rate = ~0U;
1048 	} else {
1049 		rate.rate = q->rate;
1050 	}
1051 	rate.packet_overhead = q->packet_overhead;
1052 	rate.cell_size = q->cell_size;
1053 	rate.cell_overhead = q->cell_overhead;
1054 	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1055 		goto nla_put_failure;
1056 
1057 	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1058 		goto nla_put_failure;
1059 
1060 	if (dump_loss_model(q, skb) != 0)
1061 		goto nla_put_failure;
1062 
1063 	return nla_nest_end(skb, nla);
1064 
1065 nla_put_failure:
1066 	nlmsg_trim(skb, nla);
1067 	return -1;
1068 }
1069 
1070 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1071 			  struct sk_buff *skb, struct tcmsg *tcm)
1072 {
1073 	struct netem_sched_data *q = qdisc_priv(sch);
1074 
1075 	if (cl != 1 || !q->qdisc) 	/* only one class */
1076 		return -ENOENT;
1077 
1078 	tcm->tcm_handle |= TC_H_MIN(1);
1079 	tcm->tcm_info = q->qdisc->handle;
1080 
1081 	return 0;
1082 }
1083 
1084 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1085 		     struct Qdisc **old)
1086 {
1087 	struct netem_sched_data *q = qdisc_priv(sch);
1088 
1089 	*old = qdisc_replace(sch, new, &q->qdisc);
1090 	return 0;
1091 }
1092 
1093 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1094 {
1095 	struct netem_sched_data *q = qdisc_priv(sch);
1096 	return q->qdisc;
1097 }
1098 
1099 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1100 {
1101 	return 1;
1102 }
1103 
1104 static void netem_put(struct Qdisc *sch, unsigned long arg)
1105 {
1106 }
1107 
1108 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1109 {
1110 	if (!walker->stop) {
1111 		if (walker->count >= walker->skip)
1112 			if (walker->fn(sch, 1, walker) < 0) {
1113 				walker->stop = 1;
1114 				return;
1115 			}
1116 		walker->count++;
1117 	}
1118 }
1119 
1120 static const struct Qdisc_class_ops netem_class_ops = {
1121 	.graft		=	netem_graft,
1122 	.leaf		=	netem_leaf,
1123 	.get		=	netem_get,
1124 	.put		=	netem_put,
1125 	.walk		=	netem_walk,
1126 	.dump		=	netem_dump_class,
1127 };
1128 
1129 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1130 	.id		=	"netem",
1131 	.cl_ops		=	&netem_class_ops,
1132 	.priv_size	=	sizeof(struct netem_sched_data),
1133 	.enqueue	=	netem_enqueue,
1134 	.dequeue	=	netem_dequeue,
1135 	.peek		=	qdisc_peek_dequeued,
1136 	.init		=	netem_init,
1137 	.reset		=	netem_reset,
1138 	.destroy	=	netem_destroy,
1139 	.change		=	netem_change,
1140 	.dump		=	netem_dump,
1141 	.owner		=	THIS_MODULE,
1142 };
1143 
1144 
1145 static int __init netem_module_init(void)
1146 {
1147 	pr_info("netem: version " VERSION "\n");
1148 	return register_qdisc(&netem_qdisc_ops);
1149 }
1150 static void __exit netem_module_exit(void)
1151 {
1152 	unregister_qdisc(&netem_qdisc_ops);
1153 }
1154 module_init(netem_module_init)
1155 module_exit(netem_module_exit)
1156 MODULE_LICENSE("GPL");
1157