1 // SPDX-License-Identifier: GPL-2.0-only 2 /* net/sched/sch_hhf.c Heavy-Hitter Filter (HHF) 3 * 4 * Copyright (C) 2013 Terry Lam <vtlam@google.com> 5 * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com> 6 */ 7 8 #include <linux/jiffies.h> 9 #include <linux/module.h> 10 #include <linux/skbuff.h> 11 #include <linux/vmalloc.h> 12 #include <linux/siphash.h> 13 #include <net/pkt_sched.h> 14 #include <net/sock.h> 15 16 /* Heavy-Hitter Filter (HHF) 17 * 18 * Principles : 19 * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter 20 * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified 21 * as heavy-hitter, it is immediately switched to the heavy-hitter bucket. 22 * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler, 23 * in which the heavy-hitter bucket is served with less weight. 24 * In other words, non-heavy-hitters (e.g., short bursts of critical traffic) 25 * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have 26 * higher share of bandwidth. 27 * 28 * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the 29 * following paper: 30 * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and 31 * Accounting", in ACM SIGCOMM, 2002. 32 * 33 * Conceptually, a multi-stage filter comprises k independent hash functions 34 * and k counter arrays. Packets are indexed into k counter arrays by k hash 35 * functions, respectively. The counters are then increased by the packet sizes. 36 * Therefore, 37 * - For a heavy-hitter flow: *all* of its k array counters must be large. 38 * - For a non-heavy-hitter flow: some of its k array counters can be large 39 * due to hash collision with other small flows; however, with high 40 * probability, not *all* k counters are large. 41 * 42 * By the design of the multi-stage filter algorithm, the false negative rate 43 * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is 44 * susceptible to false positives (non-heavy-hitters mistakenly classified as 45 * heavy-hitters). 46 * Therefore, we also implement the following optimizations to reduce false 47 * positives by avoiding unnecessary increment of the counter values: 48 * - Optimization O1: once a heavy-hitter is identified, its bytes are not 49 * accounted in the array counters. This technique is called "shielding" 50 * in Section 3.3.1 of [EV02]. 51 * - Optimization O2: conservative update of counters 52 * (Section 3.3.2 of [EV02]), 53 * New counter value = max {old counter value, 54 * smallest counter value + packet bytes} 55 * 56 * Finally, we refresh the counters periodically since otherwise the counter 57 * values will keep accumulating. 58 * 59 * Once a flow is classified as heavy-hitter, we also save its per-flow state 60 * in an exact-matching flow table so that its subsequent packets can be 61 * dispatched to the heavy-hitter bucket accordingly. 62 * 63 * 64 * At a high level, this qdisc works as follows: 65 * Given a packet p: 66 * - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching 67 * heavy-hitter flow table, denoted table T, then send p to the heavy-hitter 68 * bucket. 69 * - Otherwise, forward p to the multi-stage filter, denoted filter F 70 * + If F decides that p belongs to a non-heavy-hitter flow, then send p 71 * to the non-heavy-hitter bucket. 72 * + Otherwise, if F decides that p belongs to a new heavy-hitter flow, 73 * then set up a new flow entry for the flow-id of p in the table T and 74 * send p to the heavy-hitter bucket. 75 * 76 * In this implementation: 77 * - T is a fixed-size hash-table with 1024 entries. Hash collision is 78 * resolved by linked-list chaining. 79 * - F has four counter arrays, each array containing 1024 32-bit counters. 80 * That means 4 * 1024 * 32 bits = 16KB of memory. 81 * - Since each array in F contains 1024 counters, 10 bits are sufficient to 82 * index into each array. 83 * Hence, instead of having four hash functions, we chop the 32-bit 84 * skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is 85 * computed as XOR sum of those three chunks. 86 * - We need to clear the counter arrays periodically; however, directly 87 * memsetting 16KB of memory can lead to cache eviction and unwanted delay. 88 * So by representing each counter by a valid bit, we only need to reset 89 * 4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory. 90 * - The Deficit Round Robin engine is taken from fq_codel implementation 91 * (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to 92 * fq_codel_flow in fq_codel implementation. 93 * 94 */ 95 96 /* Non-configurable parameters */ 97 #define HH_FLOWS_CNT 1024 /* number of entries in exact-matching table T */ 98 #define HHF_ARRAYS_CNT 4 /* number of arrays in multi-stage filter F */ 99 #define HHF_ARRAYS_LEN 1024 /* number of counters in each array of F */ 100 #define HHF_BIT_MASK_LEN 10 /* masking 10 bits */ 101 #define HHF_BIT_MASK 0x3FF /* bitmask of 10 bits */ 102 103 #define WDRR_BUCKET_CNT 2 /* two buckets for Weighted DRR */ 104 enum wdrr_bucket_idx { 105 WDRR_BUCKET_FOR_HH = 0, /* bucket id for heavy-hitters */ 106 WDRR_BUCKET_FOR_NON_HH = 1 /* bucket id for non-heavy-hitters */ 107 }; 108 109 #define hhf_time_before(a, b) \ 110 (typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0)) 111 112 /* Heavy-hitter per-flow state */ 113 struct hh_flow_state { 114 u32 hash_id; /* hash of flow-id (e.g. TCP 5-tuple) */ 115 u32 hit_timestamp; /* last time heavy-hitter was seen */ 116 struct list_head flowchain; /* chaining under hash collision */ 117 }; 118 119 /* Weighted Deficit Round Robin (WDRR) scheduler */ 120 struct wdrr_bucket { 121 struct sk_buff *head; 122 struct sk_buff *tail; 123 struct list_head bucketchain; 124 int deficit; 125 }; 126 127 struct hhf_sched_data { 128 struct wdrr_bucket buckets[WDRR_BUCKET_CNT]; 129 siphash_key_t perturbation; /* hash perturbation */ 130 u32 quantum; /* psched_mtu(qdisc_dev(sch)); */ 131 u32 drop_overlimit; /* number of times max qdisc packet 132 * limit was hit 133 */ 134 struct list_head *hh_flows; /* table T (currently active HHs) */ 135 u32 hh_flows_limit; /* max active HH allocs */ 136 u32 hh_flows_overlimit; /* num of disallowed HH allocs */ 137 u32 hh_flows_total_cnt; /* total admitted HHs */ 138 u32 hh_flows_current_cnt; /* total current HHs */ 139 u32 *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */ 140 u32 hhf_arrays_reset_timestamp; /* last time hhf_arrays 141 * was reset 142 */ 143 unsigned long *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits 144 * of hhf_arrays 145 */ 146 /* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */ 147 struct list_head new_buckets; /* list of new buckets */ 148 struct list_head old_buckets; /* list of old buckets */ 149 150 /* Configurable HHF parameters */ 151 u32 hhf_reset_timeout; /* interval to reset counter 152 * arrays in filter F 153 * (default 40ms) 154 */ 155 u32 hhf_admit_bytes; /* counter thresh to classify as 156 * HH (default 128KB). 157 * With these default values, 158 * 128KB / 40ms = 25 Mbps 159 * i.e., we expect to capture HHs 160 * sending > 25 Mbps. 161 */ 162 u32 hhf_evict_timeout; /* aging threshold to evict idle 163 * HHs out of table T. This should 164 * be large enough to avoid 165 * reordering during HH eviction. 166 * (default 1s) 167 */ 168 u32 hhf_non_hh_weight; /* WDRR weight for non-HHs 169 * (default 2, 170 * i.e., non-HH : HH = 2 : 1) 171 */ 172 }; 173 174 static u32 hhf_time_stamp(void) 175 { 176 return jiffies; 177 } 178 179 /* Looks up a heavy-hitter flow in a chaining list of table T. */ 180 static struct hh_flow_state *seek_list(const u32 hash, 181 struct list_head *head, 182 struct hhf_sched_data *q) 183 { 184 struct hh_flow_state *flow, *next; 185 u32 now = hhf_time_stamp(); 186 187 if (list_empty(head)) 188 return NULL; 189 190 list_for_each_entry_safe(flow, next, head, flowchain) { 191 u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; 192 193 if (hhf_time_before(prev, now)) { 194 /* Delete expired heavy-hitters, but preserve one entry 195 * to avoid kzalloc() when next time this slot is hit. 196 */ 197 if (list_is_last(&flow->flowchain, head)) 198 return NULL; 199 list_del(&flow->flowchain); 200 kfree(flow); 201 q->hh_flows_current_cnt--; 202 } else if (flow->hash_id == hash) { 203 return flow; 204 } 205 } 206 return NULL; 207 } 208 209 /* Returns a flow state entry for a new heavy-hitter. Either reuses an expired 210 * entry or dynamically alloc a new entry. 211 */ 212 static struct hh_flow_state *alloc_new_hh(struct list_head *head, 213 struct hhf_sched_data *q) 214 { 215 struct hh_flow_state *flow; 216 u32 now = hhf_time_stamp(); 217 218 if (!list_empty(head)) { 219 /* Find an expired heavy-hitter flow entry. */ 220 list_for_each_entry(flow, head, flowchain) { 221 u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; 222 223 if (hhf_time_before(prev, now)) 224 return flow; 225 } 226 } 227 228 if (q->hh_flows_current_cnt >= q->hh_flows_limit) { 229 q->hh_flows_overlimit++; 230 return NULL; 231 } 232 /* Create new entry. */ 233 flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC); 234 if (!flow) 235 return NULL; 236 237 q->hh_flows_current_cnt++; 238 INIT_LIST_HEAD(&flow->flowchain); 239 list_add_tail(&flow->flowchain, head); 240 241 return flow; 242 } 243 244 /* Assigns packets to WDRR buckets. Implements a multi-stage filter to 245 * classify heavy-hitters. 246 */ 247 static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch) 248 { 249 struct hhf_sched_data *q = qdisc_priv(sch); 250 u32 tmp_hash, hash; 251 u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos; 252 struct hh_flow_state *flow; 253 u32 pkt_len, min_hhf_val; 254 int i; 255 u32 prev; 256 u32 now = hhf_time_stamp(); 257 258 /* Reset the HHF counter arrays if this is the right time. */ 259 prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout; 260 if (hhf_time_before(prev, now)) { 261 for (i = 0; i < HHF_ARRAYS_CNT; i++) 262 bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN); 263 q->hhf_arrays_reset_timestamp = now; 264 } 265 266 /* Get hashed flow-id of the skb. */ 267 hash = skb_get_hash_perturb(skb, &q->perturbation); 268 269 /* Check if this packet belongs to an already established HH flow. */ 270 flow_pos = hash & HHF_BIT_MASK; 271 flow = seek_list(hash, &q->hh_flows[flow_pos], q); 272 if (flow) { /* found its HH flow */ 273 flow->hit_timestamp = now; 274 return WDRR_BUCKET_FOR_HH; 275 } 276 277 /* Now pass the packet through the multi-stage filter. */ 278 tmp_hash = hash; 279 xorsum = 0; 280 for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) { 281 /* Split the skb_hash into three 10-bit chunks. */ 282 filter_pos[i] = tmp_hash & HHF_BIT_MASK; 283 xorsum ^= filter_pos[i]; 284 tmp_hash >>= HHF_BIT_MASK_LEN; 285 } 286 /* The last chunk is computed as XOR sum of other chunks. */ 287 filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash; 288 289 pkt_len = qdisc_pkt_len(skb); 290 min_hhf_val = ~0U; 291 for (i = 0; i < HHF_ARRAYS_CNT; i++) { 292 u32 val; 293 294 if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) { 295 q->hhf_arrays[i][filter_pos[i]] = 0; 296 __set_bit(filter_pos[i], q->hhf_valid_bits[i]); 297 } 298 299 val = q->hhf_arrays[i][filter_pos[i]] + pkt_len; 300 if (min_hhf_val > val) 301 min_hhf_val = val; 302 } 303 304 /* Found a new HH iff all counter values > HH admit threshold. */ 305 if (min_hhf_val > q->hhf_admit_bytes) { 306 /* Just captured a new heavy-hitter. */ 307 flow = alloc_new_hh(&q->hh_flows[flow_pos], q); 308 if (!flow) /* memory alloc problem */ 309 return WDRR_BUCKET_FOR_NON_HH; 310 flow->hash_id = hash; 311 flow->hit_timestamp = now; 312 q->hh_flows_total_cnt++; 313 314 /* By returning without updating counters in q->hhf_arrays, 315 * we implicitly implement "shielding" (see Optimization O1). 316 */ 317 return WDRR_BUCKET_FOR_HH; 318 } 319 320 /* Conservative update of HHF arrays (see Optimization O2). */ 321 for (i = 0; i < HHF_ARRAYS_CNT; i++) { 322 if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val) 323 q->hhf_arrays[i][filter_pos[i]] = min_hhf_val; 324 } 325 return WDRR_BUCKET_FOR_NON_HH; 326 } 327 328 /* Removes one skb from head of bucket. */ 329 static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket) 330 { 331 struct sk_buff *skb = bucket->head; 332 333 bucket->head = skb->next; 334 skb_mark_not_on_list(skb); 335 return skb; 336 } 337 338 /* Tail-adds skb to bucket. */ 339 static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb) 340 { 341 if (bucket->head == NULL) 342 bucket->head = skb; 343 else 344 bucket->tail->next = skb; 345 bucket->tail = skb; 346 skb->next = NULL; 347 } 348 349 static unsigned int hhf_drop(struct Qdisc *sch, struct sk_buff **to_free) 350 { 351 struct hhf_sched_data *q = qdisc_priv(sch); 352 struct wdrr_bucket *bucket; 353 354 /* Always try to drop from heavy-hitters first. */ 355 bucket = &q->buckets[WDRR_BUCKET_FOR_HH]; 356 if (!bucket->head) 357 bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH]; 358 359 if (bucket->head) { 360 struct sk_buff *skb = dequeue_head(bucket); 361 362 sch->q.qlen--; 363 qdisc_qstats_backlog_dec(sch, skb); 364 qdisc_drop(skb, sch, to_free); 365 } 366 367 /* Return id of the bucket from which the packet was dropped. */ 368 return bucket - q->buckets; 369 } 370 371 static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch, 372 struct sk_buff **to_free) 373 { 374 struct hhf_sched_data *q = qdisc_priv(sch); 375 enum wdrr_bucket_idx idx; 376 struct wdrr_bucket *bucket; 377 unsigned int prev_backlog; 378 379 idx = hhf_classify(skb, sch); 380 381 bucket = &q->buckets[idx]; 382 bucket_add(bucket, skb); 383 qdisc_qstats_backlog_inc(sch, skb); 384 385 if (list_empty(&bucket->bucketchain)) { 386 unsigned int weight; 387 388 /* The logic of new_buckets vs. old_buckets is the same as 389 * new_flows vs. old_flows in the implementation of fq_codel, 390 * i.e., short bursts of non-HHs should have strict priority. 391 */ 392 if (idx == WDRR_BUCKET_FOR_HH) { 393 /* Always move heavy-hitters to old bucket. */ 394 weight = 1; 395 list_add_tail(&bucket->bucketchain, &q->old_buckets); 396 } else { 397 weight = q->hhf_non_hh_weight; 398 list_add_tail(&bucket->bucketchain, &q->new_buckets); 399 } 400 bucket->deficit = weight * q->quantum; 401 } 402 if (++sch->q.qlen <= sch->limit) 403 return NET_XMIT_SUCCESS; 404 405 prev_backlog = sch->qstats.backlog; 406 q->drop_overlimit++; 407 /* Return Congestion Notification only if we dropped a packet from this 408 * bucket. 409 */ 410 if (hhf_drop(sch, to_free) == idx) 411 return NET_XMIT_CN; 412 413 /* As we dropped a packet, better let upper stack know this. */ 414 qdisc_tree_reduce_backlog(sch, 1, prev_backlog - sch->qstats.backlog); 415 return NET_XMIT_SUCCESS; 416 } 417 418 static struct sk_buff *hhf_dequeue(struct Qdisc *sch) 419 { 420 struct hhf_sched_data *q = qdisc_priv(sch); 421 struct sk_buff *skb = NULL; 422 struct wdrr_bucket *bucket; 423 struct list_head *head; 424 425 begin: 426 head = &q->new_buckets; 427 if (list_empty(head)) { 428 head = &q->old_buckets; 429 if (list_empty(head)) 430 return NULL; 431 } 432 bucket = list_first_entry(head, struct wdrr_bucket, bucketchain); 433 434 if (bucket->deficit <= 0) { 435 int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ? 436 1 : q->hhf_non_hh_weight; 437 438 bucket->deficit += weight * q->quantum; 439 list_move_tail(&bucket->bucketchain, &q->old_buckets); 440 goto begin; 441 } 442 443 if (bucket->head) { 444 skb = dequeue_head(bucket); 445 sch->q.qlen--; 446 qdisc_qstats_backlog_dec(sch, skb); 447 } 448 449 if (!skb) { 450 /* Force a pass through old_buckets to prevent starvation. */ 451 if ((head == &q->new_buckets) && !list_empty(&q->old_buckets)) 452 list_move_tail(&bucket->bucketchain, &q->old_buckets); 453 else 454 list_del_init(&bucket->bucketchain); 455 goto begin; 456 } 457 qdisc_bstats_update(sch, skb); 458 bucket->deficit -= qdisc_pkt_len(skb); 459 460 return skb; 461 } 462 463 static void hhf_reset(struct Qdisc *sch) 464 { 465 struct sk_buff *skb; 466 467 while ((skb = hhf_dequeue(sch)) != NULL) 468 rtnl_kfree_skbs(skb, skb); 469 } 470 471 static void hhf_destroy(struct Qdisc *sch) 472 { 473 int i; 474 struct hhf_sched_data *q = qdisc_priv(sch); 475 476 for (i = 0; i < HHF_ARRAYS_CNT; i++) { 477 kvfree(q->hhf_arrays[i]); 478 kvfree(q->hhf_valid_bits[i]); 479 } 480 481 if (!q->hh_flows) 482 return; 483 484 for (i = 0; i < HH_FLOWS_CNT; i++) { 485 struct hh_flow_state *flow, *next; 486 struct list_head *head = &q->hh_flows[i]; 487 488 if (list_empty(head)) 489 continue; 490 list_for_each_entry_safe(flow, next, head, flowchain) { 491 list_del(&flow->flowchain); 492 kfree(flow); 493 } 494 } 495 kvfree(q->hh_flows); 496 } 497 498 static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = { 499 [TCA_HHF_BACKLOG_LIMIT] = { .type = NLA_U32 }, 500 [TCA_HHF_QUANTUM] = { .type = NLA_U32 }, 501 [TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 }, 502 [TCA_HHF_RESET_TIMEOUT] = { .type = NLA_U32 }, 503 [TCA_HHF_ADMIT_BYTES] = { .type = NLA_U32 }, 504 [TCA_HHF_EVICT_TIMEOUT] = { .type = NLA_U32 }, 505 [TCA_HHF_NON_HH_WEIGHT] = { .type = NLA_U32 }, 506 }; 507 508 static int hhf_change(struct Qdisc *sch, struct nlattr *opt, 509 struct netlink_ext_ack *extack) 510 { 511 struct hhf_sched_data *q = qdisc_priv(sch); 512 struct nlattr *tb[TCA_HHF_MAX + 1]; 513 unsigned int qlen, prev_backlog; 514 int err; 515 u64 non_hh_quantum; 516 u32 new_quantum = q->quantum; 517 u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight; 518 519 if (!opt) 520 return -EINVAL; 521 522 err = nla_parse_nested_deprecated(tb, TCA_HHF_MAX, opt, hhf_policy, 523 NULL); 524 if (err < 0) 525 return err; 526 527 if (tb[TCA_HHF_QUANTUM]) 528 new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]); 529 530 if (tb[TCA_HHF_NON_HH_WEIGHT]) 531 new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]); 532 533 non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight; 534 if (non_hh_quantum == 0 || non_hh_quantum > INT_MAX) 535 return -EINVAL; 536 537 sch_tree_lock(sch); 538 539 if (tb[TCA_HHF_BACKLOG_LIMIT]) 540 sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]); 541 542 q->quantum = new_quantum; 543 q->hhf_non_hh_weight = new_hhf_non_hh_weight; 544 545 if (tb[TCA_HHF_HH_FLOWS_LIMIT]) 546 q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]); 547 548 if (tb[TCA_HHF_RESET_TIMEOUT]) { 549 u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]); 550 551 q->hhf_reset_timeout = usecs_to_jiffies(us); 552 } 553 554 if (tb[TCA_HHF_ADMIT_BYTES]) 555 q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]); 556 557 if (tb[TCA_HHF_EVICT_TIMEOUT]) { 558 u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]); 559 560 q->hhf_evict_timeout = usecs_to_jiffies(us); 561 } 562 563 qlen = sch->q.qlen; 564 prev_backlog = sch->qstats.backlog; 565 while (sch->q.qlen > sch->limit) { 566 struct sk_buff *skb = hhf_dequeue(sch); 567 568 rtnl_kfree_skbs(skb, skb); 569 } 570 qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, 571 prev_backlog - sch->qstats.backlog); 572 573 sch_tree_unlock(sch); 574 return 0; 575 } 576 577 static int hhf_init(struct Qdisc *sch, struct nlattr *opt, 578 struct netlink_ext_ack *extack) 579 { 580 struct hhf_sched_data *q = qdisc_priv(sch); 581 int i; 582 583 sch->limit = 1000; 584 q->quantum = psched_mtu(qdisc_dev(sch)); 585 get_random_bytes(&q->perturbation, sizeof(q->perturbation)); 586 INIT_LIST_HEAD(&q->new_buckets); 587 INIT_LIST_HEAD(&q->old_buckets); 588 589 /* Configurable HHF parameters */ 590 q->hhf_reset_timeout = HZ / 25; /* 40 ms */ 591 q->hhf_admit_bytes = 131072; /* 128 KB */ 592 q->hhf_evict_timeout = HZ; /* 1 sec */ 593 q->hhf_non_hh_weight = 2; 594 595 if (opt) { 596 int err = hhf_change(sch, opt, extack); 597 598 if (err) 599 return err; 600 } 601 602 if (!q->hh_flows) { 603 /* Initialize heavy-hitter flow table. */ 604 q->hh_flows = kvcalloc(HH_FLOWS_CNT, sizeof(struct list_head), 605 GFP_KERNEL); 606 if (!q->hh_flows) 607 return -ENOMEM; 608 for (i = 0; i < HH_FLOWS_CNT; i++) 609 INIT_LIST_HEAD(&q->hh_flows[i]); 610 611 /* Cap max active HHs at twice len of hh_flows table. */ 612 q->hh_flows_limit = 2 * HH_FLOWS_CNT; 613 q->hh_flows_overlimit = 0; 614 q->hh_flows_total_cnt = 0; 615 q->hh_flows_current_cnt = 0; 616 617 /* Initialize heavy-hitter filter arrays. */ 618 for (i = 0; i < HHF_ARRAYS_CNT; i++) { 619 q->hhf_arrays[i] = kvcalloc(HHF_ARRAYS_LEN, 620 sizeof(u32), 621 GFP_KERNEL); 622 if (!q->hhf_arrays[i]) { 623 /* Note: hhf_destroy() will be called 624 * by our caller. 625 */ 626 return -ENOMEM; 627 } 628 } 629 q->hhf_arrays_reset_timestamp = hhf_time_stamp(); 630 631 /* Initialize valid bits of heavy-hitter filter arrays. */ 632 for (i = 0; i < HHF_ARRAYS_CNT; i++) { 633 q->hhf_valid_bits[i] = kvzalloc(HHF_ARRAYS_LEN / 634 BITS_PER_BYTE, GFP_KERNEL); 635 if (!q->hhf_valid_bits[i]) { 636 /* Note: hhf_destroy() will be called 637 * by our caller. 638 */ 639 return -ENOMEM; 640 } 641 } 642 643 /* Initialize Weighted DRR buckets. */ 644 for (i = 0; i < WDRR_BUCKET_CNT; i++) { 645 struct wdrr_bucket *bucket = q->buckets + i; 646 647 INIT_LIST_HEAD(&bucket->bucketchain); 648 } 649 } 650 651 return 0; 652 } 653 654 static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb) 655 { 656 struct hhf_sched_data *q = qdisc_priv(sch); 657 struct nlattr *opts; 658 659 opts = nla_nest_start_noflag(skb, TCA_OPTIONS); 660 if (opts == NULL) 661 goto nla_put_failure; 662 663 if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) || 664 nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) || 665 nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) || 666 nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT, 667 jiffies_to_usecs(q->hhf_reset_timeout)) || 668 nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) || 669 nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT, 670 jiffies_to_usecs(q->hhf_evict_timeout)) || 671 nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight)) 672 goto nla_put_failure; 673 674 return nla_nest_end(skb, opts); 675 676 nla_put_failure: 677 return -1; 678 } 679 680 static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 681 { 682 struct hhf_sched_data *q = qdisc_priv(sch); 683 struct tc_hhf_xstats st = { 684 .drop_overlimit = q->drop_overlimit, 685 .hh_overlimit = q->hh_flows_overlimit, 686 .hh_tot_count = q->hh_flows_total_cnt, 687 .hh_cur_count = q->hh_flows_current_cnt, 688 }; 689 690 return gnet_stats_copy_app(d, &st, sizeof(st)); 691 } 692 693 static struct Qdisc_ops hhf_qdisc_ops __read_mostly = { 694 .id = "hhf", 695 .priv_size = sizeof(struct hhf_sched_data), 696 697 .enqueue = hhf_enqueue, 698 .dequeue = hhf_dequeue, 699 .peek = qdisc_peek_dequeued, 700 .init = hhf_init, 701 .reset = hhf_reset, 702 .destroy = hhf_destroy, 703 .change = hhf_change, 704 .dump = hhf_dump, 705 .dump_stats = hhf_dump_stats, 706 .owner = THIS_MODULE, 707 }; 708 709 static int __init hhf_module_init(void) 710 { 711 return register_qdisc(&hhf_qdisc_ops); 712 } 713 714 static void __exit hhf_module_exit(void) 715 { 716 unregister_qdisc(&hhf_qdisc_ops); 717 } 718 719 module_init(hhf_module_init) 720 module_exit(hhf_module_exit) 721 MODULE_AUTHOR("Terry Lam"); 722 MODULE_AUTHOR("Nandita Dukkipati"); 723 MODULE_LICENSE("GPL"); 724 MODULE_DESCRIPTION("Heavy-Hitter Filter (HHF)"); 725