1 /* 2 * net/sched/sch_htb.c Hierarchical token bucket, feed tree version 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Martin Devera, <devik@cdi.cz> 10 * 11 * Credits (in time order) for older HTB versions: 12 * Stef Coene <stef.coene@docum.org> 13 * HTB support at LARTC mailing list 14 * Ondrej Kraus, <krauso@barr.cz> 15 * found missing INIT_QDISC(htb) 16 * Vladimir Smelhaus, Aamer Akhter, Bert Hubert 17 * helped a lot to locate nasty class stall bug 18 * Andi Kleen, Jamal Hadi, Bert Hubert 19 * code review and helpful comments on shaping 20 * Tomasz Wrona, <tw@eter.tym.pl> 21 * created test case so that I was able to fix nasty bug 22 * Wilfried Weissmann 23 * spotted bug in dequeue code and helped with fix 24 * Jiri Fojtasek 25 * fixed requeue routine 26 * and many others. thanks. 27 */ 28 #include <linux/module.h> 29 #include <linux/moduleparam.h> 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/string.h> 33 #include <linux/errno.h> 34 #include <linux/skbuff.h> 35 #include <linux/list.h> 36 #include <linux/compiler.h> 37 #include <linux/rbtree.h> 38 #include <linux/workqueue.h> 39 #include <linux/slab.h> 40 #include <net/netlink.h> 41 #include <net/sch_generic.h> 42 #include <net/pkt_sched.h> 43 44 /* HTB algorithm. 45 Author: devik@cdi.cz 46 ======================================================================== 47 HTB is like TBF with multiple classes. It is also similar to CBQ because 48 it allows to assign priority to each class in hierarchy. 49 In fact it is another implementation of Floyd's formal sharing. 50 51 Levels: 52 Each class is assigned level. Leaf has ALWAYS level 0 and root 53 classes have level TC_HTB_MAXDEPTH-1. Interior nodes has level 54 one less than their parent. 55 */ 56 57 static int htb_hysteresis __read_mostly = 0; /* whether to use mode hysteresis for speedup */ 58 #define HTB_VER 0x30011 /* major must be matched with number suplied by TC as version */ 59 60 #if HTB_VER >> 16 != TC_HTB_PROTOVER 61 #error "Mismatched sch_htb.c and pkt_sch.h" 62 #endif 63 64 /* Module parameter and sysfs export */ 65 module_param (htb_hysteresis, int, 0640); 66 MODULE_PARM_DESC(htb_hysteresis, "Hysteresis mode, less CPU load, less accurate"); 67 68 static int htb_rate_est = 0; /* htb classes have a default rate estimator */ 69 module_param(htb_rate_est, int, 0640); 70 MODULE_PARM_DESC(htb_rate_est, "setup a default rate estimator (4sec 16sec) for htb classes"); 71 72 /* used internaly to keep status of single class */ 73 enum htb_cmode { 74 HTB_CANT_SEND, /* class can't send and can't borrow */ 75 HTB_MAY_BORROW, /* class can't send but may borrow */ 76 HTB_CAN_SEND /* class can send */ 77 }; 78 79 struct htb_prio { 80 union { 81 struct rb_root row; 82 struct rb_root feed; 83 }; 84 struct rb_node *ptr; 85 /* When class changes from state 1->2 and disconnects from 86 * parent's feed then we lost ptr value and start from the 87 * first child again. Here we store classid of the 88 * last valid ptr (used when ptr is NULL). 89 */ 90 u32 last_ptr_id; 91 }; 92 93 /* interior & leaf nodes; props specific to leaves are marked L: 94 * To reduce false sharing, place mostly read fields at beginning, 95 * and mostly written ones at the end. 96 */ 97 struct htb_class { 98 struct Qdisc_class_common common; 99 struct psched_ratecfg rate; 100 struct psched_ratecfg ceil; 101 s64 buffer, cbuffer;/* token bucket depth/rate */ 102 s64 mbuffer; /* max wait time */ 103 u32 prio; /* these two are used only by leaves... */ 104 int quantum; /* but stored for parent-to-leaf return */ 105 106 struct tcf_proto *filter_list; /* class attached filters */ 107 int filter_cnt; 108 int refcnt; /* usage count of this class */ 109 110 int level; /* our level (see above) */ 111 unsigned int children; 112 struct htb_class *parent; /* parent class */ 113 114 struct gnet_stats_rate_est64 rate_est; 115 116 /* 117 * Written often fields 118 */ 119 struct gnet_stats_basic_packed bstats; 120 struct gnet_stats_queue qstats; 121 struct tc_htb_xstats xstats; /* our special stats */ 122 123 /* token bucket parameters */ 124 s64 tokens, ctokens;/* current number of tokens */ 125 s64 t_c; /* checkpoint time */ 126 127 union { 128 struct htb_class_leaf { 129 struct list_head drop_list; 130 int deficit[TC_HTB_MAXDEPTH]; 131 struct Qdisc *q; 132 } leaf; 133 struct htb_class_inner { 134 struct htb_prio clprio[TC_HTB_NUMPRIO]; 135 } inner; 136 } un; 137 s64 pq_key; 138 139 int prio_activity; /* for which prios are we active */ 140 enum htb_cmode cmode; /* current mode of the class */ 141 struct rb_node pq_node; /* node for event queue */ 142 struct rb_node node[TC_HTB_NUMPRIO]; /* node for self or feed tree */ 143 }; 144 145 struct htb_level { 146 struct rb_root wait_pq; 147 struct htb_prio hprio[TC_HTB_NUMPRIO]; 148 }; 149 150 struct htb_sched { 151 struct Qdisc_class_hash clhash; 152 int defcls; /* class where unclassified flows go to */ 153 int rate2quantum; /* quant = rate / rate2quantum */ 154 155 /* filters for qdisc itself */ 156 struct tcf_proto *filter_list; 157 158 #define HTB_WARN_TOOMANYEVENTS 0x1 159 unsigned int warned; /* only one warning */ 160 int direct_qlen; 161 struct work_struct work; 162 163 /* non shaped skbs; let them go directly thru */ 164 struct sk_buff_head direct_queue; 165 long direct_pkts; 166 167 struct qdisc_watchdog watchdog; 168 169 s64 now; /* cached dequeue time */ 170 struct list_head drops[TC_HTB_NUMPRIO];/* active leaves (for drops) */ 171 172 /* time of nearest event per level (row) */ 173 s64 near_ev_cache[TC_HTB_MAXDEPTH]; 174 175 int row_mask[TC_HTB_MAXDEPTH]; 176 177 struct htb_level hlevel[TC_HTB_MAXDEPTH]; 178 }; 179 180 /* find class in global hash table using given handle */ 181 static inline struct htb_class *htb_find(u32 handle, struct Qdisc *sch) 182 { 183 struct htb_sched *q = qdisc_priv(sch); 184 struct Qdisc_class_common *clc; 185 186 clc = qdisc_class_find(&q->clhash, handle); 187 if (clc == NULL) 188 return NULL; 189 return container_of(clc, struct htb_class, common); 190 } 191 192 /** 193 * htb_classify - classify a packet into class 194 * 195 * It returns NULL if the packet should be dropped or -1 if the packet 196 * should be passed directly thru. In all other cases leaf class is returned. 197 * We allow direct class selection by classid in priority. The we examine 198 * filters in qdisc and in inner nodes (if higher filter points to the inner 199 * node). If we end up with classid MAJOR:0 we enqueue the skb into special 200 * internal fifo (direct). These packets then go directly thru. If we still 201 * have no valid leaf we try to use MAJOR:default leaf. It still unsuccessful 202 * then finish and return direct queue. 203 */ 204 #define HTB_DIRECT ((struct htb_class *)-1L) 205 206 static struct htb_class *htb_classify(struct sk_buff *skb, struct Qdisc *sch, 207 int *qerr) 208 { 209 struct htb_sched *q = qdisc_priv(sch); 210 struct htb_class *cl; 211 struct tcf_result res; 212 struct tcf_proto *tcf; 213 int result; 214 215 /* allow to select class by setting skb->priority to valid classid; 216 * note that nfmark can be used too by attaching filter fw with no 217 * rules in it 218 */ 219 if (skb->priority == sch->handle) 220 return HTB_DIRECT; /* X:0 (direct flow) selected */ 221 cl = htb_find(skb->priority, sch); 222 if (cl) { 223 if (cl->level == 0) 224 return cl; 225 /* Start with inner filter chain if a non-leaf class is selected */ 226 tcf = cl->filter_list; 227 } else { 228 tcf = q->filter_list; 229 } 230 231 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 232 while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) { 233 #ifdef CONFIG_NET_CLS_ACT 234 switch (result) { 235 case TC_ACT_QUEUED: 236 case TC_ACT_STOLEN: 237 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 238 case TC_ACT_SHOT: 239 return NULL; 240 } 241 #endif 242 cl = (void *)res.class; 243 if (!cl) { 244 if (res.classid == sch->handle) 245 return HTB_DIRECT; /* X:0 (direct flow) */ 246 cl = htb_find(res.classid, sch); 247 if (!cl) 248 break; /* filter selected invalid classid */ 249 } 250 if (!cl->level) 251 return cl; /* we hit leaf; return it */ 252 253 /* we have got inner class; apply inner filter chain */ 254 tcf = cl->filter_list; 255 } 256 /* classification failed; try to use default class */ 257 cl = htb_find(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch); 258 if (!cl || cl->level) 259 return HTB_DIRECT; /* bad default .. this is safe bet */ 260 return cl; 261 } 262 263 /** 264 * htb_add_to_id_tree - adds class to the round robin list 265 * 266 * Routine adds class to the list (actually tree) sorted by classid. 267 * Make sure that class is not already on such list for given prio. 268 */ 269 static void htb_add_to_id_tree(struct rb_root *root, 270 struct htb_class *cl, int prio) 271 { 272 struct rb_node **p = &root->rb_node, *parent = NULL; 273 274 while (*p) { 275 struct htb_class *c; 276 parent = *p; 277 c = rb_entry(parent, struct htb_class, node[prio]); 278 279 if (cl->common.classid > c->common.classid) 280 p = &parent->rb_right; 281 else 282 p = &parent->rb_left; 283 } 284 rb_link_node(&cl->node[prio], parent, p); 285 rb_insert_color(&cl->node[prio], root); 286 } 287 288 /** 289 * htb_add_to_wait_tree - adds class to the event queue with delay 290 * 291 * The class is added to priority event queue to indicate that class will 292 * change its mode in cl->pq_key microseconds. Make sure that class is not 293 * already in the queue. 294 */ 295 static void htb_add_to_wait_tree(struct htb_sched *q, 296 struct htb_class *cl, s64 delay) 297 { 298 struct rb_node **p = &q->hlevel[cl->level].wait_pq.rb_node, *parent = NULL; 299 300 cl->pq_key = q->now + delay; 301 if (cl->pq_key == q->now) 302 cl->pq_key++; 303 304 /* update the nearest event cache */ 305 if (q->near_ev_cache[cl->level] > cl->pq_key) 306 q->near_ev_cache[cl->level] = cl->pq_key; 307 308 while (*p) { 309 struct htb_class *c; 310 parent = *p; 311 c = rb_entry(parent, struct htb_class, pq_node); 312 if (cl->pq_key >= c->pq_key) 313 p = &parent->rb_right; 314 else 315 p = &parent->rb_left; 316 } 317 rb_link_node(&cl->pq_node, parent, p); 318 rb_insert_color(&cl->pq_node, &q->hlevel[cl->level].wait_pq); 319 } 320 321 /** 322 * htb_next_rb_node - finds next node in binary tree 323 * 324 * When we are past last key we return NULL. 325 * Average complexity is 2 steps per call. 326 */ 327 static inline void htb_next_rb_node(struct rb_node **n) 328 { 329 *n = rb_next(*n); 330 } 331 332 /** 333 * htb_add_class_to_row - add class to its row 334 * 335 * The class is added to row at priorities marked in mask. 336 * It does nothing if mask == 0. 337 */ 338 static inline void htb_add_class_to_row(struct htb_sched *q, 339 struct htb_class *cl, int mask) 340 { 341 q->row_mask[cl->level] |= mask; 342 while (mask) { 343 int prio = ffz(~mask); 344 mask &= ~(1 << prio); 345 htb_add_to_id_tree(&q->hlevel[cl->level].hprio[prio].row, cl, prio); 346 } 347 } 348 349 /* If this triggers, it is a bug in this code, but it need not be fatal */ 350 static void htb_safe_rb_erase(struct rb_node *rb, struct rb_root *root) 351 { 352 if (RB_EMPTY_NODE(rb)) { 353 WARN_ON(1); 354 } else { 355 rb_erase(rb, root); 356 RB_CLEAR_NODE(rb); 357 } 358 } 359 360 361 /** 362 * htb_remove_class_from_row - removes class from its row 363 * 364 * The class is removed from row at priorities marked in mask. 365 * It does nothing if mask == 0. 366 */ 367 static inline void htb_remove_class_from_row(struct htb_sched *q, 368 struct htb_class *cl, int mask) 369 { 370 int m = 0; 371 struct htb_level *hlevel = &q->hlevel[cl->level]; 372 373 while (mask) { 374 int prio = ffz(~mask); 375 struct htb_prio *hprio = &hlevel->hprio[prio]; 376 377 mask &= ~(1 << prio); 378 if (hprio->ptr == cl->node + prio) 379 htb_next_rb_node(&hprio->ptr); 380 381 htb_safe_rb_erase(cl->node + prio, &hprio->row); 382 if (!hprio->row.rb_node) 383 m |= 1 << prio; 384 } 385 q->row_mask[cl->level] &= ~m; 386 } 387 388 /** 389 * htb_activate_prios - creates active classe's feed chain 390 * 391 * The class is connected to ancestors and/or appropriate rows 392 * for priorities it is participating on. cl->cmode must be new 393 * (activated) mode. It does nothing if cl->prio_activity == 0. 394 */ 395 static void htb_activate_prios(struct htb_sched *q, struct htb_class *cl) 396 { 397 struct htb_class *p = cl->parent; 398 long m, mask = cl->prio_activity; 399 400 while (cl->cmode == HTB_MAY_BORROW && p && mask) { 401 m = mask; 402 while (m) { 403 int prio = ffz(~m); 404 m &= ~(1 << prio); 405 406 if (p->un.inner.clprio[prio].feed.rb_node) 407 /* parent already has its feed in use so that 408 * reset bit in mask as parent is already ok 409 */ 410 mask &= ~(1 << prio); 411 412 htb_add_to_id_tree(&p->un.inner.clprio[prio].feed, cl, prio); 413 } 414 p->prio_activity |= mask; 415 cl = p; 416 p = cl->parent; 417 418 } 419 if (cl->cmode == HTB_CAN_SEND && mask) 420 htb_add_class_to_row(q, cl, mask); 421 } 422 423 /** 424 * htb_deactivate_prios - remove class from feed chain 425 * 426 * cl->cmode must represent old mode (before deactivation). It does 427 * nothing if cl->prio_activity == 0. Class is removed from all feed 428 * chains and rows. 429 */ 430 static void htb_deactivate_prios(struct htb_sched *q, struct htb_class *cl) 431 { 432 struct htb_class *p = cl->parent; 433 long m, mask = cl->prio_activity; 434 435 while (cl->cmode == HTB_MAY_BORROW && p && mask) { 436 m = mask; 437 mask = 0; 438 while (m) { 439 int prio = ffz(~m); 440 m &= ~(1 << prio); 441 442 if (p->un.inner.clprio[prio].ptr == cl->node + prio) { 443 /* we are removing child which is pointed to from 444 * parent feed - forget the pointer but remember 445 * classid 446 */ 447 p->un.inner.clprio[prio].last_ptr_id = cl->common.classid; 448 p->un.inner.clprio[prio].ptr = NULL; 449 } 450 451 htb_safe_rb_erase(cl->node + prio, 452 &p->un.inner.clprio[prio].feed); 453 454 if (!p->un.inner.clprio[prio].feed.rb_node) 455 mask |= 1 << prio; 456 } 457 458 p->prio_activity &= ~mask; 459 cl = p; 460 p = cl->parent; 461 462 } 463 if (cl->cmode == HTB_CAN_SEND && mask) 464 htb_remove_class_from_row(q, cl, mask); 465 } 466 467 static inline s64 htb_lowater(const struct htb_class *cl) 468 { 469 if (htb_hysteresis) 470 return cl->cmode != HTB_CANT_SEND ? -cl->cbuffer : 0; 471 else 472 return 0; 473 } 474 static inline s64 htb_hiwater(const struct htb_class *cl) 475 { 476 if (htb_hysteresis) 477 return cl->cmode == HTB_CAN_SEND ? -cl->buffer : 0; 478 else 479 return 0; 480 } 481 482 483 /** 484 * htb_class_mode - computes and returns current class mode 485 * 486 * It computes cl's mode at time cl->t_c+diff and returns it. If mode 487 * is not HTB_CAN_SEND then cl->pq_key is updated to time difference 488 * from now to time when cl will change its state. 489 * Also it is worth to note that class mode doesn't change simply 490 * at cl->{c,}tokens == 0 but there can rather be hysteresis of 491 * 0 .. -cl->{c,}buffer range. It is meant to limit number of 492 * mode transitions per time unit. The speed gain is about 1/6. 493 */ 494 static inline enum htb_cmode 495 htb_class_mode(struct htb_class *cl, s64 *diff) 496 { 497 s64 toks; 498 499 if ((toks = (cl->ctokens + *diff)) < htb_lowater(cl)) { 500 *diff = -toks; 501 return HTB_CANT_SEND; 502 } 503 504 if ((toks = (cl->tokens + *diff)) >= htb_hiwater(cl)) 505 return HTB_CAN_SEND; 506 507 *diff = -toks; 508 return HTB_MAY_BORROW; 509 } 510 511 /** 512 * htb_change_class_mode - changes classe's mode 513 * 514 * This should be the only way how to change classe's mode under normal 515 * cirsumstances. Routine will update feed lists linkage, change mode 516 * and add class to the wait event queue if appropriate. New mode should 517 * be different from old one and cl->pq_key has to be valid if changing 518 * to mode other than HTB_CAN_SEND (see htb_add_to_wait_tree). 519 */ 520 static void 521 htb_change_class_mode(struct htb_sched *q, struct htb_class *cl, s64 *diff) 522 { 523 enum htb_cmode new_mode = htb_class_mode(cl, diff); 524 525 if (new_mode == cl->cmode) 526 return; 527 528 if (cl->prio_activity) { /* not necessary: speed optimization */ 529 if (cl->cmode != HTB_CANT_SEND) 530 htb_deactivate_prios(q, cl); 531 cl->cmode = new_mode; 532 if (new_mode != HTB_CANT_SEND) 533 htb_activate_prios(q, cl); 534 } else 535 cl->cmode = new_mode; 536 } 537 538 /** 539 * htb_activate - inserts leaf cl into appropriate active feeds 540 * 541 * Routine learns (new) priority of leaf and activates feed chain 542 * for the prio. It can be called on already active leaf safely. 543 * It also adds leaf into droplist. 544 */ 545 static inline void htb_activate(struct htb_sched *q, struct htb_class *cl) 546 { 547 WARN_ON(cl->level || !cl->un.leaf.q || !cl->un.leaf.q->q.qlen); 548 549 if (!cl->prio_activity) { 550 cl->prio_activity = 1 << cl->prio; 551 htb_activate_prios(q, cl); 552 list_add_tail(&cl->un.leaf.drop_list, 553 q->drops + cl->prio); 554 } 555 } 556 557 /** 558 * htb_deactivate - remove leaf cl from active feeds 559 * 560 * Make sure that leaf is active. In the other words it can't be called 561 * with non-active leaf. It also removes class from the drop list. 562 */ 563 static inline void htb_deactivate(struct htb_sched *q, struct htb_class *cl) 564 { 565 WARN_ON(!cl->prio_activity); 566 567 htb_deactivate_prios(q, cl); 568 cl->prio_activity = 0; 569 list_del_init(&cl->un.leaf.drop_list); 570 } 571 572 static int htb_enqueue(struct sk_buff *skb, struct Qdisc *sch) 573 { 574 int uninitialized_var(ret); 575 struct htb_sched *q = qdisc_priv(sch); 576 struct htb_class *cl = htb_classify(skb, sch, &ret); 577 578 if (cl == HTB_DIRECT) { 579 /* enqueue to helper queue */ 580 if (q->direct_queue.qlen < q->direct_qlen) { 581 __skb_queue_tail(&q->direct_queue, skb); 582 q->direct_pkts++; 583 } else { 584 return qdisc_drop(skb, sch); 585 } 586 #ifdef CONFIG_NET_CLS_ACT 587 } else if (!cl) { 588 if (ret & __NET_XMIT_BYPASS) 589 sch->qstats.drops++; 590 kfree_skb(skb); 591 return ret; 592 #endif 593 } else if ((ret = qdisc_enqueue(skb, cl->un.leaf.q)) != NET_XMIT_SUCCESS) { 594 if (net_xmit_drop_count(ret)) { 595 sch->qstats.drops++; 596 cl->qstats.drops++; 597 } 598 return ret; 599 } else { 600 htb_activate(q, cl); 601 } 602 603 sch->q.qlen++; 604 return NET_XMIT_SUCCESS; 605 } 606 607 static inline void htb_accnt_tokens(struct htb_class *cl, int bytes, s64 diff) 608 { 609 s64 toks = diff + cl->tokens; 610 611 if (toks > cl->buffer) 612 toks = cl->buffer; 613 toks -= (s64) psched_l2t_ns(&cl->rate, bytes); 614 if (toks <= -cl->mbuffer) 615 toks = 1 - cl->mbuffer; 616 617 cl->tokens = toks; 618 } 619 620 static inline void htb_accnt_ctokens(struct htb_class *cl, int bytes, s64 diff) 621 { 622 s64 toks = diff + cl->ctokens; 623 624 if (toks > cl->cbuffer) 625 toks = cl->cbuffer; 626 toks -= (s64) psched_l2t_ns(&cl->ceil, bytes); 627 if (toks <= -cl->mbuffer) 628 toks = 1 - cl->mbuffer; 629 630 cl->ctokens = toks; 631 } 632 633 /** 634 * htb_charge_class - charges amount "bytes" to leaf and ancestors 635 * 636 * Routine assumes that packet "bytes" long was dequeued from leaf cl 637 * borrowing from "level". It accounts bytes to ceil leaky bucket for 638 * leaf and all ancestors and to rate bucket for ancestors at levels 639 * "level" and higher. It also handles possible change of mode resulting 640 * from the update. Note that mode can also increase here (MAY_BORROW to 641 * CAN_SEND) because we can use more precise clock that event queue here. 642 * In such case we remove class from event queue first. 643 */ 644 static void htb_charge_class(struct htb_sched *q, struct htb_class *cl, 645 int level, struct sk_buff *skb) 646 { 647 int bytes = qdisc_pkt_len(skb); 648 enum htb_cmode old_mode; 649 s64 diff; 650 651 while (cl) { 652 diff = min_t(s64, q->now - cl->t_c, cl->mbuffer); 653 if (cl->level >= level) { 654 if (cl->level == level) 655 cl->xstats.lends++; 656 htb_accnt_tokens(cl, bytes, diff); 657 } else { 658 cl->xstats.borrows++; 659 cl->tokens += diff; /* we moved t_c; update tokens */ 660 } 661 htb_accnt_ctokens(cl, bytes, diff); 662 cl->t_c = q->now; 663 664 old_mode = cl->cmode; 665 diff = 0; 666 htb_change_class_mode(q, cl, &diff); 667 if (old_mode != cl->cmode) { 668 if (old_mode != HTB_CAN_SEND) 669 htb_safe_rb_erase(&cl->pq_node, &q->hlevel[cl->level].wait_pq); 670 if (cl->cmode != HTB_CAN_SEND) 671 htb_add_to_wait_tree(q, cl, diff); 672 } 673 674 /* update basic stats except for leaves which are already updated */ 675 if (cl->level) 676 bstats_update(&cl->bstats, skb); 677 678 cl = cl->parent; 679 } 680 } 681 682 /** 683 * htb_do_events - make mode changes to classes at the level 684 * 685 * Scans event queue for pending events and applies them. Returns time of 686 * next pending event (0 for no event in pq, q->now for too many events). 687 * Note: Applied are events whose have cl->pq_key <= q->now. 688 */ 689 static s64 htb_do_events(struct htb_sched *q, const int level, 690 unsigned long start) 691 { 692 /* don't run for longer than 2 jiffies; 2 is used instead of 693 * 1 to simplify things when jiffy is going to be incremented 694 * too soon 695 */ 696 unsigned long stop_at = start + 2; 697 struct rb_root *wait_pq = &q->hlevel[level].wait_pq; 698 699 while (time_before(jiffies, stop_at)) { 700 struct htb_class *cl; 701 s64 diff; 702 struct rb_node *p = rb_first(wait_pq); 703 704 if (!p) 705 return 0; 706 707 cl = rb_entry(p, struct htb_class, pq_node); 708 if (cl->pq_key > q->now) 709 return cl->pq_key; 710 711 htb_safe_rb_erase(p, wait_pq); 712 diff = min_t(s64, q->now - cl->t_c, cl->mbuffer); 713 htb_change_class_mode(q, cl, &diff); 714 if (cl->cmode != HTB_CAN_SEND) 715 htb_add_to_wait_tree(q, cl, diff); 716 } 717 718 /* too much load - let's continue after a break for scheduling */ 719 if (!(q->warned & HTB_WARN_TOOMANYEVENTS)) { 720 pr_warn("htb: too many events!\n"); 721 q->warned |= HTB_WARN_TOOMANYEVENTS; 722 } 723 724 return q->now; 725 } 726 727 /* Returns class->node+prio from id-tree where classe's id is >= id. NULL 728 * is no such one exists. 729 */ 730 static struct rb_node *htb_id_find_next_upper(int prio, struct rb_node *n, 731 u32 id) 732 { 733 struct rb_node *r = NULL; 734 while (n) { 735 struct htb_class *cl = 736 rb_entry(n, struct htb_class, node[prio]); 737 738 if (id > cl->common.classid) { 739 n = n->rb_right; 740 } else if (id < cl->common.classid) { 741 r = n; 742 n = n->rb_left; 743 } else { 744 return n; 745 } 746 } 747 return r; 748 } 749 750 /** 751 * htb_lookup_leaf - returns next leaf class in DRR order 752 * 753 * Find leaf where current feed pointers points to. 754 */ 755 static struct htb_class *htb_lookup_leaf(struct htb_prio *hprio, const int prio) 756 { 757 int i; 758 struct { 759 struct rb_node *root; 760 struct rb_node **pptr; 761 u32 *pid; 762 } stk[TC_HTB_MAXDEPTH], *sp = stk; 763 764 BUG_ON(!hprio->row.rb_node); 765 sp->root = hprio->row.rb_node; 766 sp->pptr = &hprio->ptr; 767 sp->pid = &hprio->last_ptr_id; 768 769 for (i = 0; i < 65535; i++) { 770 if (!*sp->pptr && *sp->pid) { 771 /* ptr was invalidated but id is valid - try to recover 772 * the original or next ptr 773 */ 774 *sp->pptr = 775 htb_id_find_next_upper(prio, sp->root, *sp->pid); 776 } 777 *sp->pid = 0; /* ptr is valid now so that remove this hint as it 778 * can become out of date quickly 779 */ 780 if (!*sp->pptr) { /* we are at right end; rewind & go up */ 781 *sp->pptr = sp->root; 782 while ((*sp->pptr)->rb_left) 783 *sp->pptr = (*sp->pptr)->rb_left; 784 if (sp > stk) { 785 sp--; 786 if (!*sp->pptr) { 787 WARN_ON(1); 788 return NULL; 789 } 790 htb_next_rb_node(sp->pptr); 791 } 792 } else { 793 struct htb_class *cl; 794 struct htb_prio *clp; 795 796 cl = rb_entry(*sp->pptr, struct htb_class, node[prio]); 797 if (!cl->level) 798 return cl; 799 clp = &cl->un.inner.clprio[prio]; 800 (++sp)->root = clp->feed.rb_node; 801 sp->pptr = &clp->ptr; 802 sp->pid = &clp->last_ptr_id; 803 } 804 } 805 WARN_ON(1); 806 return NULL; 807 } 808 809 /* dequeues packet at given priority and level; call only if 810 * you are sure that there is active class at prio/level 811 */ 812 static struct sk_buff *htb_dequeue_tree(struct htb_sched *q, const int prio, 813 const int level) 814 { 815 struct sk_buff *skb = NULL; 816 struct htb_class *cl, *start; 817 struct htb_level *hlevel = &q->hlevel[level]; 818 struct htb_prio *hprio = &hlevel->hprio[prio]; 819 820 /* look initial class up in the row */ 821 start = cl = htb_lookup_leaf(hprio, prio); 822 823 do { 824 next: 825 if (unlikely(!cl)) 826 return NULL; 827 828 /* class can be empty - it is unlikely but can be true if leaf 829 * qdisc drops packets in enqueue routine or if someone used 830 * graft operation on the leaf since last dequeue; 831 * simply deactivate and skip such class 832 */ 833 if (unlikely(cl->un.leaf.q->q.qlen == 0)) { 834 struct htb_class *next; 835 htb_deactivate(q, cl); 836 837 /* row/level might become empty */ 838 if ((q->row_mask[level] & (1 << prio)) == 0) 839 return NULL; 840 841 next = htb_lookup_leaf(hprio, prio); 842 843 if (cl == start) /* fix start if we just deleted it */ 844 start = next; 845 cl = next; 846 goto next; 847 } 848 849 skb = cl->un.leaf.q->dequeue(cl->un.leaf.q); 850 if (likely(skb != NULL)) 851 break; 852 853 qdisc_warn_nonwc("htb", cl->un.leaf.q); 854 htb_next_rb_node(level ? &cl->parent->un.inner.clprio[prio].ptr: 855 &q->hlevel[0].hprio[prio].ptr); 856 cl = htb_lookup_leaf(hprio, prio); 857 858 } while (cl != start); 859 860 if (likely(skb != NULL)) { 861 bstats_update(&cl->bstats, skb); 862 cl->un.leaf.deficit[level] -= qdisc_pkt_len(skb); 863 if (cl->un.leaf.deficit[level] < 0) { 864 cl->un.leaf.deficit[level] += cl->quantum; 865 htb_next_rb_node(level ? &cl->parent->un.inner.clprio[prio].ptr : 866 &q->hlevel[0].hprio[prio].ptr); 867 } 868 /* this used to be after charge_class but this constelation 869 * gives us slightly better performance 870 */ 871 if (!cl->un.leaf.q->q.qlen) 872 htb_deactivate(q, cl); 873 htb_charge_class(q, cl, level, skb); 874 } 875 return skb; 876 } 877 878 static struct sk_buff *htb_dequeue(struct Qdisc *sch) 879 { 880 struct sk_buff *skb; 881 struct htb_sched *q = qdisc_priv(sch); 882 int level; 883 s64 next_event; 884 unsigned long start_at; 885 886 /* try to dequeue direct packets as high prio (!) to minimize cpu work */ 887 skb = __skb_dequeue(&q->direct_queue); 888 if (skb != NULL) { 889 ok: 890 qdisc_bstats_update(sch, skb); 891 qdisc_unthrottled(sch); 892 sch->q.qlen--; 893 return skb; 894 } 895 896 if (!sch->q.qlen) 897 goto fin; 898 q->now = ktime_to_ns(ktime_get()); 899 start_at = jiffies; 900 901 next_event = q->now + 5LLU * NSEC_PER_SEC; 902 903 for (level = 0; level < TC_HTB_MAXDEPTH; level++) { 904 /* common case optimization - skip event handler quickly */ 905 int m; 906 s64 event = q->near_ev_cache[level]; 907 908 if (q->now >= event) { 909 event = htb_do_events(q, level, start_at); 910 if (!event) 911 event = q->now + NSEC_PER_SEC; 912 q->near_ev_cache[level] = event; 913 } 914 915 if (next_event > event) 916 next_event = event; 917 918 m = ~q->row_mask[level]; 919 while (m != (int)(-1)) { 920 int prio = ffz(m); 921 922 m |= 1 << prio; 923 skb = htb_dequeue_tree(q, prio, level); 924 if (likely(skb != NULL)) 925 goto ok; 926 } 927 } 928 sch->qstats.overlimits++; 929 if (likely(next_event > q->now)) { 930 if (!test_bit(__QDISC_STATE_DEACTIVATED, 931 &qdisc_root_sleeping(q->watchdog.qdisc)->state)) { 932 ktime_t time = ns_to_ktime(next_event); 933 qdisc_throttled(q->watchdog.qdisc); 934 hrtimer_start(&q->watchdog.timer, time, 935 HRTIMER_MODE_ABS); 936 } 937 } else { 938 schedule_work(&q->work); 939 } 940 fin: 941 return skb; 942 } 943 944 /* try to drop from each class (by prio) until one succeed */ 945 static unsigned int htb_drop(struct Qdisc *sch) 946 { 947 struct htb_sched *q = qdisc_priv(sch); 948 int prio; 949 950 for (prio = TC_HTB_NUMPRIO - 1; prio >= 0; prio--) { 951 struct list_head *p; 952 list_for_each(p, q->drops + prio) { 953 struct htb_class *cl = list_entry(p, struct htb_class, 954 un.leaf.drop_list); 955 unsigned int len; 956 if (cl->un.leaf.q->ops->drop && 957 (len = cl->un.leaf.q->ops->drop(cl->un.leaf.q))) { 958 sch->q.qlen--; 959 if (!cl->un.leaf.q->q.qlen) 960 htb_deactivate(q, cl); 961 return len; 962 } 963 } 964 } 965 return 0; 966 } 967 968 /* reset all classes */ 969 /* always caled under BH & queue lock */ 970 static void htb_reset(struct Qdisc *sch) 971 { 972 struct htb_sched *q = qdisc_priv(sch); 973 struct htb_class *cl; 974 unsigned int i; 975 976 for (i = 0; i < q->clhash.hashsize; i++) { 977 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 978 if (cl->level) 979 memset(&cl->un.inner, 0, sizeof(cl->un.inner)); 980 else { 981 if (cl->un.leaf.q) 982 qdisc_reset(cl->un.leaf.q); 983 INIT_LIST_HEAD(&cl->un.leaf.drop_list); 984 } 985 cl->prio_activity = 0; 986 cl->cmode = HTB_CAN_SEND; 987 988 } 989 } 990 qdisc_watchdog_cancel(&q->watchdog); 991 __skb_queue_purge(&q->direct_queue); 992 sch->q.qlen = 0; 993 memset(q->hlevel, 0, sizeof(q->hlevel)); 994 memset(q->row_mask, 0, sizeof(q->row_mask)); 995 for (i = 0; i < TC_HTB_NUMPRIO; i++) 996 INIT_LIST_HEAD(q->drops + i); 997 } 998 999 static const struct nla_policy htb_policy[TCA_HTB_MAX + 1] = { 1000 [TCA_HTB_PARMS] = { .len = sizeof(struct tc_htb_opt) }, 1001 [TCA_HTB_INIT] = { .len = sizeof(struct tc_htb_glob) }, 1002 [TCA_HTB_CTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, 1003 [TCA_HTB_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE }, 1004 [TCA_HTB_DIRECT_QLEN] = { .type = NLA_U32 }, 1005 [TCA_HTB_RATE64] = { .type = NLA_U64 }, 1006 [TCA_HTB_CEIL64] = { .type = NLA_U64 }, 1007 }; 1008 1009 static void htb_work_func(struct work_struct *work) 1010 { 1011 struct htb_sched *q = container_of(work, struct htb_sched, work); 1012 struct Qdisc *sch = q->watchdog.qdisc; 1013 1014 __netif_schedule(qdisc_root(sch)); 1015 } 1016 1017 static int htb_init(struct Qdisc *sch, struct nlattr *opt) 1018 { 1019 struct htb_sched *q = qdisc_priv(sch); 1020 struct nlattr *tb[TCA_HTB_MAX + 1]; 1021 struct tc_htb_glob *gopt; 1022 int err; 1023 int i; 1024 1025 if (!opt) 1026 return -EINVAL; 1027 1028 err = nla_parse_nested(tb, TCA_HTB_MAX, opt, htb_policy); 1029 if (err < 0) 1030 return err; 1031 1032 if (!tb[TCA_HTB_INIT]) 1033 return -EINVAL; 1034 1035 gopt = nla_data(tb[TCA_HTB_INIT]); 1036 if (gopt->version != HTB_VER >> 16) 1037 return -EINVAL; 1038 1039 err = qdisc_class_hash_init(&q->clhash); 1040 if (err < 0) 1041 return err; 1042 for (i = 0; i < TC_HTB_NUMPRIO; i++) 1043 INIT_LIST_HEAD(q->drops + i); 1044 1045 qdisc_watchdog_init(&q->watchdog, sch); 1046 INIT_WORK(&q->work, htb_work_func); 1047 skb_queue_head_init(&q->direct_queue); 1048 1049 if (tb[TCA_HTB_DIRECT_QLEN]) 1050 q->direct_qlen = nla_get_u32(tb[TCA_HTB_DIRECT_QLEN]); 1051 else { 1052 q->direct_qlen = qdisc_dev(sch)->tx_queue_len; 1053 if (q->direct_qlen < 2) /* some devices have zero tx_queue_len */ 1054 q->direct_qlen = 2; 1055 } 1056 if ((q->rate2quantum = gopt->rate2quantum) < 1) 1057 q->rate2quantum = 1; 1058 q->defcls = gopt->defcls; 1059 1060 return 0; 1061 } 1062 1063 static int htb_dump(struct Qdisc *sch, struct sk_buff *skb) 1064 { 1065 spinlock_t *root_lock = qdisc_root_sleeping_lock(sch); 1066 struct htb_sched *q = qdisc_priv(sch); 1067 struct nlattr *nest; 1068 struct tc_htb_glob gopt; 1069 1070 spin_lock_bh(root_lock); 1071 1072 gopt.direct_pkts = q->direct_pkts; 1073 gopt.version = HTB_VER; 1074 gopt.rate2quantum = q->rate2quantum; 1075 gopt.defcls = q->defcls; 1076 gopt.debug = 0; 1077 1078 nest = nla_nest_start(skb, TCA_OPTIONS); 1079 if (nest == NULL) 1080 goto nla_put_failure; 1081 if (nla_put(skb, TCA_HTB_INIT, sizeof(gopt), &gopt) || 1082 nla_put_u32(skb, TCA_HTB_DIRECT_QLEN, q->direct_qlen)) 1083 goto nla_put_failure; 1084 nla_nest_end(skb, nest); 1085 1086 spin_unlock_bh(root_lock); 1087 return skb->len; 1088 1089 nla_put_failure: 1090 spin_unlock_bh(root_lock); 1091 nla_nest_cancel(skb, nest); 1092 return -1; 1093 } 1094 1095 static int htb_dump_class(struct Qdisc *sch, unsigned long arg, 1096 struct sk_buff *skb, struct tcmsg *tcm) 1097 { 1098 struct htb_class *cl = (struct htb_class *)arg; 1099 spinlock_t *root_lock = qdisc_root_sleeping_lock(sch); 1100 struct nlattr *nest; 1101 struct tc_htb_opt opt; 1102 1103 spin_lock_bh(root_lock); 1104 tcm->tcm_parent = cl->parent ? cl->parent->common.classid : TC_H_ROOT; 1105 tcm->tcm_handle = cl->common.classid; 1106 if (!cl->level && cl->un.leaf.q) 1107 tcm->tcm_info = cl->un.leaf.q->handle; 1108 1109 nest = nla_nest_start(skb, TCA_OPTIONS); 1110 if (nest == NULL) 1111 goto nla_put_failure; 1112 1113 memset(&opt, 0, sizeof(opt)); 1114 1115 psched_ratecfg_getrate(&opt.rate, &cl->rate); 1116 opt.buffer = PSCHED_NS2TICKS(cl->buffer); 1117 psched_ratecfg_getrate(&opt.ceil, &cl->ceil); 1118 opt.cbuffer = PSCHED_NS2TICKS(cl->cbuffer); 1119 opt.quantum = cl->quantum; 1120 opt.prio = cl->prio; 1121 opt.level = cl->level; 1122 if (nla_put(skb, TCA_HTB_PARMS, sizeof(opt), &opt)) 1123 goto nla_put_failure; 1124 if ((cl->rate.rate_bytes_ps >= (1ULL << 32)) && 1125 nla_put_u64(skb, TCA_HTB_RATE64, cl->rate.rate_bytes_ps)) 1126 goto nla_put_failure; 1127 if ((cl->ceil.rate_bytes_ps >= (1ULL << 32)) && 1128 nla_put_u64(skb, TCA_HTB_CEIL64, cl->ceil.rate_bytes_ps)) 1129 goto nla_put_failure; 1130 1131 nla_nest_end(skb, nest); 1132 spin_unlock_bh(root_lock); 1133 return skb->len; 1134 1135 nla_put_failure: 1136 spin_unlock_bh(root_lock); 1137 nla_nest_cancel(skb, nest); 1138 return -1; 1139 } 1140 1141 static int 1142 htb_dump_class_stats(struct Qdisc *sch, unsigned long arg, struct gnet_dump *d) 1143 { 1144 struct htb_class *cl = (struct htb_class *)arg; 1145 1146 if (!cl->level && cl->un.leaf.q) 1147 cl->qstats.qlen = cl->un.leaf.q->q.qlen; 1148 cl->xstats.tokens = PSCHED_NS2TICKS(cl->tokens); 1149 cl->xstats.ctokens = PSCHED_NS2TICKS(cl->ctokens); 1150 1151 if (gnet_stats_copy_basic(d, &cl->bstats) < 0 || 1152 gnet_stats_copy_rate_est(d, NULL, &cl->rate_est) < 0 || 1153 gnet_stats_copy_queue(d, &cl->qstats) < 0) 1154 return -1; 1155 1156 return gnet_stats_copy_app(d, &cl->xstats, sizeof(cl->xstats)); 1157 } 1158 1159 static int htb_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 1160 struct Qdisc **old) 1161 { 1162 struct htb_class *cl = (struct htb_class *)arg; 1163 1164 if (cl->level) 1165 return -EINVAL; 1166 if (new == NULL && 1167 (new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 1168 cl->common.classid)) == NULL) 1169 return -ENOBUFS; 1170 1171 sch_tree_lock(sch); 1172 *old = cl->un.leaf.q; 1173 cl->un.leaf.q = new; 1174 if (*old != NULL) { 1175 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen); 1176 qdisc_reset(*old); 1177 } 1178 sch_tree_unlock(sch); 1179 return 0; 1180 } 1181 1182 static struct Qdisc *htb_leaf(struct Qdisc *sch, unsigned long arg) 1183 { 1184 struct htb_class *cl = (struct htb_class *)arg; 1185 return !cl->level ? cl->un.leaf.q : NULL; 1186 } 1187 1188 static void htb_qlen_notify(struct Qdisc *sch, unsigned long arg) 1189 { 1190 struct htb_class *cl = (struct htb_class *)arg; 1191 1192 if (cl->un.leaf.q->q.qlen == 0) 1193 htb_deactivate(qdisc_priv(sch), cl); 1194 } 1195 1196 static unsigned long htb_get(struct Qdisc *sch, u32 classid) 1197 { 1198 struct htb_class *cl = htb_find(classid, sch); 1199 if (cl) 1200 cl->refcnt++; 1201 return (unsigned long)cl; 1202 } 1203 1204 static inline int htb_parent_last_child(struct htb_class *cl) 1205 { 1206 if (!cl->parent) 1207 /* the root class */ 1208 return 0; 1209 if (cl->parent->children > 1) 1210 /* not the last child */ 1211 return 0; 1212 return 1; 1213 } 1214 1215 static void htb_parent_to_leaf(struct htb_sched *q, struct htb_class *cl, 1216 struct Qdisc *new_q) 1217 { 1218 struct htb_class *parent = cl->parent; 1219 1220 WARN_ON(cl->level || !cl->un.leaf.q || cl->prio_activity); 1221 1222 if (parent->cmode != HTB_CAN_SEND) 1223 htb_safe_rb_erase(&parent->pq_node, 1224 &q->hlevel[parent->level].wait_pq); 1225 1226 parent->level = 0; 1227 memset(&parent->un.inner, 0, sizeof(parent->un.inner)); 1228 INIT_LIST_HEAD(&parent->un.leaf.drop_list); 1229 parent->un.leaf.q = new_q ? new_q : &noop_qdisc; 1230 parent->tokens = parent->buffer; 1231 parent->ctokens = parent->cbuffer; 1232 parent->t_c = ktime_to_ns(ktime_get()); 1233 parent->cmode = HTB_CAN_SEND; 1234 } 1235 1236 static void htb_destroy_class(struct Qdisc *sch, struct htb_class *cl) 1237 { 1238 if (!cl->level) { 1239 WARN_ON(!cl->un.leaf.q); 1240 qdisc_destroy(cl->un.leaf.q); 1241 } 1242 gen_kill_estimator(&cl->bstats, &cl->rate_est); 1243 tcf_destroy_chain(&cl->filter_list); 1244 kfree(cl); 1245 } 1246 1247 static void htb_destroy(struct Qdisc *sch) 1248 { 1249 struct htb_sched *q = qdisc_priv(sch); 1250 struct hlist_node *next; 1251 struct htb_class *cl; 1252 unsigned int i; 1253 1254 cancel_work_sync(&q->work); 1255 qdisc_watchdog_cancel(&q->watchdog); 1256 /* This line used to be after htb_destroy_class call below 1257 * and surprisingly it worked in 2.4. But it must precede it 1258 * because filter need its target class alive to be able to call 1259 * unbind_filter on it (without Oops). 1260 */ 1261 tcf_destroy_chain(&q->filter_list); 1262 1263 for (i = 0; i < q->clhash.hashsize; i++) { 1264 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) 1265 tcf_destroy_chain(&cl->filter_list); 1266 } 1267 for (i = 0; i < q->clhash.hashsize; i++) { 1268 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1269 common.hnode) 1270 htb_destroy_class(sch, cl); 1271 } 1272 qdisc_class_hash_destroy(&q->clhash); 1273 __skb_queue_purge(&q->direct_queue); 1274 } 1275 1276 static int htb_delete(struct Qdisc *sch, unsigned long arg) 1277 { 1278 struct htb_sched *q = qdisc_priv(sch); 1279 struct htb_class *cl = (struct htb_class *)arg; 1280 unsigned int qlen; 1281 struct Qdisc *new_q = NULL; 1282 int last_child = 0; 1283 1284 /* TODO: why don't allow to delete subtree ? references ? does 1285 * tc subsys guarantee us that in htb_destroy it holds no class 1286 * refs so that we can remove children safely there ? 1287 */ 1288 if (cl->children || cl->filter_cnt) 1289 return -EBUSY; 1290 1291 if (!cl->level && htb_parent_last_child(cl)) { 1292 new_q = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 1293 cl->parent->common.classid); 1294 last_child = 1; 1295 } 1296 1297 sch_tree_lock(sch); 1298 1299 if (!cl->level) { 1300 qlen = cl->un.leaf.q->q.qlen; 1301 qdisc_reset(cl->un.leaf.q); 1302 qdisc_tree_decrease_qlen(cl->un.leaf.q, qlen); 1303 } 1304 1305 /* delete from hash and active; remainder in destroy_class */ 1306 qdisc_class_hash_remove(&q->clhash, &cl->common); 1307 if (cl->parent) 1308 cl->parent->children--; 1309 1310 if (cl->prio_activity) 1311 htb_deactivate(q, cl); 1312 1313 if (cl->cmode != HTB_CAN_SEND) 1314 htb_safe_rb_erase(&cl->pq_node, 1315 &q->hlevel[cl->level].wait_pq); 1316 1317 if (last_child) 1318 htb_parent_to_leaf(q, cl, new_q); 1319 1320 BUG_ON(--cl->refcnt == 0); 1321 /* 1322 * This shouldn't happen: we "hold" one cops->get() when called 1323 * from tc_ctl_tclass; the destroy method is done from cops->put(). 1324 */ 1325 1326 sch_tree_unlock(sch); 1327 return 0; 1328 } 1329 1330 static void htb_put(struct Qdisc *sch, unsigned long arg) 1331 { 1332 struct htb_class *cl = (struct htb_class *)arg; 1333 1334 if (--cl->refcnt == 0) 1335 htb_destroy_class(sch, cl); 1336 } 1337 1338 static int htb_change_class(struct Qdisc *sch, u32 classid, 1339 u32 parentid, struct nlattr **tca, 1340 unsigned long *arg) 1341 { 1342 int err = -EINVAL; 1343 struct htb_sched *q = qdisc_priv(sch); 1344 struct htb_class *cl = (struct htb_class *)*arg, *parent; 1345 struct nlattr *opt = tca[TCA_OPTIONS]; 1346 struct nlattr *tb[TCA_HTB_MAX + 1]; 1347 struct tc_htb_opt *hopt; 1348 u64 rate64, ceil64; 1349 1350 /* extract all subattrs from opt attr */ 1351 if (!opt) 1352 goto failure; 1353 1354 err = nla_parse_nested(tb, TCA_HTB_MAX, opt, htb_policy); 1355 if (err < 0) 1356 goto failure; 1357 1358 err = -EINVAL; 1359 if (tb[TCA_HTB_PARMS] == NULL) 1360 goto failure; 1361 1362 parent = parentid == TC_H_ROOT ? NULL : htb_find(parentid, sch); 1363 1364 hopt = nla_data(tb[TCA_HTB_PARMS]); 1365 if (!hopt->rate.rate || !hopt->ceil.rate) 1366 goto failure; 1367 1368 /* Keeping backward compatible with rate_table based iproute2 tc */ 1369 if (hopt->rate.linklayer == TC_LINKLAYER_UNAWARE) 1370 qdisc_put_rtab(qdisc_get_rtab(&hopt->rate, tb[TCA_HTB_RTAB])); 1371 1372 if (hopt->ceil.linklayer == TC_LINKLAYER_UNAWARE) 1373 qdisc_put_rtab(qdisc_get_rtab(&hopt->ceil, tb[TCA_HTB_CTAB])); 1374 1375 if (!cl) { /* new class */ 1376 struct Qdisc *new_q; 1377 int prio; 1378 struct { 1379 struct nlattr nla; 1380 struct gnet_estimator opt; 1381 } est = { 1382 .nla = { 1383 .nla_len = nla_attr_size(sizeof(est.opt)), 1384 .nla_type = TCA_RATE, 1385 }, 1386 .opt = { 1387 /* 4s interval, 16s averaging constant */ 1388 .interval = 2, 1389 .ewma_log = 2, 1390 }, 1391 }; 1392 1393 /* check for valid classid */ 1394 if (!classid || TC_H_MAJ(classid ^ sch->handle) || 1395 htb_find(classid, sch)) 1396 goto failure; 1397 1398 /* check maximal depth */ 1399 if (parent && parent->parent && parent->parent->level < 2) { 1400 pr_err("htb: tree is too deep\n"); 1401 goto failure; 1402 } 1403 err = -ENOBUFS; 1404 cl = kzalloc(sizeof(*cl), GFP_KERNEL); 1405 if (!cl) 1406 goto failure; 1407 1408 if (htb_rate_est || tca[TCA_RATE]) { 1409 err = gen_new_estimator(&cl->bstats, &cl->rate_est, 1410 qdisc_root_sleeping_lock(sch), 1411 tca[TCA_RATE] ? : &est.nla); 1412 if (err) { 1413 kfree(cl); 1414 goto failure; 1415 } 1416 } 1417 1418 cl->refcnt = 1; 1419 cl->children = 0; 1420 INIT_LIST_HEAD(&cl->un.leaf.drop_list); 1421 RB_CLEAR_NODE(&cl->pq_node); 1422 1423 for (prio = 0; prio < TC_HTB_NUMPRIO; prio++) 1424 RB_CLEAR_NODE(&cl->node[prio]); 1425 1426 /* create leaf qdisc early because it uses kmalloc(GFP_KERNEL) 1427 * so that can't be used inside of sch_tree_lock 1428 * -- thanks to Karlis Peisenieks 1429 */ 1430 new_q = qdisc_create_dflt(sch->dev_queue, 1431 &pfifo_qdisc_ops, classid); 1432 sch_tree_lock(sch); 1433 if (parent && !parent->level) { 1434 unsigned int qlen = parent->un.leaf.q->q.qlen; 1435 1436 /* turn parent into inner node */ 1437 qdisc_reset(parent->un.leaf.q); 1438 qdisc_tree_decrease_qlen(parent->un.leaf.q, qlen); 1439 qdisc_destroy(parent->un.leaf.q); 1440 if (parent->prio_activity) 1441 htb_deactivate(q, parent); 1442 1443 /* remove from evt list because of level change */ 1444 if (parent->cmode != HTB_CAN_SEND) { 1445 htb_safe_rb_erase(&parent->pq_node, &q->hlevel[0].wait_pq); 1446 parent->cmode = HTB_CAN_SEND; 1447 } 1448 parent->level = (parent->parent ? parent->parent->level 1449 : TC_HTB_MAXDEPTH) - 1; 1450 memset(&parent->un.inner, 0, sizeof(parent->un.inner)); 1451 } 1452 /* leaf (we) needs elementary qdisc */ 1453 cl->un.leaf.q = new_q ? new_q : &noop_qdisc; 1454 1455 cl->common.classid = classid; 1456 cl->parent = parent; 1457 1458 /* set class to be in HTB_CAN_SEND state */ 1459 cl->tokens = PSCHED_TICKS2NS(hopt->buffer); 1460 cl->ctokens = PSCHED_TICKS2NS(hopt->cbuffer); 1461 cl->mbuffer = 60ULL * NSEC_PER_SEC; /* 1min */ 1462 cl->t_c = ktime_to_ns(ktime_get()); 1463 cl->cmode = HTB_CAN_SEND; 1464 1465 /* attach to the hash list and parent's family */ 1466 qdisc_class_hash_insert(&q->clhash, &cl->common); 1467 if (parent) 1468 parent->children++; 1469 } else { 1470 if (tca[TCA_RATE]) { 1471 err = gen_replace_estimator(&cl->bstats, &cl->rate_est, 1472 qdisc_root_sleeping_lock(sch), 1473 tca[TCA_RATE]); 1474 if (err) 1475 return err; 1476 } 1477 sch_tree_lock(sch); 1478 } 1479 1480 rate64 = tb[TCA_HTB_RATE64] ? nla_get_u64(tb[TCA_HTB_RATE64]) : 0; 1481 1482 ceil64 = tb[TCA_HTB_CEIL64] ? nla_get_u64(tb[TCA_HTB_CEIL64]) : 0; 1483 1484 psched_ratecfg_precompute(&cl->rate, &hopt->rate, rate64); 1485 psched_ratecfg_precompute(&cl->ceil, &hopt->ceil, ceil64); 1486 1487 /* it used to be a nasty bug here, we have to check that node 1488 * is really leaf before changing cl->un.leaf ! 1489 */ 1490 if (!cl->level) { 1491 u64 quantum = cl->rate.rate_bytes_ps; 1492 1493 do_div(quantum, q->rate2quantum); 1494 cl->quantum = min_t(u64, quantum, INT_MAX); 1495 1496 if (!hopt->quantum && cl->quantum < 1000) { 1497 pr_warn("HTB: quantum of class %X is small. Consider r2q change.\n", 1498 cl->common.classid); 1499 cl->quantum = 1000; 1500 } 1501 if (!hopt->quantum && cl->quantum > 200000) { 1502 pr_warn("HTB: quantum of class %X is big. Consider r2q change.\n", 1503 cl->common.classid); 1504 cl->quantum = 200000; 1505 } 1506 if (hopt->quantum) 1507 cl->quantum = hopt->quantum; 1508 if ((cl->prio = hopt->prio) >= TC_HTB_NUMPRIO) 1509 cl->prio = TC_HTB_NUMPRIO - 1; 1510 } 1511 1512 cl->buffer = PSCHED_TICKS2NS(hopt->buffer); 1513 cl->cbuffer = PSCHED_TICKS2NS(hopt->cbuffer); 1514 1515 sch_tree_unlock(sch); 1516 1517 qdisc_class_hash_grow(sch, &q->clhash); 1518 1519 *arg = (unsigned long)cl; 1520 return 0; 1521 1522 failure: 1523 return err; 1524 } 1525 1526 static struct tcf_proto **htb_find_tcf(struct Qdisc *sch, unsigned long arg) 1527 { 1528 struct htb_sched *q = qdisc_priv(sch); 1529 struct htb_class *cl = (struct htb_class *)arg; 1530 struct tcf_proto **fl = cl ? &cl->filter_list : &q->filter_list; 1531 1532 return fl; 1533 } 1534 1535 static unsigned long htb_bind_filter(struct Qdisc *sch, unsigned long parent, 1536 u32 classid) 1537 { 1538 struct htb_class *cl = htb_find(classid, sch); 1539 1540 /*if (cl && !cl->level) return 0; 1541 * The line above used to be there to prevent attaching filters to 1542 * leaves. But at least tc_index filter uses this just to get class 1543 * for other reasons so that we have to allow for it. 1544 * ---- 1545 * 19.6.2002 As Werner explained it is ok - bind filter is just 1546 * another way to "lock" the class - unlike "get" this lock can 1547 * be broken by class during destroy IIUC. 1548 */ 1549 if (cl) 1550 cl->filter_cnt++; 1551 return (unsigned long)cl; 1552 } 1553 1554 static void htb_unbind_filter(struct Qdisc *sch, unsigned long arg) 1555 { 1556 struct htb_class *cl = (struct htb_class *)arg; 1557 1558 if (cl) 1559 cl->filter_cnt--; 1560 } 1561 1562 static void htb_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1563 { 1564 struct htb_sched *q = qdisc_priv(sch); 1565 struct htb_class *cl; 1566 unsigned int i; 1567 1568 if (arg->stop) 1569 return; 1570 1571 for (i = 0; i < q->clhash.hashsize; i++) { 1572 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) { 1573 if (arg->count < arg->skip) { 1574 arg->count++; 1575 continue; 1576 } 1577 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 1578 arg->stop = 1; 1579 return; 1580 } 1581 arg->count++; 1582 } 1583 } 1584 } 1585 1586 static const struct Qdisc_class_ops htb_class_ops = { 1587 .graft = htb_graft, 1588 .leaf = htb_leaf, 1589 .qlen_notify = htb_qlen_notify, 1590 .get = htb_get, 1591 .put = htb_put, 1592 .change = htb_change_class, 1593 .delete = htb_delete, 1594 .walk = htb_walk, 1595 .tcf_chain = htb_find_tcf, 1596 .bind_tcf = htb_bind_filter, 1597 .unbind_tcf = htb_unbind_filter, 1598 .dump = htb_dump_class, 1599 .dump_stats = htb_dump_class_stats, 1600 }; 1601 1602 static struct Qdisc_ops htb_qdisc_ops __read_mostly = { 1603 .cl_ops = &htb_class_ops, 1604 .id = "htb", 1605 .priv_size = sizeof(struct htb_sched), 1606 .enqueue = htb_enqueue, 1607 .dequeue = htb_dequeue, 1608 .peek = qdisc_peek_dequeued, 1609 .drop = htb_drop, 1610 .init = htb_init, 1611 .reset = htb_reset, 1612 .destroy = htb_destroy, 1613 .dump = htb_dump, 1614 .owner = THIS_MODULE, 1615 }; 1616 1617 static int __init htb_module_init(void) 1618 { 1619 return register_qdisc(&htb_qdisc_ops); 1620 } 1621 static void __exit htb_module_exit(void) 1622 { 1623 unregister_qdisc(&htb_qdisc_ops); 1624 } 1625 1626 module_init(htb_module_init) 1627 module_exit(htb_module_exit) 1628 MODULE_LICENSE("GPL"); 1629