xref: /openbmc/linux/net/sched/sch_hfsc.c (revision bc5aa3a0)
1 /*
2  * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * 2003-10-17 - Ported from altq
10  */
11 /*
12  * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
13  *
14  * Permission to use, copy, modify, and distribute this software and
15  * its documentation is hereby granted (including for commercial or
16  * for-profit use), provided that both the copyright notice and this
17  * permission notice appear in all copies of the software, derivative
18  * works, or modified versions, and any portions thereof.
19  *
20  * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21  * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
22  * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25  * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
33  * DAMAGE.
34  *
35  * Carnegie Mellon encourages (but does not require) users of this
36  * software to return any improvements or extensions that they make,
37  * and to grant Carnegie Mellon the rights to redistribute these
38  * changes without encumbrance.
39  */
40 /*
41  * H-FSC is described in Proceedings of SIGCOMM'97,
42  * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43  * Real-Time and Priority Service"
44  * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
45  *
46  * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47  * when a class has an upperlimit, the fit-time is computed from the
48  * upperlimit service curve.  the link-sharing scheduler does not schedule
49  * a class whose fit-time exceeds the current time.
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/errno.h>
56 #include <linux/compiler.h>
57 #include <linux/spinlock.h>
58 #include <linux/skbuff.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/list.h>
62 #include <linux/rbtree.h>
63 #include <linux/init.h>
64 #include <linux/rtnetlink.h>
65 #include <linux/pkt_sched.h>
66 #include <net/netlink.h>
67 #include <net/pkt_sched.h>
68 #include <net/pkt_cls.h>
69 #include <asm/div64.h>
70 
71 /*
72  * kernel internal service curve representation:
73  *   coordinates are given by 64 bit unsigned integers.
74  *   x-axis: unit is clock count.
75  *   y-axis: unit is byte.
76  *
77  *   The service curve parameters are converted to the internal
78  *   representation. The slope values are scaled to avoid overflow.
79  *   the inverse slope values as well as the y-projection of the 1st
80  *   segment are kept in order to avoid 64-bit divide operations
81  *   that are expensive on 32-bit architectures.
82  */
83 
84 struct internal_sc {
85 	u64	sm1;	/* scaled slope of the 1st segment */
86 	u64	ism1;	/* scaled inverse-slope of the 1st segment */
87 	u64	dx;	/* the x-projection of the 1st segment */
88 	u64	dy;	/* the y-projection of the 1st segment */
89 	u64	sm2;	/* scaled slope of the 2nd segment */
90 	u64	ism2;	/* scaled inverse-slope of the 2nd segment */
91 };
92 
93 /* runtime service curve */
94 struct runtime_sc {
95 	u64	x;	/* current starting position on x-axis */
96 	u64	y;	/* current starting position on y-axis */
97 	u64	sm1;	/* scaled slope of the 1st segment */
98 	u64	ism1;	/* scaled inverse-slope of the 1st segment */
99 	u64	dx;	/* the x-projection of the 1st segment */
100 	u64	dy;	/* the y-projection of the 1st segment */
101 	u64	sm2;	/* scaled slope of the 2nd segment */
102 	u64	ism2;	/* scaled inverse-slope of the 2nd segment */
103 };
104 
105 enum hfsc_class_flags {
106 	HFSC_RSC = 0x1,
107 	HFSC_FSC = 0x2,
108 	HFSC_USC = 0x4
109 };
110 
111 struct hfsc_class {
112 	struct Qdisc_class_common cl_common;
113 	unsigned int	refcnt;		/* usage count */
114 
115 	struct gnet_stats_basic_packed bstats;
116 	struct gnet_stats_queue qstats;
117 	struct gnet_stats_rate_est64 rate_est;
118 	struct tcf_proto __rcu *filter_list; /* filter list */
119 	unsigned int	filter_cnt;	/* filter count */
120 	unsigned int	level;		/* class level in hierarchy */
121 
122 	struct hfsc_sched *sched;	/* scheduler data */
123 	struct hfsc_class *cl_parent;	/* parent class */
124 	struct list_head siblings;	/* sibling classes */
125 	struct list_head children;	/* child classes */
126 	struct Qdisc	*qdisc;		/* leaf qdisc */
127 
128 	struct rb_node el_node;		/* qdisc's eligible tree member */
129 	struct rb_root vt_tree;		/* active children sorted by cl_vt */
130 	struct rb_node vt_node;		/* parent's vt_tree member */
131 	struct rb_root cf_tree;		/* active children sorted by cl_f */
132 	struct rb_node cf_node;		/* parent's cf_heap member */
133 
134 	u64	cl_total;		/* total work in bytes */
135 	u64	cl_cumul;		/* cumulative work in bytes done by
136 					   real-time criteria */
137 
138 	u64	cl_d;			/* deadline*/
139 	u64	cl_e;			/* eligible time */
140 	u64	cl_vt;			/* virtual time */
141 	u64	cl_f;			/* time when this class will fit for
142 					   link-sharing, max(myf, cfmin) */
143 	u64	cl_myf;			/* my fit-time (calculated from this
144 					   class's own upperlimit curve) */
145 	u64	cl_myfadj;		/* my fit-time adjustment (to cancel
146 					   history dependence) */
147 	u64	cl_cfmin;		/* earliest children's fit-time (used
148 					   with cl_myf to obtain cl_f) */
149 	u64	cl_cvtmin;		/* minimal virtual time among the
150 					   children fit for link-sharing
151 					   (monotonic within a period) */
152 	u64	cl_vtadj;		/* intra-period cumulative vt
153 					   adjustment */
154 	u64	cl_vtoff;		/* inter-period cumulative vt offset */
155 	u64	cl_cvtmax;		/* max child's vt in the last period */
156 	u64	cl_cvtoff;		/* cumulative cvtmax of all periods */
157 	u64	cl_pcvtoff;		/* parent's cvtoff at initialization
158 					   time */
159 
160 	struct internal_sc cl_rsc;	/* internal real-time service curve */
161 	struct internal_sc cl_fsc;	/* internal fair service curve */
162 	struct internal_sc cl_usc;	/* internal upperlimit service curve */
163 	struct runtime_sc cl_deadline;	/* deadline curve */
164 	struct runtime_sc cl_eligible;	/* eligible curve */
165 	struct runtime_sc cl_virtual;	/* virtual curve */
166 	struct runtime_sc cl_ulimit;	/* upperlimit curve */
167 
168 	u8		cl_flags;	/* which curves are valid */
169 	u32		cl_vtperiod;	/* vt period sequence number */
170 	u32		cl_parentperiod;/* parent's vt period sequence number*/
171 	u32		cl_nactive;	/* number of active children */
172 };
173 
174 struct hfsc_sched {
175 	u16	defcls;				/* default class id */
176 	struct hfsc_class root;			/* root class */
177 	struct Qdisc_class_hash clhash;		/* class hash */
178 	struct rb_root eligible;		/* eligible tree */
179 	struct qdisc_watchdog watchdog;		/* watchdog timer */
180 };
181 
182 #define	HT_INFINITY	0xffffffffffffffffULL	/* infinite time value */
183 
184 
185 /*
186  * eligible tree holds backlogged classes being sorted by their eligible times.
187  * there is one eligible tree per hfsc instance.
188  */
189 
190 static void
191 eltree_insert(struct hfsc_class *cl)
192 {
193 	struct rb_node **p = &cl->sched->eligible.rb_node;
194 	struct rb_node *parent = NULL;
195 	struct hfsc_class *cl1;
196 
197 	while (*p != NULL) {
198 		parent = *p;
199 		cl1 = rb_entry(parent, struct hfsc_class, el_node);
200 		if (cl->cl_e >= cl1->cl_e)
201 			p = &parent->rb_right;
202 		else
203 			p = &parent->rb_left;
204 	}
205 	rb_link_node(&cl->el_node, parent, p);
206 	rb_insert_color(&cl->el_node, &cl->sched->eligible);
207 }
208 
209 static inline void
210 eltree_remove(struct hfsc_class *cl)
211 {
212 	rb_erase(&cl->el_node, &cl->sched->eligible);
213 }
214 
215 static inline void
216 eltree_update(struct hfsc_class *cl)
217 {
218 	eltree_remove(cl);
219 	eltree_insert(cl);
220 }
221 
222 /* find the class with the minimum deadline among the eligible classes */
223 static inline struct hfsc_class *
224 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
225 {
226 	struct hfsc_class *p, *cl = NULL;
227 	struct rb_node *n;
228 
229 	for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
230 		p = rb_entry(n, struct hfsc_class, el_node);
231 		if (p->cl_e > cur_time)
232 			break;
233 		if (cl == NULL || p->cl_d < cl->cl_d)
234 			cl = p;
235 	}
236 	return cl;
237 }
238 
239 /* find the class with minimum eligible time among the eligible classes */
240 static inline struct hfsc_class *
241 eltree_get_minel(struct hfsc_sched *q)
242 {
243 	struct rb_node *n;
244 
245 	n = rb_first(&q->eligible);
246 	if (n == NULL)
247 		return NULL;
248 	return rb_entry(n, struct hfsc_class, el_node);
249 }
250 
251 /*
252  * vttree holds holds backlogged child classes being sorted by their virtual
253  * time. each intermediate class has one vttree.
254  */
255 static void
256 vttree_insert(struct hfsc_class *cl)
257 {
258 	struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
259 	struct rb_node *parent = NULL;
260 	struct hfsc_class *cl1;
261 
262 	while (*p != NULL) {
263 		parent = *p;
264 		cl1 = rb_entry(parent, struct hfsc_class, vt_node);
265 		if (cl->cl_vt >= cl1->cl_vt)
266 			p = &parent->rb_right;
267 		else
268 			p = &parent->rb_left;
269 	}
270 	rb_link_node(&cl->vt_node, parent, p);
271 	rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
272 }
273 
274 static inline void
275 vttree_remove(struct hfsc_class *cl)
276 {
277 	rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
278 }
279 
280 static inline void
281 vttree_update(struct hfsc_class *cl)
282 {
283 	vttree_remove(cl);
284 	vttree_insert(cl);
285 }
286 
287 static inline struct hfsc_class *
288 vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
289 {
290 	struct hfsc_class *p;
291 	struct rb_node *n;
292 
293 	for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
294 		p = rb_entry(n, struct hfsc_class, vt_node);
295 		if (p->cl_f <= cur_time)
296 			return p;
297 	}
298 	return NULL;
299 }
300 
301 /*
302  * get the leaf class with the minimum vt in the hierarchy
303  */
304 static struct hfsc_class *
305 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
306 {
307 	/* if root-class's cfmin is bigger than cur_time nothing to do */
308 	if (cl->cl_cfmin > cur_time)
309 		return NULL;
310 
311 	while (cl->level > 0) {
312 		cl = vttree_firstfit(cl, cur_time);
313 		if (cl == NULL)
314 			return NULL;
315 		/*
316 		 * update parent's cl_cvtmin.
317 		 */
318 		if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
319 			cl->cl_parent->cl_cvtmin = cl->cl_vt;
320 	}
321 	return cl;
322 }
323 
324 static void
325 cftree_insert(struct hfsc_class *cl)
326 {
327 	struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
328 	struct rb_node *parent = NULL;
329 	struct hfsc_class *cl1;
330 
331 	while (*p != NULL) {
332 		parent = *p;
333 		cl1 = rb_entry(parent, struct hfsc_class, cf_node);
334 		if (cl->cl_f >= cl1->cl_f)
335 			p = &parent->rb_right;
336 		else
337 			p = &parent->rb_left;
338 	}
339 	rb_link_node(&cl->cf_node, parent, p);
340 	rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
341 }
342 
343 static inline void
344 cftree_remove(struct hfsc_class *cl)
345 {
346 	rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
347 }
348 
349 static inline void
350 cftree_update(struct hfsc_class *cl)
351 {
352 	cftree_remove(cl);
353 	cftree_insert(cl);
354 }
355 
356 /*
357  * service curve support functions
358  *
359  *  external service curve parameters
360  *	m: bps
361  *	d: us
362  *  internal service curve parameters
363  *	sm: (bytes/psched_us) << SM_SHIFT
364  *	ism: (psched_us/byte) << ISM_SHIFT
365  *	dx: psched_us
366  *
367  * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us.
368  *
369  * sm and ism are scaled in order to keep effective digits.
370  * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
371  * digits in decimal using the following table.
372  *
373  *  bits/sec      100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
374  *  ------------+-------------------------------------------------------
375  *  bytes/1.024us 12.8e-3    128e-3     1280e-3    12800e-3   128000e-3
376  *
377  *  1.024us/byte  78.125     7.8125     0.78125    0.078125   0.0078125
378  *
379  * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18.
380  */
381 #define	SM_SHIFT	(30 - PSCHED_SHIFT)
382 #define	ISM_SHIFT	(8 + PSCHED_SHIFT)
383 
384 #define	SM_MASK		((1ULL << SM_SHIFT) - 1)
385 #define	ISM_MASK	((1ULL << ISM_SHIFT) - 1)
386 
387 static inline u64
388 seg_x2y(u64 x, u64 sm)
389 {
390 	u64 y;
391 
392 	/*
393 	 * compute
394 	 *	y = x * sm >> SM_SHIFT
395 	 * but divide it for the upper and lower bits to avoid overflow
396 	 */
397 	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
398 	return y;
399 }
400 
401 static inline u64
402 seg_y2x(u64 y, u64 ism)
403 {
404 	u64 x;
405 
406 	if (y == 0)
407 		x = 0;
408 	else if (ism == HT_INFINITY)
409 		x = HT_INFINITY;
410 	else {
411 		x = (y >> ISM_SHIFT) * ism
412 		    + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
413 	}
414 	return x;
415 }
416 
417 /* Convert m (bps) into sm (bytes/psched us) */
418 static u64
419 m2sm(u32 m)
420 {
421 	u64 sm;
422 
423 	sm = ((u64)m << SM_SHIFT);
424 	sm += PSCHED_TICKS_PER_SEC - 1;
425 	do_div(sm, PSCHED_TICKS_PER_SEC);
426 	return sm;
427 }
428 
429 /* convert m (bps) into ism (psched us/byte) */
430 static u64
431 m2ism(u32 m)
432 {
433 	u64 ism;
434 
435 	if (m == 0)
436 		ism = HT_INFINITY;
437 	else {
438 		ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT);
439 		ism += m - 1;
440 		do_div(ism, m);
441 	}
442 	return ism;
443 }
444 
445 /* convert d (us) into dx (psched us) */
446 static u64
447 d2dx(u32 d)
448 {
449 	u64 dx;
450 
451 	dx = ((u64)d * PSCHED_TICKS_PER_SEC);
452 	dx += USEC_PER_SEC - 1;
453 	do_div(dx, USEC_PER_SEC);
454 	return dx;
455 }
456 
457 /* convert sm (bytes/psched us) into m (bps) */
458 static u32
459 sm2m(u64 sm)
460 {
461 	u64 m;
462 
463 	m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT;
464 	return (u32)m;
465 }
466 
467 /* convert dx (psched us) into d (us) */
468 static u32
469 dx2d(u64 dx)
470 {
471 	u64 d;
472 
473 	d = dx * USEC_PER_SEC;
474 	do_div(d, PSCHED_TICKS_PER_SEC);
475 	return (u32)d;
476 }
477 
478 static void
479 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
480 {
481 	isc->sm1  = m2sm(sc->m1);
482 	isc->ism1 = m2ism(sc->m1);
483 	isc->dx   = d2dx(sc->d);
484 	isc->dy   = seg_x2y(isc->dx, isc->sm1);
485 	isc->sm2  = m2sm(sc->m2);
486 	isc->ism2 = m2ism(sc->m2);
487 }
488 
489 /*
490  * initialize the runtime service curve with the given internal
491  * service curve starting at (x, y).
492  */
493 static void
494 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
495 {
496 	rtsc->x	   = x;
497 	rtsc->y    = y;
498 	rtsc->sm1  = isc->sm1;
499 	rtsc->ism1 = isc->ism1;
500 	rtsc->dx   = isc->dx;
501 	rtsc->dy   = isc->dy;
502 	rtsc->sm2  = isc->sm2;
503 	rtsc->ism2 = isc->ism2;
504 }
505 
506 /*
507  * calculate the y-projection of the runtime service curve by the
508  * given x-projection value
509  */
510 static u64
511 rtsc_y2x(struct runtime_sc *rtsc, u64 y)
512 {
513 	u64 x;
514 
515 	if (y < rtsc->y)
516 		x = rtsc->x;
517 	else if (y <= rtsc->y + rtsc->dy) {
518 		/* x belongs to the 1st segment */
519 		if (rtsc->dy == 0)
520 			x = rtsc->x + rtsc->dx;
521 		else
522 			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
523 	} else {
524 		/* x belongs to the 2nd segment */
525 		x = rtsc->x + rtsc->dx
526 		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
527 	}
528 	return x;
529 }
530 
531 static u64
532 rtsc_x2y(struct runtime_sc *rtsc, u64 x)
533 {
534 	u64 y;
535 
536 	if (x <= rtsc->x)
537 		y = rtsc->y;
538 	else if (x <= rtsc->x + rtsc->dx)
539 		/* y belongs to the 1st segment */
540 		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
541 	else
542 		/* y belongs to the 2nd segment */
543 		y = rtsc->y + rtsc->dy
544 		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
545 	return y;
546 }
547 
548 /*
549  * update the runtime service curve by taking the minimum of the current
550  * runtime service curve and the service curve starting at (x, y).
551  */
552 static void
553 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
554 {
555 	u64 y1, y2, dx, dy;
556 	u32 dsm;
557 
558 	if (isc->sm1 <= isc->sm2) {
559 		/* service curve is convex */
560 		y1 = rtsc_x2y(rtsc, x);
561 		if (y1 < y)
562 			/* the current rtsc is smaller */
563 			return;
564 		rtsc->x = x;
565 		rtsc->y = y;
566 		return;
567 	}
568 
569 	/*
570 	 * service curve is concave
571 	 * compute the two y values of the current rtsc
572 	 *	y1: at x
573 	 *	y2: at (x + dx)
574 	 */
575 	y1 = rtsc_x2y(rtsc, x);
576 	if (y1 <= y) {
577 		/* rtsc is below isc, no change to rtsc */
578 		return;
579 	}
580 
581 	y2 = rtsc_x2y(rtsc, x + isc->dx);
582 	if (y2 >= y + isc->dy) {
583 		/* rtsc is above isc, replace rtsc by isc */
584 		rtsc->x = x;
585 		rtsc->y = y;
586 		rtsc->dx = isc->dx;
587 		rtsc->dy = isc->dy;
588 		return;
589 	}
590 
591 	/*
592 	 * the two curves intersect
593 	 * compute the offsets (dx, dy) using the reverse
594 	 * function of seg_x2y()
595 	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
596 	 */
597 	dx = (y1 - y) << SM_SHIFT;
598 	dsm = isc->sm1 - isc->sm2;
599 	do_div(dx, dsm);
600 	/*
601 	 * check if (x, y1) belongs to the 1st segment of rtsc.
602 	 * if so, add the offset.
603 	 */
604 	if (rtsc->x + rtsc->dx > x)
605 		dx += rtsc->x + rtsc->dx - x;
606 	dy = seg_x2y(dx, isc->sm1);
607 
608 	rtsc->x = x;
609 	rtsc->y = y;
610 	rtsc->dx = dx;
611 	rtsc->dy = dy;
612 }
613 
614 static void
615 init_ed(struct hfsc_class *cl, unsigned int next_len)
616 {
617 	u64 cur_time = psched_get_time();
618 
619 	/* update the deadline curve */
620 	rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
621 
622 	/*
623 	 * update the eligible curve.
624 	 * for concave, it is equal to the deadline curve.
625 	 * for convex, it is a linear curve with slope m2.
626 	 */
627 	cl->cl_eligible = cl->cl_deadline;
628 	if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
629 		cl->cl_eligible.dx = 0;
630 		cl->cl_eligible.dy = 0;
631 	}
632 
633 	/* compute e and d */
634 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
635 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
636 
637 	eltree_insert(cl);
638 }
639 
640 static void
641 update_ed(struct hfsc_class *cl, unsigned int next_len)
642 {
643 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
644 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
645 
646 	eltree_update(cl);
647 }
648 
649 static inline void
650 update_d(struct hfsc_class *cl, unsigned int next_len)
651 {
652 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
653 }
654 
655 static inline void
656 update_cfmin(struct hfsc_class *cl)
657 {
658 	struct rb_node *n = rb_first(&cl->cf_tree);
659 	struct hfsc_class *p;
660 
661 	if (n == NULL) {
662 		cl->cl_cfmin = 0;
663 		return;
664 	}
665 	p = rb_entry(n, struct hfsc_class, cf_node);
666 	cl->cl_cfmin = p->cl_f;
667 }
668 
669 static void
670 init_vf(struct hfsc_class *cl, unsigned int len)
671 {
672 	struct hfsc_class *max_cl;
673 	struct rb_node *n;
674 	u64 vt, f, cur_time;
675 	int go_active;
676 
677 	cur_time = 0;
678 	go_active = 1;
679 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
680 		if (go_active && cl->cl_nactive++ == 0)
681 			go_active = 1;
682 		else
683 			go_active = 0;
684 
685 		if (go_active) {
686 			n = rb_last(&cl->cl_parent->vt_tree);
687 			if (n != NULL) {
688 				max_cl = rb_entry(n, struct hfsc_class, vt_node);
689 				/*
690 				 * set vt to the average of the min and max
691 				 * classes.  if the parent's period didn't
692 				 * change, don't decrease vt of the class.
693 				 */
694 				vt = max_cl->cl_vt;
695 				if (cl->cl_parent->cl_cvtmin != 0)
696 					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
697 
698 				if (cl->cl_parent->cl_vtperiod !=
699 				    cl->cl_parentperiod || vt > cl->cl_vt)
700 					cl->cl_vt = vt;
701 			} else {
702 				/*
703 				 * first child for a new parent backlog period.
704 				 * add parent's cvtmax to cvtoff to make a new
705 				 * vt (vtoff + vt) larger than the vt in the
706 				 * last period for all children.
707 				 */
708 				vt = cl->cl_parent->cl_cvtmax;
709 				cl->cl_parent->cl_cvtoff += vt;
710 				cl->cl_parent->cl_cvtmax = 0;
711 				cl->cl_parent->cl_cvtmin = 0;
712 				cl->cl_vt = 0;
713 			}
714 
715 			cl->cl_vtoff = cl->cl_parent->cl_cvtoff -
716 							cl->cl_pcvtoff;
717 
718 			/* update the virtual curve */
719 			vt = cl->cl_vt + cl->cl_vtoff;
720 			rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt,
721 						      cl->cl_total);
722 			if (cl->cl_virtual.x == vt) {
723 				cl->cl_virtual.x -= cl->cl_vtoff;
724 				cl->cl_vtoff = 0;
725 			}
726 			cl->cl_vtadj = 0;
727 
728 			cl->cl_vtperiod++;  /* increment vt period */
729 			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
730 			if (cl->cl_parent->cl_nactive == 0)
731 				cl->cl_parentperiod++;
732 			cl->cl_f = 0;
733 
734 			vttree_insert(cl);
735 			cftree_insert(cl);
736 
737 			if (cl->cl_flags & HFSC_USC) {
738 				/* class has upper limit curve */
739 				if (cur_time == 0)
740 					cur_time = psched_get_time();
741 
742 				/* update the ulimit curve */
743 				rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
744 					 cl->cl_total);
745 				/* compute myf */
746 				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
747 						      cl->cl_total);
748 				cl->cl_myfadj = 0;
749 			}
750 		}
751 
752 		f = max(cl->cl_myf, cl->cl_cfmin);
753 		if (f != cl->cl_f) {
754 			cl->cl_f = f;
755 			cftree_update(cl);
756 		}
757 		update_cfmin(cl->cl_parent);
758 	}
759 }
760 
761 static void
762 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
763 {
764 	u64 f; /* , myf_bound, delta; */
765 	int go_passive = 0;
766 
767 	if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
768 		go_passive = 1;
769 
770 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
771 		cl->cl_total += len;
772 
773 		if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
774 			continue;
775 
776 		if (go_passive && --cl->cl_nactive == 0)
777 			go_passive = 1;
778 		else
779 			go_passive = 0;
780 
781 		/* update vt */
782 		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
783 			    - cl->cl_vtoff + cl->cl_vtadj;
784 
785 		/*
786 		 * if vt of the class is smaller than cvtmin,
787 		 * the class was skipped in the past due to non-fit.
788 		 * if so, we need to adjust vtadj.
789 		 */
790 		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
791 			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
792 			cl->cl_vt = cl->cl_parent->cl_cvtmin;
793 		}
794 
795 		if (go_passive) {
796 			/* no more active child, going passive */
797 
798 			/* update cvtmax of the parent class */
799 			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
800 				cl->cl_parent->cl_cvtmax = cl->cl_vt;
801 
802 			/* remove this class from the vt tree */
803 			vttree_remove(cl);
804 
805 			cftree_remove(cl);
806 			update_cfmin(cl->cl_parent);
807 
808 			continue;
809 		}
810 
811 		/* update the vt tree */
812 		vttree_update(cl);
813 
814 		/* update f */
815 		if (cl->cl_flags & HFSC_USC) {
816 			cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
817 							      cl->cl_total);
818 #if 0
819 			/*
820 			 * This code causes classes to stay way under their
821 			 * limit when multiple classes are used at gigabit
822 			 * speed. needs investigation. -kaber
823 			 */
824 			/*
825 			 * if myf lags behind by more than one clock tick
826 			 * from the current time, adjust myfadj to prevent
827 			 * a rate-limited class from going greedy.
828 			 * in a steady state under rate-limiting, myf
829 			 * fluctuates within one clock tick.
830 			 */
831 			myf_bound = cur_time - PSCHED_JIFFIE2US(1);
832 			if (cl->cl_myf < myf_bound) {
833 				delta = cur_time - cl->cl_myf;
834 				cl->cl_myfadj += delta;
835 				cl->cl_myf += delta;
836 			}
837 #endif
838 		}
839 
840 		f = max(cl->cl_myf, cl->cl_cfmin);
841 		if (f != cl->cl_f) {
842 			cl->cl_f = f;
843 			cftree_update(cl);
844 			update_cfmin(cl->cl_parent);
845 		}
846 	}
847 }
848 
849 static void
850 set_active(struct hfsc_class *cl, unsigned int len)
851 {
852 	if (cl->cl_flags & HFSC_RSC)
853 		init_ed(cl, len);
854 	if (cl->cl_flags & HFSC_FSC)
855 		init_vf(cl, len);
856 
857 }
858 
859 static void
860 set_passive(struct hfsc_class *cl)
861 {
862 	if (cl->cl_flags & HFSC_RSC)
863 		eltree_remove(cl);
864 
865 	/*
866 	 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
867 	 * needs to be called explicitly to remove a class from vttree.
868 	 */
869 }
870 
871 static unsigned int
872 qdisc_peek_len(struct Qdisc *sch)
873 {
874 	struct sk_buff *skb;
875 	unsigned int len;
876 
877 	skb = sch->ops->peek(sch);
878 	if (unlikely(skb == NULL)) {
879 		qdisc_warn_nonwc("qdisc_peek_len", sch);
880 		return 0;
881 	}
882 	len = qdisc_pkt_len(skb);
883 
884 	return len;
885 }
886 
887 static void
888 hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl)
889 {
890 	unsigned int len = cl->qdisc->q.qlen;
891 	unsigned int backlog = cl->qdisc->qstats.backlog;
892 
893 	qdisc_reset(cl->qdisc);
894 	qdisc_tree_reduce_backlog(cl->qdisc, len, backlog);
895 }
896 
897 static void
898 hfsc_adjust_levels(struct hfsc_class *cl)
899 {
900 	struct hfsc_class *p;
901 	unsigned int level;
902 
903 	do {
904 		level = 0;
905 		list_for_each_entry(p, &cl->children, siblings) {
906 			if (p->level >= level)
907 				level = p->level + 1;
908 		}
909 		cl->level = level;
910 	} while ((cl = cl->cl_parent) != NULL);
911 }
912 
913 static inline struct hfsc_class *
914 hfsc_find_class(u32 classid, struct Qdisc *sch)
915 {
916 	struct hfsc_sched *q = qdisc_priv(sch);
917 	struct Qdisc_class_common *clc;
918 
919 	clc = qdisc_class_find(&q->clhash, classid);
920 	if (clc == NULL)
921 		return NULL;
922 	return container_of(clc, struct hfsc_class, cl_common);
923 }
924 
925 static void
926 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
927 		u64 cur_time)
928 {
929 	sc2isc(rsc, &cl->cl_rsc);
930 	rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
931 	cl->cl_eligible = cl->cl_deadline;
932 	if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
933 		cl->cl_eligible.dx = 0;
934 		cl->cl_eligible.dy = 0;
935 	}
936 	cl->cl_flags |= HFSC_RSC;
937 }
938 
939 static void
940 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
941 {
942 	sc2isc(fsc, &cl->cl_fsc);
943 	rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vtoff + cl->cl_vt, cl->cl_total);
944 	cl->cl_flags |= HFSC_FSC;
945 }
946 
947 static void
948 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
949 		u64 cur_time)
950 {
951 	sc2isc(usc, &cl->cl_usc);
952 	rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
953 	cl->cl_flags |= HFSC_USC;
954 }
955 
956 static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = {
957 	[TCA_HFSC_RSC]	= { .len = sizeof(struct tc_service_curve) },
958 	[TCA_HFSC_FSC]	= { .len = sizeof(struct tc_service_curve) },
959 	[TCA_HFSC_USC]	= { .len = sizeof(struct tc_service_curve) },
960 };
961 
962 static int
963 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
964 		  struct nlattr **tca, unsigned long *arg)
965 {
966 	struct hfsc_sched *q = qdisc_priv(sch);
967 	struct hfsc_class *cl = (struct hfsc_class *)*arg;
968 	struct hfsc_class *parent = NULL;
969 	struct nlattr *opt = tca[TCA_OPTIONS];
970 	struct nlattr *tb[TCA_HFSC_MAX + 1];
971 	struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
972 	u64 cur_time;
973 	int err;
974 
975 	if (opt == NULL)
976 		return -EINVAL;
977 
978 	err = nla_parse_nested(tb, TCA_HFSC_MAX, opt, hfsc_policy);
979 	if (err < 0)
980 		return err;
981 
982 	if (tb[TCA_HFSC_RSC]) {
983 		rsc = nla_data(tb[TCA_HFSC_RSC]);
984 		if (rsc->m1 == 0 && rsc->m2 == 0)
985 			rsc = NULL;
986 	}
987 
988 	if (tb[TCA_HFSC_FSC]) {
989 		fsc = nla_data(tb[TCA_HFSC_FSC]);
990 		if (fsc->m1 == 0 && fsc->m2 == 0)
991 			fsc = NULL;
992 	}
993 
994 	if (tb[TCA_HFSC_USC]) {
995 		usc = nla_data(tb[TCA_HFSC_USC]);
996 		if (usc->m1 == 0 && usc->m2 == 0)
997 			usc = NULL;
998 	}
999 
1000 	if (cl != NULL) {
1001 		if (parentid) {
1002 			if (cl->cl_parent &&
1003 			    cl->cl_parent->cl_common.classid != parentid)
1004 				return -EINVAL;
1005 			if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
1006 				return -EINVAL;
1007 		}
1008 		cur_time = psched_get_time();
1009 
1010 		if (tca[TCA_RATE]) {
1011 			err = gen_replace_estimator(&cl->bstats, NULL,
1012 						    &cl->rate_est,
1013 						    NULL,
1014 						    qdisc_root_sleeping_running(sch),
1015 						    tca[TCA_RATE]);
1016 			if (err)
1017 				return err;
1018 		}
1019 
1020 		sch_tree_lock(sch);
1021 		if (rsc != NULL)
1022 			hfsc_change_rsc(cl, rsc, cur_time);
1023 		if (fsc != NULL)
1024 			hfsc_change_fsc(cl, fsc);
1025 		if (usc != NULL)
1026 			hfsc_change_usc(cl, usc, cur_time);
1027 
1028 		if (cl->qdisc->q.qlen != 0) {
1029 			if (cl->cl_flags & HFSC_RSC)
1030 				update_ed(cl, qdisc_peek_len(cl->qdisc));
1031 			if (cl->cl_flags & HFSC_FSC)
1032 				update_vf(cl, 0, cur_time);
1033 		}
1034 		sch_tree_unlock(sch);
1035 
1036 		return 0;
1037 	}
1038 
1039 	if (parentid == TC_H_ROOT)
1040 		return -EEXIST;
1041 
1042 	parent = &q->root;
1043 	if (parentid) {
1044 		parent = hfsc_find_class(parentid, sch);
1045 		if (parent == NULL)
1046 			return -ENOENT;
1047 	}
1048 
1049 	if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
1050 		return -EINVAL;
1051 	if (hfsc_find_class(classid, sch))
1052 		return -EEXIST;
1053 
1054 	if (rsc == NULL && fsc == NULL)
1055 		return -EINVAL;
1056 
1057 	cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
1058 	if (cl == NULL)
1059 		return -ENOBUFS;
1060 
1061 	if (tca[TCA_RATE]) {
1062 		err = gen_new_estimator(&cl->bstats, NULL, &cl->rate_est,
1063 					NULL,
1064 					qdisc_root_sleeping_running(sch),
1065 					tca[TCA_RATE]);
1066 		if (err) {
1067 			kfree(cl);
1068 			return err;
1069 		}
1070 	}
1071 
1072 	if (rsc != NULL)
1073 		hfsc_change_rsc(cl, rsc, 0);
1074 	if (fsc != NULL)
1075 		hfsc_change_fsc(cl, fsc);
1076 	if (usc != NULL)
1077 		hfsc_change_usc(cl, usc, 0);
1078 
1079 	cl->cl_common.classid = classid;
1080 	cl->refcnt    = 1;
1081 	cl->sched     = q;
1082 	cl->cl_parent = parent;
1083 	cl->qdisc = qdisc_create_dflt(sch->dev_queue,
1084 				      &pfifo_qdisc_ops, classid);
1085 	if (cl->qdisc == NULL)
1086 		cl->qdisc = &noop_qdisc;
1087 	INIT_LIST_HEAD(&cl->children);
1088 	cl->vt_tree = RB_ROOT;
1089 	cl->cf_tree = RB_ROOT;
1090 
1091 	sch_tree_lock(sch);
1092 	qdisc_class_hash_insert(&q->clhash, &cl->cl_common);
1093 	list_add_tail(&cl->siblings, &parent->children);
1094 	if (parent->level == 0)
1095 		hfsc_purge_queue(sch, parent);
1096 	hfsc_adjust_levels(parent);
1097 	cl->cl_pcvtoff = parent->cl_cvtoff;
1098 	sch_tree_unlock(sch);
1099 
1100 	qdisc_class_hash_grow(sch, &q->clhash);
1101 
1102 	*arg = (unsigned long)cl;
1103 	return 0;
1104 }
1105 
1106 static void
1107 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
1108 {
1109 	struct hfsc_sched *q = qdisc_priv(sch);
1110 
1111 	tcf_destroy_chain(&cl->filter_list);
1112 	qdisc_destroy(cl->qdisc);
1113 	gen_kill_estimator(&cl->bstats, &cl->rate_est);
1114 	if (cl != &q->root)
1115 		kfree(cl);
1116 }
1117 
1118 static int
1119 hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
1120 {
1121 	struct hfsc_sched *q = qdisc_priv(sch);
1122 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1123 
1124 	if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
1125 		return -EBUSY;
1126 
1127 	sch_tree_lock(sch);
1128 
1129 	list_del(&cl->siblings);
1130 	hfsc_adjust_levels(cl->cl_parent);
1131 
1132 	hfsc_purge_queue(sch, cl);
1133 	qdisc_class_hash_remove(&q->clhash, &cl->cl_common);
1134 
1135 	BUG_ON(--cl->refcnt == 0);
1136 	/*
1137 	 * This shouldn't happen: we "hold" one cops->get() when called
1138 	 * from tc_ctl_tclass; the destroy method is done from cops->put().
1139 	 */
1140 
1141 	sch_tree_unlock(sch);
1142 	return 0;
1143 }
1144 
1145 static struct hfsc_class *
1146 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
1147 {
1148 	struct hfsc_sched *q = qdisc_priv(sch);
1149 	struct hfsc_class *head, *cl;
1150 	struct tcf_result res;
1151 	struct tcf_proto *tcf;
1152 	int result;
1153 
1154 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
1155 	    (cl = hfsc_find_class(skb->priority, sch)) != NULL)
1156 		if (cl->level == 0)
1157 			return cl;
1158 
1159 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1160 	head = &q->root;
1161 	tcf = rcu_dereference_bh(q->root.filter_list);
1162 	while (tcf && (result = tc_classify(skb, tcf, &res, false)) >= 0) {
1163 #ifdef CONFIG_NET_CLS_ACT
1164 		switch (result) {
1165 		case TC_ACT_QUEUED:
1166 		case TC_ACT_STOLEN:
1167 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1168 		case TC_ACT_SHOT:
1169 			return NULL;
1170 		}
1171 #endif
1172 		cl = (struct hfsc_class *)res.class;
1173 		if (!cl) {
1174 			cl = hfsc_find_class(res.classid, sch);
1175 			if (!cl)
1176 				break; /* filter selected invalid classid */
1177 			if (cl->level >= head->level)
1178 				break; /* filter may only point downwards */
1179 		}
1180 
1181 		if (cl->level == 0)
1182 			return cl; /* hit leaf class */
1183 
1184 		/* apply inner filter chain */
1185 		tcf = rcu_dereference_bh(cl->filter_list);
1186 		head = cl;
1187 	}
1188 
1189 	/* classification failed, try default class */
1190 	cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
1191 	if (cl == NULL || cl->level > 0)
1192 		return NULL;
1193 
1194 	return cl;
1195 }
1196 
1197 static int
1198 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1199 		 struct Qdisc **old)
1200 {
1201 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1202 
1203 	if (cl->level > 0)
1204 		return -EINVAL;
1205 	if (new == NULL) {
1206 		new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
1207 					cl->cl_common.classid);
1208 		if (new == NULL)
1209 			new = &noop_qdisc;
1210 	}
1211 
1212 	*old = qdisc_replace(sch, new, &cl->qdisc);
1213 	return 0;
1214 }
1215 
1216 static struct Qdisc *
1217 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
1218 {
1219 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1220 
1221 	if (cl->level == 0)
1222 		return cl->qdisc;
1223 
1224 	return NULL;
1225 }
1226 
1227 static void
1228 hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
1229 {
1230 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1231 
1232 	if (cl->qdisc->q.qlen == 0) {
1233 		update_vf(cl, 0, 0);
1234 		set_passive(cl);
1235 	}
1236 }
1237 
1238 static unsigned long
1239 hfsc_get_class(struct Qdisc *sch, u32 classid)
1240 {
1241 	struct hfsc_class *cl = hfsc_find_class(classid, sch);
1242 
1243 	if (cl != NULL)
1244 		cl->refcnt++;
1245 
1246 	return (unsigned long)cl;
1247 }
1248 
1249 static void
1250 hfsc_put_class(struct Qdisc *sch, unsigned long arg)
1251 {
1252 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1253 
1254 	if (--cl->refcnt == 0)
1255 		hfsc_destroy_class(sch, cl);
1256 }
1257 
1258 static unsigned long
1259 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
1260 {
1261 	struct hfsc_class *p = (struct hfsc_class *)parent;
1262 	struct hfsc_class *cl = hfsc_find_class(classid, sch);
1263 
1264 	if (cl != NULL) {
1265 		if (p != NULL && p->level <= cl->level)
1266 			return 0;
1267 		cl->filter_cnt++;
1268 	}
1269 
1270 	return (unsigned long)cl;
1271 }
1272 
1273 static void
1274 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
1275 {
1276 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1277 
1278 	cl->filter_cnt--;
1279 }
1280 
1281 static struct tcf_proto __rcu **
1282 hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg)
1283 {
1284 	struct hfsc_sched *q = qdisc_priv(sch);
1285 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1286 
1287 	if (cl == NULL)
1288 		cl = &q->root;
1289 
1290 	return &cl->filter_list;
1291 }
1292 
1293 static int
1294 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
1295 {
1296 	struct tc_service_curve tsc;
1297 
1298 	tsc.m1 = sm2m(sc->sm1);
1299 	tsc.d  = dx2d(sc->dx);
1300 	tsc.m2 = sm2m(sc->sm2);
1301 	if (nla_put(skb, attr, sizeof(tsc), &tsc))
1302 		goto nla_put_failure;
1303 
1304 	return skb->len;
1305 
1306  nla_put_failure:
1307 	return -1;
1308 }
1309 
1310 static int
1311 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
1312 {
1313 	if ((cl->cl_flags & HFSC_RSC) &&
1314 	    (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
1315 		goto nla_put_failure;
1316 
1317 	if ((cl->cl_flags & HFSC_FSC) &&
1318 	    (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
1319 		goto nla_put_failure;
1320 
1321 	if ((cl->cl_flags & HFSC_USC) &&
1322 	    (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
1323 		goto nla_put_failure;
1324 
1325 	return skb->len;
1326 
1327  nla_put_failure:
1328 	return -1;
1329 }
1330 
1331 static int
1332 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
1333 		struct tcmsg *tcm)
1334 {
1335 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1336 	struct nlattr *nest;
1337 
1338 	tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid :
1339 					  TC_H_ROOT;
1340 	tcm->tcm_handle = cl->cl_common.classid;
1341 	if (cl->level == 0)
1342 		tcm->tcm_info = cl->qdisc->handle;
1343 
1344 	nest = nla_nest_start(skb, TCA_OPTIONS);
1345 	if (nest == NULL)
1346 		goto nla_put_failure;
1347 	if (hfsc_dump_curves(skb, cl) < 0)
1348 		goto nla_put_failure;
1349 	return nla_nest_end(skb, nest);
1350 
1351  nla_put_failure:
1352 	nla_nest_cancel(skb, nest);
1353 	return -EMSGSIZE;
1354 }
1355 
1356 static int
1357 hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
1358 	struct gnet_dump *d)
1359 {
1360 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1361 	struct tc_hfsc_stats xstats;
1362 
1363 	cl->qstats.backlog = cl->qdisc->qstats.backlog;
1364 	xstats.level   = cl->level;
1365 	xstats.period  = cl->cl_vtperiod;
1366 	xstats.work    = cl->cl_total;
1367 	xstats.rtwork  = cl->cl_cumul;
1368 
1369 	if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch), d, NULL, &cl->bstats) < 0 ||
1370 	    gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
1371 	    gnet_stats_copy_queue(d, NULL, &cl->qstats, cl->qdisc->q.qlen) < 0)
1372 		return -1;
1373 
1374 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
1375 }
1376 
1377 
1378 
1379 static void
1380 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1381 {
1382 	struct hfsc_sched *q = qdisc_priv(sch);
1383 	struct hfsc_class *cl;
1384 	unsigned int i;
1385 
1386 	if (arg->stop)
1387 		return;
1388 
1389 	for (i = 0; i < q->clhash.hashsize; i++) {
1390 		hlist_for_each_entry(cl, &q->clhash.hash[i],
1391 				     cl_common.hnode) {
1392 			if (arg->count < arg->skip) {
1393 				arg->count++;
1394 				continue;
1395 			}
1396 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
1397 				arg->stop = 1;
1398 				return;
1399 			}
1400 			arg->count++;
1401 		}
1402 	}
1403 }
1404 
1405 static void
1406 hfsc_schedule_watchdog(struct Qdisc *sch)
1407 {
1408 	struct hfsc_sched *q = qdisc_priv(sch);
1409 	struct hfsc_class *cl;
1410 	u64 next_time = 0;
1411 
1412 	cl = eltree_get_minel(q);
1413 	if (cl)
1414 		next_time = cl->cl_e;
1415 	if (q->root.cl_cfmin != 0) {
1416 		if (next_time == 0 || next_time > q->root.cl_cfmin)
1417 			next_time = q->root.cl_cfmin;
1418 	}
1419 	WARN_ON(next_time == 0);
1420 	qdisc_watchdog_schedule(&q->watchdog, next_time);
1421 }
1422 
1423 static int
1424 hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1425 {
1426 	struct hfsc_sched *q = qdisc_priv(sch);
1427 	struct tc_hfsc_qopt *qopt;
1428 	int err;
1429 
1430 	if (opt == NULL || nla_len(opt) < sizeof(*qopt))
1431 		return -EINVAL;
1432 	qopt = nla_data(opt);
1433 
1434 	q->defcls = qopt->defcls;
1435 	err = qdisc_class_hash_init(&q->clhash);
1436 	if (err < 0)
1437 		return err;
1438 	q->eligible = RB_ROOT;
1439 
1440 	q->root.cl_common.classid = sch->handle;
1441 	q->root.refcnt  = 1;
1442 	q->root.sched   = q;
1443 	q->root.qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
1444 					  sch->handle);
1445 	if (q->root.qdisc == NULL)
1446 		q->root.qdisc = &noop_qdisc;
1447 	INIT_LIST_HEAD(&q->root.children);
1448 	q->root.vt_tree = RB_ROOT;
1449 	q->root.cf_tree = RB_ROOT;
1450 
1451 	qdisc_class_hash_insert(&q->clhash, &q->root.cl_common);
1452 	qdisc_class_hash_grow(sch, &q->clhash);
1453 
1454 	qdisc_watchdog_init(&q->watchdog, sch);
1455 
1456 	return 0;
1457 }
1458 
1459 static int
1460 hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt)
1461 {
1462 	struct hfsc_sched *q = qdisc_priv(sch);
1463 	struct tc_hfsc_qopt *qopt;
1464 
1465 	if (opt == NULL || nla_len(opt) < sizeof(*qopt))
1466 		return -EINVAL;
1467 	qopt = nla_data(opt);
1468 
1469 	sch_tree_lock(sch);
1470 	q->defcls = qopt->defcls;
1471 	sch_tree_unlock(sch);
1472 
1473 	return 0;
1474 }
1475 
1476 static void
1477 hfsc_reset_class(struct hfsc_class *cl)
1478 {
1479 	cl->cl_total        = 0;
1480 	cl->cl_cumul        = 0;
1481 	cl->cl_d            = 0;
1482 	cl->cl_e            = 0;
1483 	cl->cl_vt           = 0;
1484 	cl->cl_vtadj        = 0;
1485 	cl->cl_vtoff        = 0;
1486 	cl->cl_cvtmin       = 0;
1487 	cl->cl_cvtmax       = 0;
1488 	cl->cl_cvtoff       = 0;
1489 	cl->cl_pcvtoff      = 0;
1490 	cl->cl_vtperiod     = 0;
1491 	cl->cl_parentperiod = 0;
1492 	cl->cl_f            = 0;
1493 	cl->cl_myf          = 0;
1494 	cl->cl_myfadj       = 0;
1495 	cl->cl_cfmin        = 0;
1496 	cl->cl_nactive      = 0;
1497 
1498 	cl->vt_tree = RB_ROOT;
1499 	cl->cf_tree = RB_ROOT;
1500 	qdisc_reset(cl->qdisc);
1501 
1502 	if (cl->cl_flags & HFSC_RSC)
1503 		rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
1504 	if (cl->cl_flags & HFSC_FSC)
1505 		rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
1506 	if (cl->cl_flags & HFSC_USC)
1507 		rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
1508 }
1509 
1510 static void
1511 hfsc_reset_qdisc(struct Qdisc *sch)
1512 {
1513 	struct hfsc_sched *q = qdisc_priv(sch);
1514 	struct hfsc_class *cl;
1515 	unsigned int i;
1516 
1517 	for (i = 0; i < q->clhash.hashsize; i++) {
1518 		hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode)
1519 			hfsc_reset_class(cl);
1520 	}
1521 	q->eligible = RB_ROOT;
1522 	qdisc_watchdog_cancel(&q->watchdog);
1523 	sch->qstats.backlog = 0;
1524 	sch->q.qlen = 0;
1525 }
1526 
1527 static void
1528 hfsc_destroy_qdisc(struct Qdisc *sch)
1529 {
1530 	struct hfsc_sched *q = qdisc_priv(sch);
1531 	struct hlist_node *next;
1532 	struct hfsc_class *cl;
1533 	unsigned int i;
1534 
1535 	for (i = 0; i < q->clhash.hashsize; i++) {
1536 		hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode)
1537 			tcf_destroy_chain(&cl->filter_list);
1538 	}
1539 	for (i = 0; i < q->clhash.hashsize; i++) {
1540 		hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1541 					  cl_common.hnode)
1542 			hfsc_destroy_class(sch, cl);
1543 	}
1544 	qdisc_class_hash_destroy(&q->clhash);
1545 	qdisc_watchdog_cancel(&q->watchdog);
1546 }
1547 
1548 static int
1549 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
1550 {
1551 	struct hfsc_sched *q = qdisc_priv(sch);
1552 	unsigned char *b = skb_tail_pointer(skb);
1553 	struct tc_hfsc_qopt qopt;
1554 
1555 	qopt.defcls = q->defcls;
1556 	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1557 		goto nla_put_failure;
1558 	return skb->len;
1559 
1560  nla_put_failure:
1561 	nlmsg_trim(skb, b);
1562 	return -1;
1563 }
1564 
1565 static int
1566 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free)
1567 {
1568 	struct hfsc_class *cl;
1569 	int uninitialized_var(err);
1570 
1571 	cl = hfsc_classify(skb, sch, &err);
1572 	if (cl == NULL) {
1573 		if (err & __NET_XMIT_BYPASS)
1574 			qdisc_qstats_drop(sch);
1575 		__qdisc_drop(skb, to_free);
1576 		return err;
1577 	}
1578 
1579 	err = qdisc_enqueue(skb, cl->qdisc, to_free);
1580 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1581 		if (net_xmit_drop_count(err)) {
1582 			cl->qstats.drops++;
1583 			qdisc_qstats_drop(sch);
1584 		}
1585 		return err;
1586 	}
1587 
1588 	if (cl->qdisc->q.qlen == 1) {
1589 		set_active(cl, qdisc_pkt_len(skb));
1590 		/*
1591 		 * If this is the first packet, isolate the head so an eventual
1592 		 * head drop before the first dequeue operation has no chance
1593 		 * to invalidate the deadline.
1594 		 */
1595 		if (cl->cl_flags & HFSC_RSC)
1596 			cl->qdisc->ops->peek(cl->qdisc);
1597 
1598 	}
1599 
1600 	qdisc_qstats_backlog_inc(sch, skb);
1601 	sch->q.qlen++;
1602 
1603 	return NET_XMIT_SUCCESS;
1604 }
1605 
1606 static struct sk_buff *
1607 hfsc_dequeue(struct Qdisc *sch)
1608 {
1609 	struct hfsc_sched *q = qdisc_priv(sch);
1610 	struct hfsc_class *cl;
1611 	struct sk_buff *skb;
1612 	u64 cur_time;
1613 	unsigned int next_len;
1614 	int realtime = 0;
1615 
1616 	if (sch->q.qlen == 0)
1617 		return NULL;
1618 
1619 	cur_time = psched_get_time();
1620 
1621 	/*
1622 	 * if there are eligible classes, use real-time criteria.
1623 	 * find the class with the minimum deadline among
1624 	 * the eligible classes.
1625 	 */
1626 	cl = eltree_get_mindl(q, cur_time);
1627 	if (cl) {
1628 		realtime = 1;
1629 	} else {
1630 		/*
1631 		 * use link-sharing criteria
1632 		 * get the class with the minimum vt in the hierarchy
1633 		 */
1634 		cl = vttree_get_minvt(&q->root, cur_time);
1635 		if (cl == NULL) {
1636 			qdisc_qstats_overlimit(sch);
1637 			hfsc_schedule_watchdog(sch);
1638 			return NULL;
1639 		}
1640 	}
1641 
1642 	skb = qdisc_dequeue_peeked(cl->qdisc);
1643 	if (skb == NULL) {
1644 		qdisc_warn_nonwc("HFSC", cl->qdisc);
1645 		return NULL;
1646 	}
1647 
1648 	bstats_update(&cl->bstats, skb);
1649 	update_vf(cl, qdisc_pkt_len(skb), cur_time);
1650 	if (realtime)
1651 		cl->cl_cumul += qdisc_pkt_len(skb);
1652 
1653 	if (cl->qdisc->q.qlen != 0) {
1654 		if (cl->cl_flags & HFSC_RSC) {
1655 			/* update ed */
1656 			next_len = qdisc_peek_len(cl->qdisc);
1657 			if (realtime)
1658 				update_ed(cl, next_len);
1659 			else
1660 				update_d(cl, next_len);
1661 		}
1662 	} else {
1663 		/* the class becomes passive */
1664 		set_passive(cl);
1665 	}
1666 
1667 	qdisc_bstats_update(sch, skb);
1668 	qdisc_qstats_backlog_dec(sch, skb);
1669 	sch->q.qlen--;
1670 
1671 	return skb;
1672 }
1673 
1674 static const struct Qdisc_class_ops hfsc_class_ops = {
1675 	.change		= hfsc_change_class,
1676 	.delete		= hfsc_delete_class,
1677 	.graft		= hfsc_graft_class,
1678 	.leaf		= hfsc_class_leaf,
1679 	.qlen_notify	= hfsc_qlen_notify,
1680 	.get		= hfsc_get_class,
1681 	.put		= hfsc_put_class,
1682 	.bind_tcf	= hfsc_bind_tcf,
1683 	.unbind_tcf	= hfsc_unbind_tcf,
1684 	.tcf_chain	= hfsc_tcf_chain,
1685 	.dump		= hfsc_dump_class,
1686 	.dump_stats	= hfsc_dump_class_stats,
1687 	.walk		= hfsc_walk
1688 };
1689 
1690 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = {
1691 	.id		= "hfsc",
1692 	.init		= hfsc_init_qdisc,
1693 	.change		= hfsc_change_qdisc,
1694 	.reset		= hfsc_reset_qdisc,
1695 	.destroy	= hfsc_destroy_qdisc,
1696 	.dump		= hfsc_dump_qdisc,
1697 	.enqueue	= hfsc_enqueue,
1698 	.dequeue	= hfsc_dequeue,
1699 	.peek		= qdisc_peek_dequeued,
1700 	.cl_ops		= &hfsc_class_ops,
1701 	.priv_size	= sizeof(struct hfsc_sched),
1702 	.owner		= THIS_MODULE
1703 };
1704 
1705 static int __init
1706 hfsc_init(void)
1707 {
1708 	return register_qdisc(&hfsc_qdisc_ops);
1709 }
1710 
1711 static void __exit
1712 hfsc_cleanup(void)
1713 {
1714 	unregister_qdisc(&hfsc_qdisc_ops);
1715 }
1716 
1717 MODULE_LICENSE("GPL");
1718 module_init(hfsc_init);
1719 module_exit(hfsc_cleanup);
1720