xref: /openbmc/linux/net/sched/sch_hhf.c (revision d28bcd53)
1 /* net/sched/sch_hhf.c		Heavy-Hitter Filter (HHF)
2  *
3  * Copyright (C) 2013 Terry Lam <vtlam@google.com>
4  * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com>
5  */
6 
7 #include <linux/jhash.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/skbuff.h>
11 #include <linux/vmalloc.h>
12 #include <net/pkt_sched.h>
13 #include <net/sock.h>
14 
15 /*	Heavy-Hitter Filter (HHF)
16  *
17  * Principles :
18  * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter
19  * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified
20  * as heavy-hitter, it is immediately switched to the heavy-hitter bucket.
21  * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler,
22  * in which the heavy-hitter bucket is served with less weight.
23  * In other words, non-heavy-hitters (e.g., short bursts of critical traffic)
24  * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have
25  * higher share of bandwidth.
26  *
27  * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the
28  * following paper:
29  * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and
30  * Accounting", in ACM SIGCOMM, 2002.
31  *
32  * Conceptually, a multi-stage filter comprises k independent hash functions
33  * and k counter arrays. Packets are indexed into k counter arrays by k hash
34  * functions, respectively. The counters are then increased by the packet sizes.
35  * Therefore,
36  *    - For a heavy-hitter flow: *all* of its k array counters must be large.
37  *    - For a non-heavy-hitter flow: some of its k array counters can be large
38  *      due to hash collision with other small flows; however, with high
39  *      probability, not *all* k counters are large.
40  *
41  * By the design of the multi-stage filter algorithm, the false negative rate
42  * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is
43  * susceptible to false positives (non-heavy-hitters mistakenly classified as
44  * heavy-hitters).
45  * Therefore, we also implement the following optimizations to reduce false
46  * positives by avoiding unnecessary increment of the counter values:
47  *    - Optimization O1: once a heavy-hitter is identified, its bytes are not
48  *        accounted in the array counters. This technique is called "shielding"
49  *        in Section 3.3.1 of [EV02].
50  *    - Optimization O2: conservative update of counters
51  *                       (Section 3.3.2 of [EV02]),
52  *        New counter value = max {old counter value,
53  *                                 smallest counter value + packet bytes}
54  *
55  * Finally, we refresh the counters periodically since otherwise the counter
56  * values will keep accumulating.
57  *
58  * Once a flow is classified as heavy-hitter, we also save its per-flow state
59  * in an exact-matching flow table so that its subsequent packets can be
60  * dispatched to the heavy-hitter bucket accordingly.
61  *
62  *
63  * At a high level, this qdisc works as follows:
64  * Given a packet p:
65  *   - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching
66  *     heavy-hitter flow table, denoted table T, then send p to the heavy-hitter
67  *     bucket.
68  *   - Otherwise, forward p to the multi-stage filter, denoted filter F
69  *        + If F decides that p belongs to a non-heavy-hitter flow, then send p
70  *          to the non-heavy-hitter bucket.
71  *        + Otherwise, if F decides that p belongs to a new heavy-hitter flow,
72  *          then set up a new flow entry for the flow-id of p in the table T and
73  *          send p to the heavy-hitter bucket.
74  *
75  * In this implementation:
76  *   - T is a fixed-size hash-table with 1024 entries. Hash collision is
77  *     resolved by linked-list chaining.
78  *   - F has four counter arrays, each array containing 1024 32-bit counters.
79  *     That means 4 * 1024 * 32 bits = 16KB of memory.
80  *   - Since each array in F contains 1024 counters, 10 bits are sufficient to
81  *     index into each array.
82  *     Hence, instead of having four hash functions, we chop the 32-bit
83  *     skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is
84  *     computed as XOR sum of those three chunks.
85  *   - We need to clear the counter arrays periodically; however, directly
86  *     memsetting 16KB of memory can lead to cache eviction and unwanted delay.
87  *     So by representing each counter by a valid bit, we only need to reset
88  *     4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory.
89  *   - The Deficit Round Robin engine is taken from fq_codel implementation
90  *     (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to
91  *     fq_codel_flow in fq_codel implementation.
92  *
93  */
94 
95 /* Non-configurable parameters */
96 #define HH_FLOWS_CNT	 1024  /* number of entries in exact-matching table T */
97 #define HHF_ARRAYS_CNT	 4     /* number of arrays in multi-stage filter F */
98 #define HHF_ARRAYS_LEN	 1024  /* number of counters in each array of F */
99 #define HHF_BIT_MASK_LEN 10    /* masking 10 bits */
100 #define HHF_BIT_MASK	 0x3FF /* bitmask of 10 bits */
101 
102 #define WDRR_BUCKET_CNT  2     /* two buckets for Weighted DRR */
103 enum wdrr_bucket_idx {
104 	WDRR_BUCKET_FOR_HH	= 0, /* bucket id for heavy-hitters */
105 	WDRR_BUCKET_FOR_NON_HH	= 1  /* bucket id for non-heavy-hitters */
106 };
107 
108 #define hhf_time_before(a, b)	\
109 	(typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0))
110 
111 /* Heavy-hitter per-flow state */
112 struct hh_flow_state {
113 	u32		 hash_id;	/* hash of flow-id (e.g. TCP 5-tuple) */
114 	u32		 hit_timestamp;	/* last time heavy-hitter was seen */
115 	struct list_head flowchain;	/* chaining under hash collision */
116 };
117 
118 /* Weighted Deficit Round Robin (WDRR) scheduler */
119 struct wdrr_bucket {
120 	struct sk_buff	  *head;
121 	struct sk_buff	  *tail;
122 	struct list_head  bucketchain;
123 	int		  deficit;
124 };
125 
126 struct hhf_sched_data {
127 	struct wdrr_bucket buckets[WDRR_BUCKET_CNT];
128 	u32		   perturbation;   /* hash perturbation */
129 	u32		   quantum;        /* psched_mtu(qdisc_dev(sch)); */
130 	u32		   drop_overlimit; /* number of times max qdisc packet
131 					    * limit was hit
132 					    */
133 	struct list_head   *hh_flows;       /* table T (currently active HHs) */
134 	u32		   hh_flows_limit;            /* max active HH allocs */
135 	u32		   hh_flows_overlimit; /* num of disallowed HH allocs */
136 	u32		   hh_flows_total_cnt;          /* total admitted HHs */
137 	u32		   hh_flows_current_cnt;        /* total current HHs  */
138 	u32		   *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */
139 	u32		   hhf_arrays_reset_timestamp;  /* last time hhf_arrays
140 							 * was reset
141 							 */
142 	unsigned long	   *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits
143 							     * of hhf_arrays
144 							     */
145 	/* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */
146 	struct list_head   new_buckets; /* list of new buckets */
147 	struct list_head   old_buckets; /* list of old buckets */
148 
149 	/* Configurable HHF parameters */
150 	u32		   hhf_reset_timeout; /* interval to reset counter
151 					       * arrays in filter F
152 					       * (default 40ms)
153 					       */
154 	u32		   hhf_admit_bytes;   /* counter thresh to classify as
155 					       * HH (default 128KB).
156 					       * With these default values,
157 					       * 128KB / 40ms = 25 Mbps
158 					       * i.e., we expect to capture HHs
159 					       * sending > 25 Mbps.
160 					       */
161 	u32		   hhf_evict_timeout; /* aging threshold to evict idle
162 					       * HHs out of table T. This should
163 					       * be large enough to avoid
164 					       * reordering during HH eviction.
165 					       * (default 1s)
166 					       */
167 	u32		   hhf_non_hh_weight; /* WDRR weight for non-HHs
168 					       * (default 2,
169 					       *  i.e., non-HH : HH = 2 : 1)
170 					       */
171 };
172 
173 static u32 hhf_time_stamp(void)
174 {
175 	return jiffies;
176 }
177 
178 /* Looks up a heavy-hitter flow in a chaining list of table T. */
179 static struct hh_flow_state *seek_list(const u32 hash,
180 				       struct list_head *head,
181 				       struct hhf_sched_data *q)
182 {
183 	struct hh_flow_state *flow, *next;
184 	u32 now = hhf_time_stamp();
185 
186 	if (list_empty(head))
187 		return NULL;
188 
189 	list_for_each_entry_safe(flow, next, head, flowchain) {
190 		u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
191 
192 		if (hhf_time_before(prev, now)) {
193 			/* Delete expired heavy-hitters, but preserve one entry
194 			 * to avoid kzalloc() when next time this slot is hit.
195 			 */
196 			if (list_is_last(&flow->flowchain, head))
197 				return NULL;
198 			list_del(&flow->flowchain);
199 			kfree(flow);
200 			q->hh_flows_current_cnt--;
201 		} else if (flow->hash_id == hash) {
202 			return flow;
203 		}
204 	}
205 	return NULL;
206 }
207 
208 /* Returns a flow state entry for a new heavy-hitter.  Either reuses an expired
209  * entry or dynamically alloc a new entry.
210  */
211 static struct hh_flow_state *alloc_new_hh(struct list_head *head,
212 					  struct hhf_sched_data *q)
213 {
214 	struct hh_flow_state *flow;
215 	u32 now = hhf_time_stamp();
216 
217 	if (!list_empty(head)) {
218 		/* Find an expired heavy-hitter flow entry. */
219 		list_for_each_entry(flow, head, flowchain) {
220 			u32 prev = flow->hit_timestamp + q->hhf_evict_timeout;
221 
222 			if (hhf_time_before(prev, now))
223 				return flow;
224 		}
225 	}
226 
227 	if (q->hh_flows_current_cnt >= q->hh_flows_limit) {
228 		q->hh_flows_overlimit++;
229 		return NULL;
230 	}
231 	/* Create new entry. */
232 	flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC);
233 	if (!flow)
234 		return NULL;
235 
236 	q->hh_flows_current_cnt++;
237 	INIT_LIST_HEAD(&flow->flowchain);
238 	list_add_tail(&flow->flowchain, head);
239 
240 	return flow;
241 }
242 
243 /* Assigns packets to WDRR buckets.  Implements a multi-stage filter to
244  * classify heavy-hitters.
245  */
246 static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch)
247 {
248 	struct hhf_sched_data *q = qdisc_priv(sch);
249 	u32 tmp_hash, hash;
250 	u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos;
251 	struct hh_flow_state *flow;
252 	u32 pkt_len, min_hhf_val;
253 	int i;
254 	u32 prev;
255 	u32 now = hhf_time_stamp();
256 
257 	/* Reset the HHF counter arrays if this is the right time. */
258 	prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout;
259 	if (hhf_time_before(prev, now)) {
260 		for (i = 0; i < HHF_ARRAYS_CNT; i++)
261 			bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN);
262 		q->hhf_arrays_reset_timestamp = now;
263 	}
264 
265 	/* Get hashed flow-id of the skb. */
266 	hash = skb_get_hash_perturb(skb, q->perturbation);
267 
268 	/* Check if this packet belongs to an already established HH flow. */
269 	flow_pos = hash & HHF_BIT_MASK;
270 	flow = seek_list(hash, &q->hh_flows[flow_pos], q);
271 	if (flow) { /* found its HH flow */
272 		flow->hit_timestamp = now;
273 		return WDRR_BUCKET_FOR_HH;
274 	}
275 
276 	/* Now pass the packet through the multi-stage filter. */
277 	tmp_hash = hash;
278 	xorsum = 0;
279 	for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) {
280 		/* Split the skb_hash into three 10-bit chunks. */
281 		filter_pos[i] = tmp_hash & HHF_BIT_MASK;
282 		xorsum ^= filter_pos[i];
283 		tmp_hash >>= HHF_BIT_MASK_LEN;
284 	}
285 	/* The last chunk is computed as XOR sum of other chunks. */
286 	filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash;
287 
288 	pkt_len = qdisc_pkt_len(skb);
289 	min_hhf_val = ~0U;
290 	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
291 		u32 val;
292 
293 		if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) {
294 			q->hhf_arrays[i][filter_pos[i]] = 0;
295 			__set_bit(filter_pos[i], q->hhf_valid_bits[i]);
296 		}
297 
298 		val = q->hhf_arrays[i][filter_pos[i]] + pkt_len;
299 		if (min_hhf_val > val)
300 			min_hhf_val = val;
301 	}
302 
303 	/* Found a new HH iff all counter values > HH admit threshold. */
304 	if (min_hhf_val > q->hhf_admit_bytes) {
305 		/* Just captured a new heavy-hitter. */
306 		flow = alloc_new_hh(&q->hh_flows[flow_pos], q);
307 		if (!flow) /* memory alloc problem */
308 			return WDRR_BUCKET_FOR_NON_HH;
309 		flow->hash_id = hash;
310 		flow->hit_timestamp = now;
311 		q->hh_flows_total_cnt++;
312 
313 		/* By returning without updating counters in q->hhf_arrays,
314 		 * we implicitly implement "shielding" (see Optimization O1).
315 		 */
316 		return WDRR_BUCKET_FOR_HH;
317 	}
318 
319 	/* Conservative update of HHF arrays (see Optimization O2). */
320 	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
321 		if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val)
322 			q->hhf_arrays[i][filter_pos[i]] = min_hhf_val;
323 	}
324 	return WDRR_BUCKET_FOR_NON_HH;
325 }
326 
327 /* Removes one skb from head of bucket. */
328 static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket)
329 {
330 	struct sk_buff *skb = bucket->head;
331 
332 	bucket->head = skb->next;
333 	skb->next = NULL;
334 	return skb;
335 }
336 
337 /* Tail-adds skb to bucket. */
338 static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb)
339 {
340 	if (bucket->head == NULL)
341 		bucket->head = skb;
342 	else
343 		bucket->tail->next = skb;
344 	bucket->tail = skb;
345 	skb->next = NULL;
346 }
347 
348 static unsigned int hhf_drop(struct Qdisc *sch, struct sk_buff **to_free)
349 {
350 	struct hhf_sched_data *q = qdisc_priv(sch);
351 	struct wdrr_bucket *bucket;
352 
353 	/* Always try to drop from heavy-hitters first. */
354 	bucket = &q->buckets[WDRR_BUCKET_FOR_HH];
355 	if (!bucket->head)
356 		bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH];
357 
358 	if (bucket->head) {
359 		struct sk_buff *skb = dequeue_head(bucket);
360 
361 		sch->q.qlen--;
362 		qdisc_qstats_backlog_dec(sch, skb);
363 		qdisc_drop(skb, sch, to_free);
364 	}
365 
366 	/* Return id of the bucket from which the packet was dropped. */
367 	return bucket - q->buckets;
368 }
369 
370 static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch,
371 		       struct sk_buff **to_free)
372 {
373 	struct hhf_sched_data *q = qdisc_priv(sch);
374 	enum wdrr_bucket_idx idx;
375 	struct wdrr_bucket *bucket;
376 	unsigned int prev_backlog;
377 
378 	idx = hhf_classify(skb, sch);
379 
380 	bucket = &q->buckets[idx];
381 	bucket_add(bucket, skb);
382 	qdisc_qstats_backlog_inc(sch, skb);
383 
384 	if (list_empty(&bucket->bucketchain)) {
385 		unsigned int weight;
386 
387 		/* The logic of new_buckets vs. old_buckets is the same as
388 		 * new_flows vs. old_flows in the implementation of fq_codel,
389 		 * i.e., short bursts of non-HHs should have strict priority.
390 		 */
391 		if (idx == WDRR_BUCKET_FOR_HH) {
392 			/* Always move heavy-hitters to old bucket. */
393 			weight = 1;
394 			list_add_tail(&bucket->bucketchain, &q->old_buckets);
395 		} else {
396 			weight = q->hhf_non_hh_weight;
397 			list_add_tail(&bucket->bucketchain, &q->new_buckets);
398 		}
399 		bucket->deficit = weight * q->quantum;
400 	}
401 	if (++sch->q.qlen <= sch->limit)
402 		return NET_XMIT_SUCCESS;
403 
404 	prev_backlog = sch->qstats.backlog;
405 	q->drop_overlimit++;
406 	/* Return Congestion Notification only if we dropped a packet from this
407 	 * bucket.
408 	 */
409 	if (hhf_drop(sch, to_free) == idx)
410 		return NET_XMIT_CN;
411 
412 	/* As we dropped a packet, better let upper stack know this. */
413 	qdisc_tree_reduce_backlog(sch, 1, prev_backlog - sch->qstats.backlog);
414 	return NET_XMIT_SUCCESS;
415 }
416 
417 static struct sk_buff *hhf_dequeue(struct Qdisc *sch)
418 {
419 	struct hhf_sched_data *q = qdisc_priv(sch);
420 	struct sk_buff *skb = NULL;
421 	struct wdrr_bucket *bucket;
422 	struct list_head *head;
423 
424 begin:
425 	head = &q->new_buckets;
426 	if (list_empty(head)) {
427 		head = &q->old_buckets;
428 		if (list_empty(head))
429 			return NULL;
430 	}
431 	bucket = list_first_entry(head, struct wdrr_bucket, bucketchain);
432 
433 	if (bucket->deficit <= 0) {
434 		int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ?
435 			      1 : q->hhf_non_hh_weight;
436 
437 		bucket->deficit += weight * q->quantum;
438 		list_move_tail(&bucket->bucketchain, &q->old_buckets);
439 		goto begin;
440 	}
441 
442 	if (bucket->head) {
443 		skb = dequeue_head(bucket);
444 		sch->q.qlen--;
445 		qdisc_qstats_backlog_dec(sch, skb);
446 	}
447 
448 	if (!skb) {
449 		/* Force a pass through old_buckets to prevent starvation. */
450 		if ((head == &q->new_buckets) && !list_empty(&q->old_buckets))
451 			list_move_tail(&bucket->bucketchain, &q->old_buckets);
452 		else
453 			list_del_init(&bucket->bucketchain);
454 		goto begin;
455 	}
456 	qdisc_bstats_update(sch, skb);
457 	bucket->deficit -= qdisc_pkt_len(skb);
458 
459 	return skb;
460 }
461 
462 static void hhf_reset(struct Qdisc *sch)
463 {
464 	struct sk_buff *skb;
465 
466 	while ((skb = hhf_dequeue(sch)) != NULL)
467 		rtnl_kfree_skbs(skb, skb);
468 }
469 
470 static void hhf_destroy(struct Qdisc *sch)
471 {
472 	int i;
473 	struct hhf_sched_data *q = qdisc_priv(sch);
474 
475 	for (i = 0; i < HHF_ARRAYS_CNT; i++) {
476 		kvfree(q->hhf_arrays[i]);
477 		kvfree(q->hhf_valid_bits[i]);
478 	}
479 
480 	for (i = 0; i < HH_FLOWS_CNT; i++) {
481 		struct hh_flow_state *flow, *next;
482 		struct list_head *head = &q->hh_flows[i];
483 
484 		if (list_empty(head))
485 			continue;
486 		list_for_each_entry_safe(flow, next, head, flowchain) {
487 			list_del(&flow->flowchain);
488 			kfree(flow);
489 		}
490 	}
491 	kvfree(q->hh_flows);
492 }
493 
494 static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = {
495 	[TCA_HHF_BACKLOG_LIMIT]	 = { .type = NLA_U32 },
496 	[TCA_HHF_QUANTUM]	 = { .type = NLA_U32 },
497 	[TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 },
498 	[TCA_HHF_RESET_TIMEOUT]	 = { .type = NLA_U32 },
499 	[TCA_HHF_ADMIT_BYTES]	 = { .type = NLA_U32 },
500 	[TCA_HHF_EVICT_TIMEOUT]	 = { .type = NLA_U32 },
501 	[TCA_HHF_NON_HH_WEIGHT]	 = { .type = NLA_U32 },
502 };
503 
504 static int hhf_change(struct Qdisc *sch, struct nlattr *opt)
505 {
506 	struct hhf_sched_data *q = qdisc_priv(sch);
507 	struct nlattr *tb[TCA_HHF_MAX + 1];
508 	unsigned int qlen, prev_backlog;
509 	int err;
510 	u64 non_hh_quantum;
511 	u32 new_quantum = q->quantum;
512 	u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight;
513 
514 	if (!opt)
515 		return -EINVAL;
516 
517 	err = nla_parse_nested(tb, TCA_HHF_MAX, opt, hhf_policy, NULL);
518 	if (err < 0)
519 		return err;
520 
521 	if (tb[TCA_HHF_QUANTUM])
522 		new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]);
523 
524 	if (tb[TCA_HHF_NON_HH_WEIGHT])
525 		new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]);
526 
527 	non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight;
528 	if (non_hh_quantum > INT_MAX)
529 		return -EINVAL;
530 
531 	sch_tree_lock(sch);
532 
533 	if (tb[TCA_HHF_BACKLOG_LIMIT])
534 		sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]);
535 
536 	q->quantum = new_quantum;
537 	q->hhf_non_hh_weight = new_hhf_non_hh_weight;
538 
539 	if (tb[TCA_HHF_HH_FLOWS_LIMIT])
540 		q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]);
541 
542 	if (tb[TCA_HHF_RESET_TIMEOUT]) {
543 		u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]);
544 
545 		q->hhf_reset_timeout = usecs_to_jiffies(us);
546 	}
547 
548 	if (tb[TCA_HHF_ADMIT_BYTES])
549 		q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]);
550 
551 	if (tb[TCA_HHF_EVICT_TIMEOUT]) {
552 		u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]);
553 
554 		q->hhf_evict_timeout = usecs_to_jiffies(us);
555 	}
556 
557 	qlen = sch->q.qlen;
558 	prev_backlog = sch->qstats.backlog;
559 	while (sch->q.qlen > sch->limit) {
560 		struct sk_buff *skb = hhf_dequeue(sch);
561 
562 		rtnl_kfree_skbs(skb, skb);
563 	}
564 	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen,
565 				  prev_backlog - sch->qstats.backlog);
566 
567 	sch_tree_unlock(sch);
568 	return 0;
569 }
570 
571 static int hhf_init(struct Qdisc *sch, struct nlattr *opt)
572 {
573 	struct hhf_sched_data *q = qdisc_priv(sch);
574 	int i;
575 
576 	sch->limit = 1000;
577 	q->quantum = psched_mtu(qdisc_dev(sch));
578 	q->perturbation = prandom_u32();
579 	INIT_LIST_HEAD(&q->new_buckets);
580 	INIT_LIST_HEAD(&q->old_buckets);
581 
582 	/* Configurable HHF parameters */
583 	q->hhf_reset_timeout = HZ / 25; /* 40  ms */
584 	q->hhf_admit_bytes = 131072;    /* 128 KB */
585 	q->hhf_evict_timeout = HZ;      /* 1  sec */
586 	q->hhf_non_hh_weight = 2;
587 
588 	if (opt) {
589 		int err = hhf_change(sch, opt);
590 
591 		if (err)
592 			return err;
593 	}
594 
595 	if (!q->hh_flows) {
596 		/* Initialize heavy-hitter flow table. */
597 		q->hh_flows = kvzalloc(HH_FLOWS_CNT *
598 					 sizeof(struct list_head), GFP_KERNEL);
599 		if (!q->hh_flows)
600 			return -ENOMEM;
601 		for (i = 0; i < HH_FLOWS_CNT; i++)
602 			INIT_LIST_HEAD(&q->hh_flows[i]);
603 
604 		/* Cap max active HHs at twice len of hh_flows table. */
605 		q->hh_flows_limit = 2 * HH_FLOWS_CNT;
606 		q->hh_flows_overlimit = 0;
607 		q->hh_flows_total_cnt = 0;
608 		q->hh_flows_current_cnt = 0;
609 
610 		/* Initialize heavy-hitter filter arrays. */
611 		for (i = 0; i < HHF_ARRAYS_CNT; i++) {
612 			q->hhf_arrays[i] = kvzalloc(HHF_ARRAYS_LEN *
613 						      sizeof(u32), GFP_KERNEL);
614 			if (!q->hhf_arrays[i]) {
615 				/* Note: hhf_destroy() will be called
616 				 * by our caller.
617 				 */
618 				return -ENOMEM;
619 			}
620 		}
621 		q->hhf_arrays_reset_timestamp = hhf_time_stamp();
622 
623 		/* Initialize valid bits of heavy-hitter filter arrays. */
624 		for (i = 0; i < HHF_ARRAYS_CNT; i++) {
625 			q->hhf_valid_bits[i] = kvzalloc(HHF_ARRAYS_LEN /
626 							  BITS_PER_BYTE, GFP_KERNEL);
627 			if (!q->hhf_valid_bits[i]) {
628 				/* Note: hhf_destroy() will be called
629 				 * by our caller.
630 				 */
631 				return -ENOMEM;
632 			}
633 		}
634 
635 		/* Initialize Weighted DRR buckets. */
636 		for (i = 0; i < WDRR_BUCKET_CNT; i++) {
637 			struct wdrr_bucket *bucket = q->buckets + i;
638 
639 			INIT_LIST_HEAD(&bucket->bucketchain);
640 		}
641 	}
642 
643 	return 0;
644 }
645 
646 static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb)
647 {
648 	struct hhf_sched_data *q = qdisc_priv(sch);
649 	struct nlattr *opts;
650 
651 	opts = nla_nest_start(skb, TCA_OPTIONS);
652 	if (opts == NULL)
653 		goto nla_put_failure;
654 
655 	if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) ||
656 	    nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) ||
657 	    nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) ||
658 	    nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT,
659 			jiffies_to_usecs(q->hhf_reset_timeout)) ||
660 	    nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) ||
661 	    nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT,
662 			jiffies_to_usecs(q->hhf_evict_timeout)) ||
663 	    nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight))
664 		goto nla_put_failure;
665 
666 	return nla_nest_end(skb, opts);
667 
668 nla_put_failure:
669 	return -1;
670 }
671 
672 static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
673 {
674 	struct hhf_sched_data *q = qdisc_priv(sch);
675 	struct tc_hhf_xstats st = {
676 		.drop_overlimit = q->drop_overlimit,
677 		.hh_overlimit	= q->hh_flows_overlimit,
678 		.hh_tot_count	= q->hh_flows_total_cnt,
679 		.hh_cur_count	= q->hh_flows_current_cnt,
680 	};
681 
682 	return gnet_stats_copy_app(d, &st, sizeof(st));
683 }
684 
685 static struct Qdisc_ops hhf_qdisc_ops __read_mostly = {
686 	.id		=	"hhf",
687 	.priv_size	=	sizeof(struct hhf_sched_data),
688 
689 	.enqueue	=	hhf_enqueue,
690 	.dequeue	=	hhf_dequeue,
691 	.peek		=	qdisc_peek_dequeued,
692 	.init		=	hhf_init,
693 	.reset		=	hhf_reset,
694 	.destroy	=	hhf_destroy,
695 	.change		=	hhf_change,
696 	.dump		=	hhf_dump,
697 	.dump_stats	=	hhf_dump_stats,
698 	.owner		=	THIS_MODULE,
699 };
700 
701 static int __init hhf_module_init(void)
702 {
703 	return register_qdisc(&hhf_qdisc_ops);
704 }
705 
706 static void __exit hhf_module_exit(void)
707 {
708 	unregister_qdisc(&hhf_qdisc_ops);
709 }
710 
711 module_init(hhf_module_init)
712 module_exit(hhf_module_exit)
713 MODULE_AUTHOR("Terry Lam");
714 MODULE_AUTHOR("Nandita Dukkipati");
715 MODULE_LICENSE("GPL");
716