1 /* net/sched/sch_hhf.c Heavy-Hitter Filter (HHF) 2 * 3 * Copyright (C) 2013 Terry Lam <vtlam@google.com> 4 * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com> 5 */ 6 7 #include <linux/jhash.h> 8 #include <linux/jiffies.h> 9 #include <linux/module.h> 10 #include <linux/skbuff.h> 11 #include <linux/vmalloc.h> 12 #include <net/flow_keys.h> 13 #include <net/pkt_sched.h> 14 #include <net/sock.h> 15 16 /* Heavy-Hitter Filter (HHF) 17 * 18 * Principles : 19 * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter 20 * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified 21 * as heavy-hitter, it is immediately switched to the heavy-hitter bucket. 22 * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler, 23 * in which the heavy-hitter bucket is served with less weight. 24 * In other words, non-heavy-hitters (e.g., short bursts of critical traffic) 25 * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have 26 * higher share of bandwidth. 27 * 28 * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the 29 * following paper: 30 * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and 31 * Accounting", in ACM SIGCOMM, 2002. 32 * 33 * Conceptually, a multi-stage filter comprises k independent hash functions 34 * and k counter arrays. Packets are indexed into k counter arrays by k hash 35 * functions, respectively. The counters are then increased by the packet sizes. 36 * Therefore, 37 * - For a heavy-hitter flow: *all* of its k array counters must be large. 38 * - For a non-heavy-hitter flow: some of its k array counters can be large 39 * due to hash collision with other small flows; however, with high 40 * probability, not *all* k counters are large. 41 * 42 * By the design of the multi-stage filter algorithm, the false negative rate 43 * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is 44 * susceptible to false positives (non-heavy-hitters mistakenly classified as 45 * heavy-hitters). 46 * Therefore, we also implement the following optimizations to reduce false 47 * positives by avoiding unnecessary increment of the counter values: 48 * - Optimization O1: once a heavy-hitter is identified, its bytes are not 49 * accounted in the array counters. This technique is called "shielding" 50 * in Section 3.3.1 of [EV02]. 51 * - Optimization O2: conservative update of counters 52 * (Section 3.3.2 of [EV02]), 53 * New counter value = max {old counter value, 54 * smallest counter value + packet bytes} 55 * 56 * Finally, we refresh the counters periodically since otherwise the counter 57 * values will keep accumulating. 58 * 59 * Once a flow is classified as heavy-hitter, we also save its per-flow state 60 * in an exact-matching flow table so that its subsequent packets can be 61 * dispatched to the heavy-hitter bucket accordingly. 62 * 63 * 64 * At a high level, this qdisc works as follows: 65 * Given a packet p: 66 * - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching 67 * heavy-hitter flow table, denoted table T, then send p to the heavy-hitter 68 * bucket. 69 * - Otherwise, forward p to the multi-stage filter, denoted filter F 70 * + If F decides that p belongs to a non-heavy-hitter flow, then send p 71 * to the non-heavy-hitter bucket. 72 * + Otherwise, if F decides that p belongs to a new heavy-hitter flow, 73 * then set up a new flow entry for the flow-id of p in the table T and 74 * send p to the heavy-hitter bucket. 75 * 76 * In this implementation: 77 * - T is a fixed-size hash-table with 1024 entries. Hash collision is 78 * resolved by linked-list chaining. 79 * - F has four counter arrays, each array containing 1024 32-bit counters. 80 * That means 4 * 1024 * 32 bits = 16KB of memory. 81 * - Since each array in F contains 1024 counters, 10 bits are sufficient to 82 * index into each array. 83 * Hence, instead of having four hash functions, we chop the 32-bit 84 * skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is 85 * computed as XOR sum of those three chunks. 86 * - We need to clear the counter arrays periodically; however, directly 87 * memsetting 16KB of memory can lead to cache eviction and unwanted delay. 88 * So by representing each counter by a valid bit, we only need to reset 89 * 4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory. 90 * - The Deficit Round Robin engine is taken from fq_codel implementation 91 * (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to 92 * fq_codel_flow in fq_codel implementation. 93 * 94 */ 95 96 /* Non-configurable parameters */ 97 #define HH_FLOWS_CNT 1024 /* number of entries in exact-matching table T */ 98 #define HHF_ARRAYS_CNT 4 /* number of arrays in multi-stage filter F */ 99 #define HHF_ARRAYS_LEN 1024 /* number of counters in each array of F */ 100 #define HHF_BIT_MASK_LEN 10 /* masking 10 bits */ 101 #define HHF_BIT_MASK 0x3FF /* bitmask of 10 bits */ 102 103 #define WDRR_BUCKET_CNT 2 /* two buckets for Weighted DRR */ 104 enum wdrr_bucket_idx { 105 WDRR_BUCKET_FOR_HH = 0, /* bucket id for heavy-hitters */ 106 WDRR_BUCKET_FOR_NON_HH = 1 /* bucket id for non-heavy-hitters */ 107 }; 108 109 #define hhf_time_before(a, b) \ 110 (typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0)) 111 112 /* Heavy-hitter per-flow state */ 113 struct hh_flow_state { 114 u32 hash_id; /* hash of flow-id (e.g. TCP 5-tuple) */ 115 u32 hit_timestamp; /* last time heavy-hitter was seen */ 116 struct list_head flowchain; /* chaining under hash collision */ 117 }; 118 119 /* Weighted Deficit Round Robin (WDRR) scheduler */ 120 struct wdrr_bucket { 121 struct sk_buff *head; 122 struct sk_buff *tail; 123 struct list_head bucketchain; 124 int deficit; 125 }; 126 127 struct hhf_sched_data { 128 struct wdrr_bucket buckets[WDRR_BUCKET_CNT]; 129 u32 perturbation; /* hash perturbation */ 130 u32 quantum; /* psched_mtu(qdisc_dev(sch)); */ 131 u32 drop_overlimit; /* number of times max qdisc packet 132 * limit was hit 133 */ 134 struct list_head *hh_flows; /* table T (currently active HHs) */ 135 u32 hh_flows_limit; /* max active HH allocs */ 136 u32 hh_flows_overlimit; /* num of disallowed HH allocs */ 137 u32 hh_flows_total_cnt; /* total admitted HHs */ 138 u32 hh_flows_current_cnt; /* total current HHs */ 139 u32 *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */ 140 u32 hhf_arrays_reset_timestamp; /* last time hhf_arrays 141 * was reset 142 */ 143 unsigned long *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits 144 * of hhf_arrays 145 */ 146 /* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */ 147 struct list_head new_buckets; /* list of new buckets */ 148 struct list_head old_buckets; /* list of old buckets */ 149 150 /* Configurable HHF parameters */ 151 u32 hhf_reset_timeout; /* interval to reset counter 152 * arrays in filter F 153 * (default 40ms) 154 */ 155 u32 hhf_admit_bytes; /* counter thresh to classify as 156 * HH (default 128KB). 157 * With these default values, 158 * 128KB / 40ms = 25 Mbps 159 * i.e., we expect to capture HHs 160 * sending > 25 Mbps. 161 */ 162 u32 hhf_evict_timeout; /* aging threshold to evict idle 163 * HHs out of table T. This should 164 * be large enough to avoid 165 * reordering during HH eviction. 166 * (default 1s) 167 */ 168 u32 hhf_non_hh_weight; /* WDRR weight for non-HHs 169 * (default 2, 170 * i.e., non-HH : HH = 2 : 1) 171 */ 172 }; 173 174 static u32 hhf_time_stamp(void) 175 { 176 return jiffies; 177 } 178 179 static unsigned int skb_hash(const struct hhf_sched_data *q, 180 const struct sk_buff *skb) 181 { 182 struct flow_keys keys; 183 unsigned int hash; 184 185 if (skb->sk && skb->sk->sk_hash) 186 return skb->sk->sk_hash; 187 188 skb_flow_dissect(skb, &keys); 189 hash = jhash_3words((__force u32)keys.dst, 190 (__force u32)keys.src ^ keys.ip_proto, 191 (__force u32)keys.ports, q->perturbation); 192 return hash; 193 } 194 195 /* Looks up a heavy-hitter flow in a chaining list of table T. */ 196 static struct hh_flow_state *seek_list(const u32 hash, 197 struct list_head *head, 198 struct hhf_sched_data *q) 199 { 200 struct hh_flow_state *flow, *next; 201 u32 now = hhf_time_stamp(); 202 203 if (list_empty(head)) 204 return NULL; 205 206 list_for_each_entry_safe(flow, next, head, flowchain) { 207 u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; 208 209 if (hhf_time_before(prev, now)) { 210 /* Delete expired heavy-hitters, but preserve one entry 211 * to avoid kzalloc() when next time this slot is hit. 212 */ 213 if (list_is_last(&flow->flowchain, head)) 214 return NULL; 215 list_del(&flow->flowchain); 216 kfree(flow); 217 q->hh_flows_current_cnt--; 218 } else if (flow->hash_id == hash) { 219 return flow; 220 } 221 } 222 return NULL; 223 } 224 225 /* Returns a flow state entry for a new heavy-hitter. Either reuses an expired 226 * entry or dynamically alloc a new entry. 227 */ 228 static struct hh_flow_state *alloc_new_hh(struct list_head *head, 229 struct hhf_sched_data *q) 230 { 231 struct hh_flow_state *flow; 232 u32 now = hhf_time_stamp(); 233 234 if (!list_empty(head)) { 235 /* Find an expired heavy-hitter flow entry. */ 236 list_for_each_entry(flow, head, flowchain) { 237 u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; 238 239 if (hhf_time_before(prev, now)) 240 return flow; 241 } 242 } 243 244 if (q->hh_flows_current_cnt >= q->hh_flows_limit) { 245 q->hh_flows_overlimit++; 246 return NULL; 247 } 248 /* Create new entry. */ 249 flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC); 250 if (!flow) 251 return NULL; 252 253 q->hh_flows_current_cnt++; 254 INIT_LIST_HEAD(&flow->flowchain); 255 list_add_tail(&flow->flowchain, head); 256 257 return flow; 258 } 259 260 /* Assigns packets to WDRR buckets. Implements a multi-stage filter to 261 * classify heavy-hitters. 262 */ 263 static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch) 264 { 265 struct hhf_sched_data *q = qdisc_priv(sch); 266 u32 tmp_hash, hash; 267 u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos; 268 struct hh_flow_state *flow; 269 u32 pkt_len, min_hhf_val; 270 int i; 271 u32 prev; 272 u32 now = hhf_time_stamp(); 273 274 /* Reset the HHF counter arrays if this is the right time. */ 275 prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout; 276 if (hhf_time_before(prev, now)) { 277 for (i = 0; i < HHF_ARRAYS_CNT; i++) 278 bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN); 279 q->hhf_arrays_reset_timestamp = now; 280 } 281 282 /* Get hashed flow-id of the skb. */ 283 hash = skb_hash(q, skb); 284 285 /* Check if this packet belongs to an already established HH flow. */ 286 flow_pos = hash & HHF_BIT_MASK; 287 flow = seek_list(hash, &q->hh_flows[flow_pos], q); 288 if (flow) { /* found its HH flow */ 289 flow->hit_timestamp = now; 290 return WDRR_BUCKET_FOR_HH; 291 } 292 293 /* Now pass the packet through the multi-stage filter. */ 294 tmp_hash = hash; 295 xorsum = 0; 296 for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) { 297 /* Split the skb_hash into three 10-bit chunks. */ 298 filter_pos[i] = tmp_hash & HHF_BIT_MASK; 299 xorsum ^= filter_pos[i]; 300 tmp_hash >>= HHF_BIT_MASK_LEN; 301 } 302 /* The last chunk is computed as XOR sum of other chunks. */ 303 filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash; 304 305 pkt_len = qdisc_pkt_len(skb); 306 min_hhf_val = ~0U; 307 for (i = 0; i < HHF_ARRAYS_CNT; i++) { 308 u32 val; 309 310 if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) { 311 q->hhf_arrays[i][filter_pos[i]] = 0; 312 __set_bit(filter_pos[i], q->hhf_valid_bits[i]); 313 } 314 315 val = q->hhf_arrays[i][filter_pos[i]] + pkt_len; 316 if (min_hhf_val > val) 317 min_hhf_val = val; 318 } 319 320 /* Found a new HH iff all counter values > HH admit threshold. */ 321 if (min_hhf_val > q->hhf_admit_bytes) { 322 /* Just captured a new heavy-hitter. */ 323 flow = alloc_new_hh(&q->hh_flows[flow_pos], q); 324 if (!flow) /* memory alloc problem */ 325 return WDRR_BUCKET_FOR_NON_HH; 326 flow->hash_id = hash; 327 flow->hit_timestamp = now; 328 q->hh_flows_total_cnt++; 329 330 /* By returning without updating counters in q->hhf_arrays, 331 * we implicitly implement "shielding" (see Optimization O1). 332 */ 333 return WDRR_BUCKET_FOR_HH; 334 } 335 336 /* Conservative update of HHF arrays (see Optimization O2). */ 337 for (i = 0; i < HHF_ARRAYS_CNT; i++) { 338 if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val) 339 q->hhf_arrays[i][filter_pos[i]] = min_hhf_val; 340 } 341 return WDRR_BUCKET_FOR_NON_HH; 342 } 343 344 /* Removes one skb from head of bucket. */ 345 static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket) 346 { 347 struct sk_buff *skb = bucket->head; 348 349 bucket->head = skb->next; 350 skb->next = NULL; 351 return skb; 352 } 353 354 /* Tail-adds skb to bucket. */ 355 static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb) 356 { 357 if (bucket->head == NULL) 358 bucket->head = skb; 359 else 360 bucket->tail->next = skb; 361 bucket->tail = skb; 362 skb->next = NULL; 363 } 364 365 static unsigned int hhf_drop(struct Qdisc *sch) 366 { 367 struct hhf_sched_data *q = qdisc_priv(sch); 368 struct wdrr_bucket *bucket; 369 370 /* Always try to drop from heavy-hitters first. */ 371 bucket = &q->buckets[WDRR_BUCKET_FOR_HH]; 372 if (!bucket->head) 373 bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH]; 374 375 if (bucket->head) { 376 struct sk_buff *skb = dequeue_head(bucket); 377 378 sch->q.qlen--; 379 sch->qstats.drops++; 380 sch->qstats.backlog -= qdisc_pkt_len(skb); 381 kfree_skb(skb); 382 } 383 384 /* Return id of the bucket from which the packet was dropped. */ 385 return bucket - q->buckets; 386 } 387 388 static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch) 389 { 390 struct hhf_sched_data *q = qdisc_priv(sch); 391 enum wdrr_bucket_idx idx; 392 struct wdrr_bucket *bucket; 393 394 idx = hhf_classify(skb, sch); 395 396 bucket = &q->buckets[idx]; 397 bucket_add(bucket, skb); 398 sch->qstats.backlog += qdisc_pkt_len(skb); 399 400 if (list_empty(&bucket->bucketchain)) { 401 unsigned int weight; 402 403 /* The logic of new_buckets vs. old_buckets is the same as 404 * new_flows vs. old_flows in the implementation of fq_codel, 405 * i.e., short bursts of non-HHs should have strict priority. 406 */ 407 if (idx == WDRR_BUCKET_FOR_HH) { 408 /* Always move heavy-hitters to old bucket. */ 409 weight = 1; 410 list_add_tail(&bucket->bucketchain, &q->old_buckets); 411 } else { 412 weight = q->hhf_non_hh_weight; 413 list_add_tail(&bucket->bucketchain, &q->new_buckets); 414 } 415 bucket->deficit = weight * q->quantum; 416 } 417 if (++sch->q.qlen < sch->limit) 418 return NET_XMIT_SUCCESS; 419 420 q->drop_overlimit++; 421 /* Return Congestion Notification only if we dropped a packet from this 422 * bucket. 423 */ 424 if (hhf_drop(sch) == idx) 425 return NET_XMIT_CN; 426 427 /* As we dropped a packet, better let upper stack know this. */ 428 qdisc_tree_decrease_qlen(sch, 1); 429 return NET_XMIT_SUCCESS; 430 } 431 432 static struct sk_buff *hhf_dequeue(struct Qdisc *sch) 433 { 434 struct hhf_sched_data *q = qdisc_priv(sch); 435 struct sk_buff *skb = NULL; 436 struct wdrr_bucket *bucket; 437 struct list_head *head; 438 439 begin: 440 head = &q->new_buckets; 441 if (list_empty(head)) { 442 head = &q->old_buckets; 443 if (list_empty(head)) 444 return NULL; 445 } 446 bucket = list_first_entry(head, struct wdrr_bucket, bucketchain); 447 448 if (bucket->deficit <= 0) { 449 int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ? 450 1 : q->hhf_non_hh_weight; 451 452 bucket->deficit += weight * q->quantum; 453 list_move_tail(&bucket->bucketchain, &q->old_buckets); 454 goto begin; 455 } 456 457 if (bucket->head) { 458 skb = dequeue_head(bucket); 459 sch->q.qlen--; 460 sch->qstats.backlog -= qdisc_pkt_len(skb); 461 } 462 463 if (!skb) { 464 /* Force a pass through old_buckets to prevent starvation. */ 465 if ((head == &q->new_buckets) && !list_empty(&q->old_buckets)) 466 list_move_tail(&bucket->bucketchain, &q->old_buckets); 467 else 468 list_del_init(&bucket->bucketchain); 469 goto begin; 470 } 471 qdisc_bstats_update(sch, skb); 472 bucket->deficit -= qdisc_pkt_len(skb); 473 474 return skb; 475 } 476 477 static void hhf_reset(struct Qdisc *sch) 478 { 479 struct sk_buff *skb; 480 481 while ((skb = hhf_dequeue(sch)) != NULL) 482 kfree_skb(skb); 483 } 484 485 static void *hhf_zalloc(size_t sz) 486 { 487 void *ptr = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN); 488 489 if (!ptr) 490 ptr = vzalloc(sz); 491 492 return ptr; 493 } 494 495 static void hhf_free(void *addr) 496 { 497 if (addr) { 498 if (is_vmalloc_addr(addr)) 499 vfree(addr); 500 else 501 kfree(addr); 502 } 503 } 504 505 static void hhf_destroy(struct Qdisc *sch) 506 { 507 int i; 508 struct hhf_sched_data *q = qdisc_priv(sch); 509 510 for (i = 0; i < HHF_ARRAYS_CNT; i++) { 511 hhf_free(q->hhf_arrays[i]); 512 hhf_free(q->hhf_valid_bits[i]); 513 } 514 515 for (i = 0; i < HH_FLOWS_CNT; i++) { 516 struct hh_flow_state *flow, *next; 517 struct list_head *head = &q->hh_flows[i]; 518 519 if (list_empty(head)) 520 continue; 521 list_for_each_entry_safe(flow, next, head, flowchain) { 522 list_del(&flow->flowchain); 523 kfree(flow); 524 } 525 } 526 hhf_free(q->hh_flows); 527 } 528 529 static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = { 530 [TCA_HHF_BACKLOG_LIMIT] = { .type = NLA_U32 }, 531 [TCA_HHF_QUANTUM] = { .type = NLA_U32 }, 532 [TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 }, 533 [TCA_HHF_RESET_TIMEOUT] = { .type = NLA_U32 }, 534 [TCA_HHF_ADMIT_BYTES] = { .type = NLA_U32 }, 535 [TCA_HHF_EVICT_TIMEOUT] = { .type = NLA_U32 }, 536 [TCA_HHF_NON_HH_WEIGHT] = { .type = NLA_U32 }, 537 }; 538 539 static int hhf_change(struct Qdisc *sch, struct nlattr *opt) 540 { 541 struct hhf_sched_data *q = qdisc_priv(sch); 542 struct nlattr *tb[TCA_HHF_MAX + 1]; 543 unsigned int qlen; 544 int err; 545 u64 non_hh_quantum; 546 u32 new_quantum = q->quantum; 547 u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight; 548 549 if (!opt) 550 return -EINVAL; 551 552 err = nla_parse_nested(tb, TCA_HHF_MAX, opt, hhf_policy); 553 if (err < 0) 554 return err; 555 556 sch_tree_lock(sch); 557 558 if (tb[TCA_HHF_BACKLOG_LIMIT]) 559 sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]); 560 561 if (tb[TCA_HHF_QUANTUM]) 562 new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]); 563 564 if (tb[TCA_HHF_NON_HH_WEIGHT]) 565 new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]); 566 567 non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight; 568 if (non_hh_quantum > INT_MAX) 569 return -EINVAL; 570 q->quantum = new_quantum; 571 q->hhf_non_hh_weight = new_hhf_non_hh_weight; 572 573 if (tb[TCA_HHF_HH_FLOWS_LIMIT]) 574 q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]); 575 576 if (tb[TCA_HHF_RESET_TIMEOUT]) { 577 u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]); 578 579 q->hhf_reset_timeout = usecs_to_jiffies(us); 580 } 581 582 if (tb[TCA_HHF_ADMIT_BYTES]) 583 q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]); 584 585 if (tb[TCA_HHF_EVICT_TIMEOUT]) { 586 u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]); 587 588 q->hhf_evict_timeout = usecs_to_jiffies(us); 589 } 590 591 qlen = sch->q.qlen; 592 while (sch->q.qlen > sch->limit) { 593 struct sk_buff *skb = hhf_dequeue(sch); 594 595 kfree_skb(skb); 596 } 597 qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen); 598 599 sch_tree_unlock(sch); 600 return 0; 601 } 602 603 static int hhf_init(struct Qdisc *sch, struct nlattr *opt) 604 { 605 struct hhf_sched_data *q = qdisc_priv(sch); 606 int i; 607 608 sch->limit = 1000; 609 q->quantum = psched_mtu(qdisc_dev(sch)); 610 q->perturbation = prandom_u32(); 611 INIT_LIST_HEAD(&q->new_buckets); 612 INIT_LIST_HEAD(&q->old_buckets); 613 614 /* Configurable HHF parameters */ 615 q->hhf_reset_timeout = HZ / 25; /* 40 ms */ 616 q->hhf_admit_bytes = 131072; /* 128 KB */ 617 q->hhf_evict_timeout = HZ; /* 1 sec */ 618 q->hhf_non_hh_weight = 2; 619 620 if (opt) { 621 int err = hhf_change(sch, opt); 622 623 if (err) 624 return err; 625 } 626 627 if (!q->hh_flows) { 628 /* Initialize heavy-hitter flow table. */ 629 q->hh_flows = hhf_zalloc(HH_FLOWS_CNT * 630 sizeof(struct list_head)); 631 if (!q->hh_flows) 632 return -ENOMEM; 633 for (i = 0; i < HH_FLOWS_CNT; i++) 634 INIT_LIST_HEAD(&q->hh_flows[i]); 635 636 /* Cap max active HHs at twice len of hh_flows table. */ 637 q->hh_flows_limit = 2 * HH_FLOWS_CNT; 638 q->hh_flows_overlimit = 0; 639 q->hh_flows_total_cnt = 0; 640 q->hh_flows_current_cnt = 0; 641 642 /* Initialize heavy-hitter filter arrays. */ 643 for (i = 0; i < HHF_ARRAYS_CNT; i++) { 644 q->hhf_arrays[i] = hhf_zalloc(HHF_ARRAYS_LEN * 645 sizeof(u32)); 646 if (!q->hhf_arrays[i]) { 647 hhf_destroy(sch); 648 return -ENOMEM; 649 } 650 } 651 q->hhf_arrays_reset_timestamp = hhf_time_stamp(); 652 653 /* Initialize valid bits of heavy-hitter filter arrays. */ 654 for (i = 0; i < HHF_ARRAYS_CNT; i++) { 655 q->hhf_valid_bits[i] = hhf_zalloc(HHF_ARRAYS_LEN / 656 BITS_PER_BYTE); 657 if (!q->hhf_valid_bits[i]) { 658 hhf_destroy(sch); 659 return -ENOMEM; 660 } 661 } 662 663 /* Initialize Weighted DRR buckets. */ 664 for (i = 0; i < WDRR_BUCKET_CNT; i++) { 665 struct wdrr_bucket *bucket = q->buckets + i; 666 667 INIT_LIST_HEAD(&bucket->bucketchain); 668 } 669 } 670 671 return 0; 672 } 673 674 static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb) 675 { 676 struct hhf_sched_data *q = qdisc_priv(sch); 677 struct nlattr *opts; 678 679 opts = nla_nest_start(skb, TCA_OPTIONS); 680 if (opts == NULL) 681 goto nla_put_failure; 682 683 if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) || 684 nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) || 685 nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) || 686 nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT, 687 jiffies_to_usecs(q->hhf_reset_timeout)) || 688 nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) || 689 nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT, 690 jiffies_to_usecs(q->hhf_evict_timeout)) || 691 nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight)) 692 goto nla_put_failure; 693 694 return nla_nest_end(skb, opts); 695 696 nla_put_failure: 697 return -1; 698 } 699 700 static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d) 701 { 702 struct hhf_sched_data *q = qdisc_priv(sch); 703 struct tc_hhf_xstats st = { 704 .drop_overlimit = q->drop_overlimit, 705 .hh_overlimit = q->hh_flows_overlimit, 706 .hh_tot_count = q->hh_flows_total_cnt, 707 .hh_cur_count = q->hh_flows_current_cnt, 708 }; 709 710 return gnet_stats_copy_app(d, &st, sizeof(st)); 711 } 712 713 static struct Qdisc_ops hhf_qdisc_ops __read_mostly = { 714 .id = "hhf", 715 .priv_size = sizeof(struct hhf_sched_data), 716 717 .enqueue = hhf_enqueue, 718 .dequeue = hhf_dequeue, 719 .peek = qdisc_peek_dequeued, 720 .drop = hhf_drop, 721 .init = hhf_init, 722 .reset = hhf_reset, 723 .destroy = hhf_destroy, 724 .change = hhf_change, 725 .dump = hhf_dump, 726 .dump_stats = hhf_dump_stats, 727 .owner = THIS_MODULE, 728 }; 729 730 static int __init hhf_module_init(void) 731 { 732 return register_qdisc(&hhf_qdisc_ops); 733 } 734 735 static void __exit hhf_module_exit(void) 736 { 737 unregister_qdisc(&hhf_qdisc_ops); 738 } 739 740 module_init(hhf_module_init) 741 module_exit(hhf_module_exit) 742 MODULE_AUTHOR("Terry Lam"); 743 MODULE_AUTHOR("Nandita Dukkipati"); 744 MODULE_LICENSE("GPL"); 745