1 /* 2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net> 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 2 7 * of the License, or (at your option) any later version. 8 * 9 * 2003-10-17 - Ported from altq 10 */ 11 /* 12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved. 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation is hereby granted (including for commercial or 16 * for-profit use), provided that both the copyright notice and this 17 * permission notice appear in all copies of the software, derivative 18 * works, or modified versions, and any portions thereof. 19 * 20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF 21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS 22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED 23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 33 * DAMAGE. 34 * 35 * Carnegie Mellon encourages (but does not require) users of this 36 * software to return any improvements or extensions that they make, 37 * and to grant Carnegie Mellon the rights to redistribute these 38 * changes without encumbrance. 39 */ 40 /* 41 * H-FSC is described in Proceedings of SIGCOMM'97, 42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing, 43 * Real-Time and Priority Service" 44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng. 45 * 46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing. 47 * when a class has an upperlimit, the fit-time is computed from the 48 * upperlimit service curve. the link-sharing scheduler does not schedule 49 * a class whose fit-time exceeds the current time. 50 */ 51 52 #include <linux/kernel.h> 53 #include <linux/module.h> 54 #include <linux/types.h> 55 #include <linux/errno.h> 56 #include <linux/compiler.h> 57 #include <linux/spinlock.h> 58 #include <linux/skbuff.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/list.h> 62 #include <linux/rbtree.h> 63 #include <linux/init.h> 64 #include <linux/rtnetlink.h> 65 #include <linux/pkt_sched.h> 66 #include <net/netlink.h> 67 #include <net/pkt_sched.h> 68 #include <net/pkt_cls.h> 69 #include <asm/div64.h> 70 71 /* 72 * kernel internal service curve representation: 73 * coordinates are given by 64 bit unsigned integers. 74 * x-axis: unit is clock count. 75 * y-axis: unit is byte. 76 * 77 * The service curve parameters are converted to the internal 78 * representation. The slope values are scaled to avoid overflow. 79 * the inverse slope values as well as the y-projection of the 1st 80 * segment are kept in order to avoid 64-bit divide operations 81 * that are expensive on 32-bit architectures. 82 */ 83 84 struct internal_sc { 85 u64 sm1; /* scaled slope of the 1st segment */ 86 u64 ism1; /* scaled inverse-slope of the 1st segment */ 87 u64 dx; /* the x-projection of the 1st segment */ 88 u64 dy; /* the y-projection of the 1st segment */ 89 u64 sm2; /* scaled slope of the 2nd segment */ 90 u64 ism2; /* scaled inverse-slope of the 2nd segment */ 91 }; 92 93 /* runtime service curve */ 94 struct runtime_sc { 95 u64 x; /* current starting position on x-axis */ 96 u64 y; /* current starting position on y-axis */ 97 u64 sm1; /* scaled slope of the 1st segment */ 98 u64 ism1; /* scaled inverse-slope of the 1st segment */ 99 u64 dx; /* the x-projection of the 1st segment */ 100 u64 dy; /* the y-projection of the 1st segment */ 101 u64 sm2; /* scaled slope of the 2nd segment */ 102 u64 ism2; /* scaled inverse-slope of the 2nd segment */ 103 }; 104 105 enum hfsc_class_flags { 106 HFSC_RSC = 0x1, 107 HFSC_FSC = 0x2, 108 HFSC_USC = 0x4 109 }; 110 111 struct hfsc_class { 112 struct Qdisc_class_common cl_common; 113 unsigned int refcnt; /* usage count */ 114 115 struct gnet_stats_basic_packed bstats; 116 struct gnet_stats_queue qstats; 117 struct gnet_stats_rate_est64 rate_est; 118 struct tcf_proto __rcu *filter_list; /* filter list */ 119 unsigned int filter_cnt; /* filter count */ 120 unsigned int level; /* class level in hierarchy */ 121 122 struct hfsc_sched *sched; /* scheduler data */ 123 struct hfsc_class *cl_parent; /* parent class */ 124 struct list_head siblings; /* sibling classes */ 125 struct list_head children; /* child classes */ 126 struct Qdisc *qdisc; /* leaf qdisc */ 127 128 struct rb_node el_node; /* qdisc's eligible tree member */ 129 struct rb_root vt_tree; /* active children sorted by cl_vt */ 130 struct rb_node vt_node; /* parent's vt_tree member */ 131 struct rb_root cf_tree; /* active children sorted by cl_f */ 132 struct rb_node cf_node; /* parent's cf_heap member */ 133 134 u64 cl_total; /* total work in bytes */ 135 u64 cl_cumul; /* cumulative work in bytes done by 136 real-time criteria */ 137 138 u64 cl_d; /* deadline*/ 139 u64 cl_e; /* eligible time */ 140 u64 cl_vt; /* virtual time */ 141 u64 cl_f; /* time when this class will fit for 142 link-sharing, max(myf, cfmin) */ 143 u64 cl_myf; /* my fit-time (calculated from this 144 class's own upperlimit curve) */ 145 u64 cl_myfadj; /* my fit-time adjustment (to cancel 146 history dependence) */ 147 u64 cl_cfmin; /* earliest children's fit-time (used 148 with cl_myf to obtain cl_f) */ 149 u64 cl_cvtmin; /* minimal virtual time among the 150 children fit for link-sharing 151 (monotonic within a period) */ 152 u64 cl_vtadj; /* intra-period cumulative vt 153 adjustment */ 154 u64 cl_vtoff; /* inter-period cumulative vt offset */ 155 u64 cl_cvtmax; /* max child's vt in the last period */ 156 u64 cl_cvtoff; /* cumulative cvtmax of all periods */ 157 u64 cl_pcvtoff; /* parent's cvtoff at initialization 158 time */ 159 160 struct internal_sc cl_rsc; /* internal real-time service curve */ 161 struct internal_sc cl_fsc; /* internal fair service curve */ 162 struct internal_sc cl_usc; /* internal upperlimit service curve */ 163 struct runtime_sc cl_deadline; /* deadline curve */ 164 struct runtime_sc cl_eligible; /* eligible curve */ 165 struct runtime_sc cl_virtual; /* virtual curve */ 166 struct runtime_sc cl_ulimit; /* upperlimit curve */ 167 168 u8 cl_flags; /* which curves are valid */ 169 u32 cl_vtperiod; /* vt period sequence number */ 170 u32 cl_parentperiod;/* parent's vt period sequence number*/ 171 u32 cl_nactive; /* number of active children */ 172 }; 173 174 struct hfsc_sched { 175 u16 defcls; /* default class id */ 176 struct hfsc_class root; /* root class */ 177 struct Qdisc_class_hash clhash; /* class hash */ 178 struct rb_root eligible; /* eligible tree */ 179 struct qdisc_watchdog watchdog; /* watchdog timer */ 180 }; 181 182 #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */ 183 184 185 /* 186 * eligible tree holds backlogged classes being sorted by their eligible times. 187 * there is one eligible tree per hfsc instance. 188 */ 189 190 static void 191 eltree_insert(struct hfsc_class *cl) 192 { 193 struct rb_node **p = &cl->sched->eligible.rb_node; 194 struct rb_node *parent = NULL; 195 struct hfsc_class *cl1; 196 197 while (*p != NULL) { 198 parent = *p; 199 cl1 = rb_entry(parent, struct hfsc_class, el_node); 200 if (cl->cl_e >= cl1->cl_e) 201 p = &parent->rb_right; 202 else 203 p = &parent->rb_left; 204 } 205 rb_link_node(&cl->el_node, parent, p); 206 rb_insert_color(&cl->el_node, &cl->sched->eligible); 207 } 208 209 static inline void 210 eltree_remove(struct hfsc_class *cl) 211 { 212 rb_erase(&cl->el_node, &cl->sched->eligible); 213 } 214 215 static inline void 216 eltree_update(struct hfsc_class *cl) 217 { 218 eltree_remove(cl); 219 eltree_insert(cl); 220 } 221 222 /* find the class with the minimum deadline among the eligible classes */ 223 static inline struct hfsc_class * 224 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time) 225 { 226 struct hfsc_class *p, *cl = NULL; 227 struct rb_node *n; 228 229 for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) { 230 p = rb_entry(n, struct hfsc_class, el_node); 231 if (p->cl_e > cur_time) 232 break; 233 if (cl == NULL || p->cl_d < cl->cl_d) 234 cl = p; 235 } 236 return cl; 237 } 238 239 /* find the class with minimum eligible time among the eligible classes */ 240 static inline struct hfsc_class * 241 eltree_get_minel(struct hfsc_sched *q) 242 { 243 struct rb_node *n; 244 245 n = rb_first(&q->eligible); 246 if (n == NULL) 247 return NULL; 248 return rb_entry(n, struct hfsc_class, el_node); 249 } 250 251 /* 252 * vttree holds holds backlogged child classes being sorted by their virtual 253 * time. each intermediate class has one vttree. 254 */ 255 static void 256 vttree_insert(struct hfsc_class *cl) 257 { 258 struct rb_node **p = &cl->cl_parent->vt_tree.rb_node; 259 struct rb_node *parent = NULL; 260 struct hfsc_class *cl1; 261 262 while (*p != NULL) { 263 parent = *p; 264 cl1 = rb_entry(parent, struct hfsc_class, vt_node); 265 if (cl->cl_vt >= cl1->cl_vt) 266 p = &parent->rb_right; 267 else 268 p = &parent->rb_left; 269 } 270 rb_link_node(&cl->vt_node, parent, p); 271 rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree); 272 } 273 274 static inline void 275 vttree_remove(struct hfsc_class *cl) 276 { 277 rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree); 278 } 279 280 static inline void 281 vttree_update(struct hfsc_class *cl) 282 { 283 vttree_remove(cl); 284 vttree_insert(cl); 285 } 286 287 static inline struct hfsc_class * 288 vttree_firstfit(struct hfsc_class *cl, u64 cur_time) 289 { 290 struct hfsc_class *p; 291 struct rb_node *n; 292 293 for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) { 294 p = rb_entry(n, struct hfsc_class, vt_node); 295 if (p->cl_f <= cur_time) 296 return p; 297 } 298 return NULL; 299 } 300 301 /* 302 * get the leaf class with the minimum vt in the hierarchy 303 */ 304 static struct hfsc_class * 305 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time) 306 { 307 /* if root-class's cfmin is bigger than cur_time nothing to do */ 308 if (cl->cl_cfmin > cur_time) 309 return NULL; 310 311 while (cl->level > 0) { 312 cl = vttree_firstfit(cl, cur_time); 313 if (cl == NULL) 314 return NULL; 315 /* 316 * update parent's cl_cvtmin. 317 */ 318 if (cl->cl_parent->cl_cvtmin < cl->cl_vt) 319 cl->cl_parent->cl_cvtmin = cl->cl_vt; 320 } 321 return cl; 322 } 323 324 static void 325 cftree_insert(struct hfsc_class *cl) 326 { 327 struct rb_node **p = &cl->cl_parent->cf_tree.rb_node; 328 struct rb_node *parent = NULL; 329 struct hfsc_class *cl1; 330 331 while (*p != NULL) { 332 parent = *p; 333 cl1 = rb_entry(parent, struct hfsc_class, cf_node); 334 if (cl->cl_f >= cl1->cl_f) 335 p = &parent->rb_right; 336 else 337 p = &parent->rb_left; 338 } 339 rb_link_node(&cl->cf_node, parent, p); 340 rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree); 341 } 342 343 static inline void 344 cftree_remove(struct hfsc_class *cl) 345 { 346 rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree); 347 } 348 349 static inline void 350 cftree_update(struct hfsc_class *cl) 351 { 352 cftree_remove(cl); 353 cftree_insert(cl); 354 } 355 356 /* 357 * service curve support functions 358 * 359 * external service curve parameters 360 * m: bps 361 * d: us 362 * internal service curve parameters 363 * sm: (bytes/psched_us) << SM_SHIFT 364 * ism: (psched_us/byte) << ISM_SHIFT 365 * dx: psched_us 366 * 367 * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us. 368 * 369 * sm and ism are scaled in order to keep effective digits. 370 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective 371 * digits in decimal using the following table. 372 * 373 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps 374 * ------------+------------------------------------------------------- 375 * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3 376 * 377 * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125 378 * 379 * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18. 380 */ 381 #define SM_SHIFT (30 - PSCHED_SHIFT) 382 #define ISM_SHIFT (8 + PSCHED_SHIFT) 383 384 #define SM_MASK ((1ULL << SM_SHIFT) - 1) 385 #define ISM_MASK ((1ULL << ISM_SHIFT) - 1) 386 387 static inline u64 388 seg_x2y(u64 x, u64 sm) 389 { 390 u64 y; 391 392 /* 393 * compute 394 * y = x * sm >> SM_SHIFT 395 * but divide it for the upper and lower bits to avoid overflow 396 */ 397 y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT); 398 return y; 399 } 400 401 static inline u64 402 seg_y2x(u64 y, u64 ism) 403 { 404 u64 x; 405 406 if (y == 0) 407 x = 0; 408 else if (ism == HT_INFINITY) 409 x = HT_INFINITY; 410 else { 411 x = (y >> ISM_SHIFT) * ism 412 + (((y & ISM_MASK) * ism) >> ISM_SHIFT); 413 } 414 return x; 415 } 416 417 /* Convert m (bps) into sm (bytes/psched us) */ 418 static u64 419 m2sm(u32 m) 420 { 421 u64 sm; 422 423 sm = ((u64)m << SM_SHIFT); 424 sm += PSCHED_TICKS_PER_SEC - 1; 425 do_div(sm, PSCHED_TICKS_PER_SEC); 426 return sm; 427 } 428 429 /* convert m (bps) into ism (psched us/byte) */ 430 static u64 431 m2ism(u32 m) 432 { 433 u64 ism; 434 435 if (m == 0) 436 ism = HT_INFINITY; 437 else { 438 ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT); 439 ism += m - 1; 440 do_div(ism, m); 441 } 442 return ism; 443 } 444 445 /* convert d (us) into dx (psched us) */ 446 static u64 447 d2dx(u32 d) 448 { 449 u64 dx; 450 451 dx = ((u64)d * PSCHED_TICKS_PER_SEC); 452 dx += USEC_PER_SEC - 1; 453 do_div(dx, USEC_PER_SEC); 454 return dx; 455 } 456 457 /* convert sm (bytes/psched us) into m (bps) */ 458 static u32 459 sm2m(u64 sm) 460 { 461 u64 m; 462 463 m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT; 464 return (u32)m; 465 } 466 467 /* convert dx (psched us) into d (us) */ 468 static u32 469 dx2d(u64 dx) 470 { 471 u64 d; 472 473 d = dx * USEC_PER_SEC; 474 do_div(d, PSCHED_TICKS_PER_SEC); 475 return (u32)d; 476 } 477 478 static void 479 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc) 480 { 481 isc->sm1 = m2sm(sc->m1); 482 isc->ism1 = m2ism(sc->m1); 483 isc->dx = d2dx(sc->d); 484 isc->dy = seg_x2y(isc->dx, isc->sm1); 485 isc->sm2 = m2sm(sc->m2); 486 isc->ism2 = m2ism(sc->m2); 487 } 488 489 /* 490 * initialize the runtime service curve with the given internal 491 * service curve starting at (x, y). 492 */ 493 static void 494 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) 495 { 496 rtsc->x = x; 497 rtsc->y = y; 498 rtsc->sm1 = isc->sm1; 499 rtsc->ism1 = isc->ism1; 500 rtsc->dx = isc->dx; 501 rtsc->dy = isc->dy; 502 rtsc->sm2 = isc->sm2; 503 rtsc->ism2 = isc->ism2; 504 } 505 506 /* 507 * calculate the y-projection of the runtime service curve by the 508 * given x-projection value 509 */ 510 static u64 511 rtsc_y2x(struct runtime_sc *rtsc, u64 y) 512 { 513 u64 x; 514 515 if (y < rtsc->y) 516 x = rtsc->x; 517 else if (y <= rtsc->y + rtsc->dy) { 518 /* x belongs to the 1st segment */ 519 if (rtsc->dy == 0) 520 x = rtsc->x + rtsc->dx; 521 else 522 x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1); 523 } else { 524 /* x belongs to the 2nd segment */ 525 x = rtsc->x + rtsc->dx 526 + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2); 527 } 528 return x; 529 } 530 531 static u64 532 rtsc_x2y(struct runtime_sc *rtsc, u64 x) 533 { 534 u64 y; 535 536 if (x <= rtsc->x) 537 y = rtsc->y; 538 else if (x <= rtsc->x + rtsc->dx) 539 /* y belongs to the 1st segment */ 540 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1); 541 else 542 /* y belongs to the 2nd segment */ 543 y = rtsc->y + rtsc->dy 544 + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2); 545 return y; 546 } 547 548 /* 549 * update the runtime service curve by taking the minimum of the current 550 * runtime service curve and the service curve starting at (x, y). 551 */ 552 static void 553 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) 554 { 555 u64 y1, y2, dx, dy; 556 u32 dsm; 557 558 if (isc->sm1 <= isc->sm2) { 559 /* service curve is convex */ 560 y1 = rtsc_x2y(rtsc, x); 561 if (y1 < y) 562 /* the current rtsc is smaller */ 563 return; 564 rtsc->x = x; 565 rtsc->y = y; 566 return; 567 } 568 569 /* 570 * service curve is concave 571 * compute the two y values of the current rtsc 572 * y1: at x 573 * y2: at (x + dx) 574 */ 575 y1 = rtsc_x2y(rtsc, x); 576 if (y1 <= y) { 577 /* rtsc is below isc, no change to rtsc */ 578 return; 579 } 580 581 y2 = rtsc_x2y(rtsc, x + isc->dx); 582 if (y2 >= y + isc->dy) { 583 /* rtsc is above isc, replace rtsc by isc */ 584 rtsc->x = x; 585 rtsc->y = y; 586 rtsc->dx = isc->dx; 587 rtsc->dy = isc->dy; 588 return; 589 } 590 591 /* 592 * the two curves intersect 593 * compute the offsets (dx, dy) using the reverse 594 * function of seg_x2y() 595 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y) 596 */ 597 dx = (y1 - y) << SM_SHIFT; 598 dsm = isc->sm1 - isc->sm2; 599 do_div(dx, dsm); 600 /* 601 * check if (x, y1) belongs to the 1st segment of rtsc. 602 * if so, add the offset. 603 */ 604 if (rtsc->x + rtsc->dx > x) 605 dx += rtsc->x + rtsc->dx - x; 606 dy = seg_x2y(dx, isc->sm1); 607 608 rtsc->x = x; 609 rtsc->y = y; 610 rtsc->dx = dx; 611 rtsc->dy = dy; 612 } 613 614 static void 615 init_ed(struct hfsc_class *cl, unsigned int next_len) 616 { 617 u64 cur_time = psched_get_time(); 618 619 /* update the deadline curve */ 620 rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); 621 622 /* 623 * update the eligible curve. 624 * for concave, it is equal to the deadline curve. 625 * for convex, it is a linear curve with slope m2. 626 */ 627 cl->cl_eligible = cl->cl_deadline; 628 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { 629 cl->cl_eligible.dx = 0; 630 cl->cl_eligible.dy = 0; 631 } 632 633 /* compute e and d */ 634 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); 635 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 636 637 eltree_insert(cl); 638 } 639 640 static void 641 update_ed(struct hfsc_class *cl, unsigned int next_len) 642 { 643 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); 644 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 645 646 eltree_update(cl); 647 } 648 649 static inline void 650 update_d(struct hfsc_class *cl, unsigned int next_len) 651 { 652 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 653 } 654 655 static inline void 656 update_cfmin(struct hfsc_class *cl) 657 { 658 struct rb_node *n = rb_first(&cl->cf_tree); 659 struct hfsc_class *p; 660 661 if (n == NULL) { 662 cl->cl_cfmin = 0; 663 return; 664 } 665 p = rb_entry(n, struct hfsc_class, cf_node); 666 cl->cl_cfmin = p->cl_f; 667 } 668 669 static void 670 init_vf(struct hfsc_class *cl, unsigned int len) 671 { 672 struct hfsc_class *max_cl; 673 struct rb_node *n; 674 u64 vt, f, cur_time; 675 int go_active; 676 677 cur_time = 0; 678 go_active = 1; 679 for (; cl->cl_parent != NULL; cl = cl->cl_parent) { 680 if (go_active && cl->cl_nactive++ == 0) 681 go_active = 1; 682 else 683 go_active = 0; 684 685 if (go_active) { 686 n = rb_last(&cl->cl_parent->vt_tree); 687 if (n != NULL) { 688 max_cl = rb_entry(n, struct hfsc_class, vt_node); 689 /* 690 * set vt to the average of the min and max 691 * classes. if the parent's period didn't 692 * change, don't decrease vt of the class. 693 */ 694 vt = max_cl->cl_vt; 695 if (cl->cl_parent->cl_cvtmin != 0) 696 vt = (cl->cl_parent->cl_cvtmin + vt)/2; 697 698 if (cl->cl_parent->cl_vtperiod != 699 cl->cl_parentperiod || vt > cl->cl_vt) 700 cl->cl_vt = vt; 701 } else { 702 /* 703 * first child for a new parent backlog period. 704 * add parent's cvtmax to cvtoff to make a new 705 * vt (vtoff + vt) larger than the vt in the 706 * last period for all children. 707 */ 708 vt = cl->cl_parent->cl_cvtmax; 709 cl->cl_parent->cl_cvtoff += vt; 710 cl->cl_parent->cl_cvtmax = 0; 711 cl->cl_parent->cl_cvtmin = 0; 712 cl->cl_vt = 0; 713 } 714 715 cl->cl_vtoff = cl->cl_parent->cl_cvtoff - 716 cl->cl_pcvtoff; 717 718 /* update the virtual curve */ 719 vt = cl->cl_vt + cl->cl_vtoff; 720 rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt, 721 cl->cl_total); 722 if (cl->cl_virtual.x == vt) { 723 cl->cl_virtual.x -= cl->cl_vtoff; 724 cl->cl_vtoff = 0; 725 } 726 cl->cl_vtadj = 0; 727 728 cl->cl_vtperiod++; /* increment vt period */ 729 cl->cl_parentperiod = cl->cl_parent->cl_vtperiod; 730 if (cl->cl_parent->cl_nactive == 0) 731 cl->cl_parentperiod++; 732 cl->cl_f = 0; 733 734 vttree_insert(cl); 735 cftree_insert(cl); 736 737 if (cl->cl_flags & HFSC_USC) { 738 /* class has upper limit curve */ 739 if (cur_time == 0) 740 cur_time = psched_get_time(); 741 742 /* update the ulimit curve */ 743 rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time, 744 cl->cl_total); 745 /* compute myf */ 746 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, 747 cl->cl_total); 748 cl->cl_myfadj = 0; 749 } 750 } 751 752 f = max(cl->cl_myf, cl->cl_cfmin); 753 if (f != cl->cl_f) { 754 cl->cl_f = f; 755 cftree_update(cl); 756 } 757 update_cfmin(cl->cl_parent); 758 } 759 } 760 761 static void 762 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time) 763 { 764 u64 f; /* , myf_bound, delta; */ 765 int go_passive = 0; 766 767 if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC) 768 go_passive = 1; 769 770 for (; cl->cl_parent != NULL; cl = cl->cl_parent) { 771 cl->cl_total += len; 772 773 if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0) 774 continue; 775 776 if (go_passive && --cl->cl_nactive == 0) 777 go_passive = 1; 778 else 779 go_passive = 0; 780 781 /* update vt */ 782 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total) 783 - cl->cl_vtoff + cl->cl_vtadj; 784 785 /* 786 * if vt of the class is smaller than cvtmin, 787 * the class was skipped in the past due to non-fit. 788 * if so, we need to adjust vtadj. 789 */ 790 if (cl->cl_vt < cl->cl_parent->cl_cvtmin) { 791 cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt; 792 cl->cl_vt = cl->cl_parent->cl_cvtmin; 793 } 794 795 if (go_passive) { 796 /* no more active child, going passive */ 797 798 /* update cvtmax of the parent class */ 799 if (cl->cl_vt > cl->cl_parent->cl_cvtmax) 800 cl->cl_parent->cl_cvtmax = cl->cl_vt; 801 802 /* remove this class from the vt tree */ 803 vttree_remove(cl); 804 805 cftree_remove(cl); 806 update_cfmin(cl->cl_parent); 807 808 continue; 809 } 810 811 /* update the vt tree */ 812 vttree_update(cl); 813 814 /* update f */ 815 if (cl->cl_flags & HFSC_USC) { 816 cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit, 817 cl->cl_total); 818 #if 0 819 /* 820 * This code causes classes to stay way under their 821 * limit when multiple classes are used at gigabit 822 * speed. needs investigation. -kaber 823 */ 824 /* 825 * if myf lags behind by more than one clock tick 826 * from the current time, adjust myfadj to prevent 827 * a rate-limited class from going greedy. 828 * in a steady state under rate-limiting, myf 829 * fluctuates within one clock tick. 830 */ 831 myf_bound = cur_time - PSCHED_JIFFIE2US(1); 832 if (cl->cl_myf < myf_bound) { 833 delta = cur_time - cl->cl_myf; 834 cl->cl_myfadj += delta; 835 cl->cl_myf += delta; 836 } 837 #endif 838 } 839 840 f = max(cl->cl_myf, cl->cl_cfmin); 841 if (f != cl->cl_f) { 842 cl->cl_f = f; 843 cftree_update(cl); 844 update_cfmin(cl->cl_parent); 845 } 846 } 847 } 848 849 static void 850 set_active(struct hfsc_class *cl, unsigned int len) 851 { 852 if (cl->cl_flags & HFSC_RSC) 853 init_ed(cl, len); 854 if (cl->cl_flags & HFSC_FSC) 855 init_vf(cl, len); 856 857 } 858 859 static void 860 set_passive(struct hfsc_class *cl) 861 { 862 if (cl->cl_flags & HFSC_RSC) 863 eltree_remove(cl); 864 865 /* 866 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0) 867 * needs to be called explicitly to remove a class from vttree. 868 */ 869 } 870 871 static unsigned int 872 qdisc_peek_len(struct Qdisc *sch) 873 { 874 struct sk_buff *skb; 875 unsigned int len; 876 877 skb = sch->ops->peek(sch); 878 if (unlikely(skb == NULL)) { 879 qdisc_warn_nonwc("qdisc_peek_len", sch); 880 return 0; 881 } 882 len = qdisc_pkt_len(skb); 883 884 return len; 885 } 886 887 static void 888 hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl) 889 { 890 unsigned int len = cl->qdisc->q.qlen; 891 unsigned int backlog = cl->qdisc->qstats.backlog; 892 893 qdisc_reset(cl->qdisc); 894 qdisc_tree_reduce_backlog(cl->qdisc, len, backlog); 895 } 896 897 static void 898 hfsc_adjust_levels(struct hfsc_class *cl) 899 { 900 struct hfsc_class *p; 901 unsigned int level; 902 903 do { 904 level = 0; 905 list_for_each_entry(p, &cl->children, siblings) { 906 if (p->level >= level) 907 level = p->level + 1; 908 } 909 cl->level = level; 910 } while ((cl = cl->cl_parent) != NULL); 911 } 912 913 static inline struct hfsc_class * 914 hfsc_find_class(u32 classid, struct Qdisc *sch) 915 { 916 struct hfsc_sched *q = qdisc_priv(sch); 917 struct Qdisc_class_common *clc; 918 919 clc = qdisc_class_find(&q->clhash, classid); 920 if (clc == NULL) 921 return NULL; 922 return container_of(clc, struct hfsc_class, cl_common); 923 } 924 925 static void 926 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc, 927 u64 cur_time) 928 { 929 sc2isc(rsc, &cl->cl_rsc); 930 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); 931 cl->cl_eligible = cl->cl_deadline; 932 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { 933 cl->cl_eligible.dx = 0; 934 cl->cl_eligible.dy = 0; 935 } 936 cl->cl_flags |= HFSC_RSC; 937 } 938 939 static void 940 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc) 941 { 942 sc2isc(fsc, &cl->cl_fsc); 943 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vtoff + cl->cl_vt, cl->cl_total); 944 cl->cl_flags |= HFSC_FSC; 945 } 946 947 static void 948 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc, 949 u64 cur_time) 950 { 951 sc2isc(usc, &cl->cl_usc); 952 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total); 953 cl->cl_flags |= HFSC_USC; 954 } 955 956 static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = { 957 [TCA_HFSC_RSC] = { .len = sizeof(struct tc_service_curve) }, 958 [TCA_HFSC_FSC] = { .len = sizeof(struct tc_service_curve) }, 959 [TCA_HFSC_USC] = { .len = sizeof(struct tc_service_curve) }, 960 }; 961 962 static int 963 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 964 struct nlattr **tca, unsigned long *arg) 965 { 966 struct hfsc_sched *q = qdisc_priv(sch); 967 struct hfsc_class *cl = (struct hfsc_class *)*arg; 968 struct hfsc_class *parent = NULL; 969 struct nlattr *opt = tca[TCA_OPTIONS]; 970 struct nlattr *tb[TCA_HFSC_MAX + 1]; 971 struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL; 972 u64 cur_time; 973 int err; 974 975 if (opt == NULL) 976 return -EINVAL; 977 978 err = nla_parse_nested(tb, TCA_HFSC_MAX, opt, hfsc_policy); 979 if (err < 0) 980 return err; 981 982 if (tb[TCA_HFSC_RSC]) { 983 rsc = nla_data(tb[TCA_HFSC_RSC]); 984 if (rsc->m1 == 0 && rsc->m2 == 0) 985 rsc = NULL; 986 } 987 988 if (tb[TCA_HFSC_FSC]) { 989 fsc = nla_data(tb[TCA_HFSC_FSC]); 990 if (fsc->m1 == 0 && fsc->m2 == 0) 991 fsc = NULL; 992 } 993 994 if (tb[TCA_HFSC_USC]) { 995 usc = nla_data(tb[TCA_HFSC_USC]); 996 if (usc->m1 == 0 && usc->m2 == 0) 997 usc = NULL; 998 } 999 1000 if (cl != NULL) { 1001 if (parentid) { 1002 if (cl->cl_parent && 1003 cl->cl_parent->cl_common.classid != parentid) 1004 return -EINVAL; 1005 if (cl->cl_parent == NULL && parentid != TC_H_ROOT) 1006 return -EINVAL; 1007 } 1008 cur_time = psched_get_time(); 1009 1010 if (tca[TCA_RATE]) { 1011 err = gen_replace_estimator(&cl->bstats, NULL, 1012 &cl->rate_est, 1013 NULL, 1014 qdisc_root_sleeping_running(sch), 1015 tca[TCA_RATE]); 1016 if (err) 1017 return err; 1018 } 1019 1020 sch_tree_lock(sch); 1021 if (rsc != NULL) 1022 hfsc_change_rsc(cl, rsc, cur_time); 1023 if (fsc != NULL) 1024 hfsc_change_fsc(cl, fsc); 1025 if (usc != NULL) 1026 hfsc_change_usc(cl, usc, cur_time); 1027 1028 if (cl->qdisc->q.qlen != 0) { 1029 if (cl->cl_flags & HFSC_RSC) 1030 update_ed(cl, qdisc_peek_len(cl->qdisc)); 1031 if (cl->cl_flags & HFSC_FSC) 1032 update_vf(cl, 0, cur_time); 1033 } 1034 sch_tree_unlock(sch); 1035 1036 return 0; 1037 } 1038 1039 if (parentid == TC_H_ROOT) 1040 return -EEXIST; 1041 1042 parent = &q->root; 1043 if (parentid) { 1044 parent = hfsc_find_class(parentid, sch); 1045 if (parent == NULL) 1046 return -ENOENT; 1047 } 1048 1049 if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0) 1050 return -EINVAL; 1051 if (hfsc_find_class(classid, sch)) 1052 return -EEXIST; 1053 1054 if (rsc == NULL && fsc == NULL) 1055 return -EINVAL; 1056 1057 cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL); 1058 if (cl == NULL) 1059 return -ENOBUFS; 1060 1061 if (tca[TCA_RATE]) { 1062 err = gen_new_estimator(&cl->bstats, NULL, &cl->rate_est, 1063 NULL, 1064 qdisc_root_sleeping_running(sch), 1065 tca[TCA_RATE]); 1066 if (err) { 1067 kfree(cl); 1068 return err; 1069 } 1070 } 1071 1072 if (rsc != NULL) 1073 hfsc_change_rsc(cl, rsc, 0); 1074 if (fsc != NULL) 1075 hfsc_change_fsc(cl, fsc); 1076 if (usc != NULL) 1077 hfsc_change_usc(cl, usc, 0); 1078 1079 cl->cl_common.classid = classid; 1080 cl->refcnt = 1; 1081 cl->sched = q; 1082 cl->cl_parent = parent; 1083 cl->qdisc = qdisc_create_dflt(sch->dev_queue, 1084 &pfifo_qdisc_ops, classid); 1085 if (cl->qdisc == NULL) 1086 cl->qdisc = &noop_qdisc; 1087 INIT_LIST_HEAD(&cl->children); 1088 cl->vt_tree = RB_ROOT; 1089 cl->cf_tree = RB_ROOT; 1090 1091 sch_tree_lock(sch); 1092 qdisc_class_hash_insert(&q->clhash, &cl->cl_common); 1093 list_add_tail(&cl->siblings, &parent->children); 1094 if (parent->level == 0) 1095 hfsc_purge_queue(sch, parent); 1096 hfsc_adjust_levels(parent); 1097 cl->cl_pcvtoff = parent->cl_cvtoff; 1098 sch_tree_unlock(sch); 1099 1100 qdisc_class_hash_grow(sch, &q->clhash); 1101 1102 *arg = (unsigned long)cl; 1103 return 0; 1104 } 1105 1106 static void 1107 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl) 1108 { 1109 struct hfsc_sched *q = qdisc_priv(sch); 1110 1111 tcf_destroy_chain(&cl->filter_list); 1112 qdisc_destroy(cl->qdisc); 1113 gen_kill_estimator(&cl->bstats, &cl->rate_est); 1114 if (cl != &q->root) 1115 kfree(cl); 1116 } 1117 1118 static int 1119 hfsc_delete_class(struct Qdisc *sch, unsigned long arg) 1120 { 1121 struct hfsc_sched *q = qdisc_priv(sch); 1122 struct hfsc_class *cl = (struct hfsc_class *)arg; 1123 1124 if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root) 1125 return -EBUSY; 1126 1127 sch_tree_lock(sch); 1128 1129 list_del(&cl->siblings); 1130 hfsc_adjust_levels(cl->cl_parent); 1131 1132 hfsc_purge_queue(sch, cl); 1133 qdisc_class_hash_remove(&q->clhash, &cl->cl_common); 1134 1135 BUG_ON(--cl->refcnt == 0); 1136 /* 1137 * This shouldn't happen: we "hold" one cops->get() when called 1138 * from tc_ctl_tclass; the destroy method is done from cops->put(). 1139 */ 1140 1141 sch_tree_unlock(sch); 1142 return 0; 1143 } 1144 1145 static struct hfsc_class * 1146 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr) 1147 { 1148 struct hfsc_sched *q = qdisc_priv(sch); 1149 struct hfsc_class *head, *cl; 1150 struct tcf_result res; 1151 struct tcf_proto *tcf; 1152 int result; 1153 1154 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 && 1155 (cl = hfsc_find_class(skb->priority, sch)) != NULL) 1156 if (cl->level == 0) 1157 return cl; 1158 1159 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 1160 head = &q->root; 1161 tcf = rcu_dereference_bh(q->root.filter_list); 1162 while (tcf && (result = tc_classify(skb, tcf, &res, false)) >= 0) { 1163 #ifdef CONFIG_NET_CLS_ACT 1164 switch (result) { 1165 case TC_ACT_QUEUED: 1166 case TC_ACT_STOLEN: 1167 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 1168 case TC_ACT_SHOT: 1169 return NULL; 1170 } 1171 #endif 1172 cl = (struct hfsc_class *)res.class; 1173 if (!cl) { 1174 cl = hfsc_find_class(res.classid, sch); 1175 if (!cl) 1176 break; /* filter selected invalid classid */ 1177 if (cl->level >= head->level) 1178 break; /* filter may only point downwards */ 1179 } 1180 1181 if (cl->level == 0) 1182 return cl; /* hit leaf class */ 1183 1184 /* apply inner filter chain */ 1185 tcf = rcu_dereference_bh(cl->filter_list); 1186 head = cl; 1187 } 1188 1189 /* classification failed, try default class */ 1190 cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch); 1191 if (cl == NULL || cl->level > 0) 1192 return NULL; 1193 1194 return cl; 1195 } 1196 1197 static int 1198 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 1199 struct Qdisc **old) 1200 { 1201 struct hfsc_class *cl = (struct hfsc_class *)arg; 1202 1203 if (cl->level > 0) 1204 return -EINVAL; 1205 if (new == NULL) { 1206 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 1207 cl->cl_common.classid); 1208 if (new == NULL) 1209 new = &noop_qdisc; 1210 } 1211 1212 *old = qdisc_replace(sch, new, &cl->qdisc); 1213 return 0; 1214 } 1215 1216 static struct Qdisc * 1217 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg) 1218 { 1219 struct hfsc_class *cl = (struct hfsc_class *)arg; 1220 1221 if (cl->level == 0) 1222 return cl->qdisc; 1223 1224 return NULL; 1225 } 1226 1227 static void 1228 hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg) 1229 { 1230 struct hfsc_class *cl = (struct hfsc_class *)arg; 1231 1232 if (cl->qdisc->q.qlen == 0) { 1233 update_vf(cl, 0, 0); 1234 set_passive(cl); 1235 } 1236 } 1237 1238 static unsigned long 1239 hfsc_get_class(struct Qdisc *sch, u32 classid) 1240 { 1241 struct hfsc_class *cl = hfsc_find_class(classid, sch); 1242 1243 if (cl != NULL) 1244 cl->refcnt++; 1245 1246 return (unsigned long)cl; 1247 } 1248 1249 static void 1250 hfsc_put_class(struct Qdisc *sch, unsigned long arg) 1251 { 1252 struct hfsc_class *cl = (struct hfsc_class *)arg; 1253 1254 if (--cl->refcnt == 0) 1255 hfsc_destroy_class(sch, cl); 1256 } 1257 1258 static unsigned long 1259 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid) 1260 { 1261 struct hfsc_class *p = (struct hfsc_class *)parent; 1262 struct hfsc_class *cl = hfsc_find_class(classid, sch); 1263 1264 if (cl != NULL) { 1265 if (p != NULL && p->level <= cl->level) 1266 return 0; 1267 cl->filter_cnt++; 1268 } 1269 1270 return (unsigned long)cl; 1271 } 1272 1273 static void 1274 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg) 1275 { 1276 struct hfsc_class *cl = (struct hfsc_class *)arg; 1277 1278 cl->filter_cnt--; 1279 } 1280 1281 static struct tcf_proto __rcu ** 1282 hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg) 1283 { 1284 struct hfsc_sched *q = qdisc_priv(sch); 1285 struct hfsc_class *cl = (struct hfsc_class *)arg; 1286 1287 if (cl == NULL) 1288 cl = &q->root; 1289 1290 return &cl->filter_list; 1291 } 1292 1293 static int 1294 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc) 1295 { 1296 struct tc_service_curve tsc; 1297 1298 tsc.m1 = sm2m(sc->sm1); 1299 tsc.d = dx2d(sc->dx); 1300 tsc.m2 = sm2m(sc->sm2); 1301 if (nla_put(skb, attr, sizeof(tsc), &tsc)) 1302 goto nla_put_failure; 1303 1304 return skb->len; 1305 1306 nla_put_failure: 1307 return -1; 1308 } 1309 1310 static int 1311 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl) 1312 { 1313 if ((cl->cl_flags & HFSC_RSC) && 1314 (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0)) 1315 goto nla_put_failure; 1316 1317 if ((cl->cl_flags & HFSC_FSC) && 1318 (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0)) 1319 goto nla_put_failure; 1320 1321 if ((cl->cl_flags & HFSC_USC) && 1322 (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0)) 1323 goto nla_put_failure; 1324 1325 return skb->len; 1326 1327 nla_put_failure: 1328 return -1; 1329 } 1330 1331 static int 1332 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb, 1333 struct tcmsg *tcm) 1334 { 1335 struct hfsc_class *cl = (struct hfsc_class *)arg; 1336 struct nlattr *nest; 1337 1338 tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid : 1339 TC_H_ROOT; 1340 tcm->tcm_handle = cl->cl_common.classid; 1341 if (cl->level == 0) 1342 tcm->tcm_info = cl->qdisc->handle; 1343 1344 nest = nla_nest_start(skb, TCA_OPTIONS); 1345 if (nest == NULL) 1346 goto nla_put_failure; 1347 if (hfsc_dump_curves(skb, cl) < 0) 1348 goto nla_put_failure; 1349 return nla_nest_end(skb, nest); 1350 1351 nla_put_failure: 1352 nla_nest_cancel(skb, nest); 1353 return -EMSGSIZE; 1354 } 1355 1356 static int 1357 hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg, 1358 struct gnet_dump *d) 1359 { 1360 struct hfsc_class *cl = (struct hfsc_class *)arg; 1361 struct tc_hfsc_stats xstats; 1362 1363 cl->qstats.backlog = cl->qdisc->qstats.backlog; 1364 xstats.level = cl->level; 1365 xstats.period = cl->cl_vtperiod; 1366 xstats.work = cl->cl_total; 1367 xstats.rtwork = cl->cl_cumul; 1368 1369 if (gnet_stats_copy_basic(qdisc_root_sleeping_running(sch), d, NULL, &cl->bstats) < 0 || 1370 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 || 1371 gnet_stats_copy_queue(d, NULL, &cl->qstats, cl->qdisc->q.qlen) < 0) 1372 return -1; 1373 1374 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 1375 } 1376 1377 1378 1379 static void 1380 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1381 { 1382 struct hfsc_sched *q = qdisc_priv(sch); 1383 struct hfsc_class *cl; 1384 unsigned int i; 1385 1386 if (arg->stop) 1387 return; 1388 1389 for (i = 0; i < q->clhash.hashsize; i++) { 1390 hlist_for_each_entry(cl, &q->clhash.hash[i], 1391 cl_common.hnode) { 1392 if (arg->count < arg->skip) { 1393 arg->count++; 1394 continue; 1395 } 1396 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 1397 arg->stop = 1; 1398 return; 1399 } 1400 arg->count++; 1401 } 1402 } 1403 } 1404 1405 static void 1406 hfsc_schedule_watchdog(struct Qdisc *sch) 1407 { 1408 struct hfsc_sched *q = qdisc_priv(sch); 1409 struct hfsc_class *cl; 1410 u64 next_time = 0; 1411 1412 cl = eltree_get_minel(q); 1413 if (cl) 1414 next_time = cl->cl_e; 1415 if (q->root.cl_cfmin != 0) { 1416 if (next_time == 0 || next_time > q->root.cl_cfmin) 1417 next_time = q->root.cl_cfmin; 1418 } 1419 WARN_ON(next_time == 0); 1420 qdisc_watchdog_schedule(&q->watchdog, next_time); 1421 } 1422 1423 static int 1424 hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt) 1425 { 1426 struct hfsc_sched *q = qdisc_priv(sch); 1427 struct tc_hfsc_qopt *qopt; 1428 int err; 1429 1430 if (opt == NULL || nla_len(opt) < sizeof(*qopt)) 1431 return -EINVAL; 1432 qopt = nla_data(opt); 1433 1434 q->defcls = qopt->defcls; 1435 err = qdisc_class_hash_init(&q->clhash); 1436 if (err < 0) 1437 return err; 1438 q->eligible = RB_ROOT; 1439 1440 q->root.cl_common.classid = sch->handle; 1441 q->root.refcnt = 1; 1442 q->root.sched = q; 1443 q->root.qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 1444 sch->handle); 1445 if (q->root.qdisc == NULL) 1446 q->root.qdisc = &noop_qdisc; 1447 INIT_LIST_HEAD(&q->root.children); 1448 q->root.vt_tree = RB_ROOT; 1449 q->root.cf_tree = RB_ROOT; 1450 1451 qdisc_class_hash_insert(&q->clhash, &q->root.cl_common); 1452 qdisc_class_hash_grow(sch, &q->clhash); 1453 1454 qdisc_watchdog_init(&q->watchdog, sch); 1455 1456 return 0; 1457 } 1458 1459 static int 1460 hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt) 1461 { 1462 struct hfsc_sched *q = qdisc_priv(sch); 1463 struct tc_hfsc_qopt *qopt; 1464 1465 if (opt == NULL || nla_len(opt) < sizeof(*qopt)) 1466 return -EINVAL; 1467 qopt = nla_data(opt); 1468 1469 sch_tree_lock(sch); 1470 q->defcls = qopt->defcls; 1471 sch_tree_unlock(sch); 1472 1473 return 0; 1474 } 1475 1476 static void 1477 hfsc_reset_class(struct hfsc_class *cl) 1478 { 1479 cl->cl_total = 0; 1480 cl->cl_cumul = 0; 1481 cl->cl_d = 0; 1482 cl->cl_e = 0; 1483 cl->cl_vt = 0; 1484 cl->cl_vtadj = 0; 1485 cl->cl_vtoff = 0; 1486 cl->cl_cvtmin = 0; 1487 cl->cl_cvtmax = 0; 1488 cl->cl_cvtoff = 0; 1489 cl->cl_pcvtoff = 0; 1490 cl->cl_vtperiod = 0; 1491 cl->cl_parentperiod = 0; 1492 cl->cl_f = 0; 1493 cl->cl_myf = 0; 1494 cl->cl_myfadj = 0; 1495 cl->cl_cfmin = 0; 1496 cl->cl_nactive = 0; 1497 1498 cl->vt_tree = RB_ROOT; 1499 cl->cf_tree = RB_ROOT; 1500 qdisc_reset(cl->qdisc); 1501 1502 if (cl->cl_flags & HFSC_RSC) 1503 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0); 1504 if (cl->cl_flags & HFSC_FSC) 1505 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0); 1506 if (cl->cl_flags & HFSC_USC) 1507 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0); 1508 } 1509 1510 static void 1511 hfsc_reset_qdisc(struct Qdisc *sch) 1512 { 1513 struct hfsc_sched *q = qdisc_priv(sch); 1514 struct hfsc_class *cl; 1515 unsigned int i; 1516 1517 for (i = 0; i < q->clhash.hashsize; i++) { 1518 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode) 1519 hfsc_reset_class(cl); 1520 } 1521 q->eligible = RB_ROOT; 1522 qdisc_watchdog_cancel(&q->watchdog); 1523 sch->qstats.backlog = 0; 1524 sch->q.qlen = 0; 1525 } 1526 1527 static void 1528 hfsc_destroy_qdisc(struct Qdisc *sch) 1529 { 1530 struct hfsc_sched *q = qdisc_priv(sch); 1531 struct hlist_node *next; 1532 struct hfsc_class *cl; 1533 unsigned int i; 1534 1535 for (i = 0; i < q->clhash.hashsize; i++) { 1536 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode) 1537 tcf_destroy_chain(&cl->filter_list); 1538 } 1539 for (i = 0; i < q->clhash.hashsize; i++) { 1540 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1541 cl_common.hnode) 1542 hfsc_destroy_class(sch, cl); 1543 } 1544 qdisc_class_hash_destroy(&q->clhash); 1545 qdisc_watchdog_cancel(&q->watchdog); 1546 } 1547 1548 static int 1549 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb) 1550 { 1551 struct hfsc_sched *q = qdisc_priv(sch); 1552 unsigned char *b = skb_tail_pointer(skb); 1553 struct tc_hfsc_qopt qopt; 1554 1555 qopt.defcls = q->defcls; 1556 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt)) 1557 goto nla_put_failure; 1558 return skb->len; 1559 1560 nla_put_failure: 1561 nlmsg_trim(skb, b); 1562 return -1; 1563 } 1564 1565 static int 1566 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) 1567 { 1568 struct hfsc_class *cl; 1569 int uninitialized_var(err); 1570 1571 cl = hfsc_classify(skb, sch, &err); 1572 if (cl == NULL) { 1573 if (err & __NET_XMIT_BYPASS) 1574 qdisc_qstats_drop(sch); 1575 __qdisc_drop(skb, to_free); 1576 return err; 1577 } 1578 1579 err = qdisc_enqueue(skb, cl->qdisc, to_free); 1580 if (unlikely(err != NET_XMIT_SUCCESS)) { 1581 if (net_xmit_drop_count(err)) { 1582 cl->qstats.drops++; 1583 qdisc_qstats_drop(sch); 1584 } 1585 return err; 1586 } 1587 1588 if (cl->qdisc->q.qlen == 1) { 1589 set_active(cl, qdisc_pkt_len(skb)); 1590 /* 1591 * If this is the first packet, isolate the head so an eventual 1592 * head drop before the first dequeue operation has no chance 1593 * to invalidate the deadline. 1594 */ 1595 if (cl->cl_flags & HFSC_RSC) 1596 cl->qdisc->ops->peek(cl->qdisc); 1597 1598 } 1599 1600 qdisc_qstats_backlog_inc(sch, skb); 1601 sch->q.qlen++; 1602 1603 return NET_XMIT_SUCCESS; 1604 } 1605 1606 static struct sk_buff * 1607 hfsc_dequeue(struct Qdisc *sch) 1608 { 1609 struct hfsc_sched *q = qdisc_priv(sch); 1610 struct hfsc_class *cl; 1611 struct sk_buff *skb; 1612 u64 cur_time; 1613 unsigned int next_len; 1614 int realtime = 0; 1615 1616 if (sch->q.qlen == 0) 1617 return NULL; 1618 1619 cur_time = psched_get_time(); 1620 1621 /* 1622 * if there are eligible classes, use real-time criteria. 1623 * find the class with the minimum deadline among 1624 * the eligible classes. 1625 */ 1626 cl = eltree_get_mindl(q, cur_time); 1627 if (cl) { 1628 realtime = 1; 1629 } else { 1630 /* 1631 * use link-sharing criteria 1632 * get the class with the minimum vt in the hierarchy 1633 */ 1634 cl = vttree_get_minvt(&q->root, cur_time); 1635 if (cl == NULL) { 1636 qdisc_qstats_overlimit(sch); 1637 hfsc_schedule_watchdog(sch); 1638 return NULL; 1639 } 1640 } 1641 1642 skb = qdisc_dequeue_peeked(cl->qdisc); 1643 if (skb == NULL) { 1644 qdisc_warn_nonwc("HFSC", cl->qdisc); 1645 return NULL; 1646 } 1647 1648 bstats_update(&cl->bstats, skb); 1649 update_vf(cl, qdisc_pkt_len(skb), cur_time); 1650 if (realtime) 1651 cl->cl_cumul += qdisc_pkt_len(skb); 1652 1653 if (cl->qdisc->q.qlen != 0) { 1654 if (cl->cl_flags & HFSC_RSC) { 1655 /* update ed */ 1656 next_len = qdisc_peek_len(cl->qdisc); 1657 if (realtime) 1658 update_ed(cl, next_len); 1659 else 1660 update_d(cl, next_len); 1661 } 1662 } else { 1663 /* the class becomes passive */ 1664 set_passive(cl); 1665 } 1666 1667 qdisc_bstats_update(sch, skb); 1668 qdisc_qstats_backlog_dec(sch, skb); 1669 sch->q.qlen--; 1670 1671 return skb; 1672 } 1673 1674 static const struct Qdisc_class_ops hfsc_class_ops = { 1675 .change = hfsc_change_class, 1676 .delete = hfsc_delete_class, 1677 .graft = hfsc_graft_class, 1678 .leaf = hfsc_class_leaf, 1679 .qlen_notify = hfsc_qlen_notify, 1680 .get = hfsc_get_class, 1681 .put = hfsc_put_class, 1682 .bind_tcf = hfsc_bind_tcf, 1683 .unbind_tcf = hfsc_unbind_tcf, 1684 .tcf_chain = hfsc_tcf_chain, 1685 .dump = hfsc_dump_class, 1686 .dump_stats = hfsc_dump_class_stats, 1687 .walk = hfsc_walk 1688 }; 1689 1690 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = { 1691 .id = "hfsc", 1692 .init = hfsc_init_qdisc, 1693 .change = hfsc_change_qdisc, 1694 .reset = hfsc_reset_qdisc, 1695 .destroy = hfsc_destroy_qdisc, 1696 .dump = hfsc_dump_qdisc, 1697 .enqueue = hfsc_enqueue, 1698 .dequeue = hfsc_dequeue, 1699 .peek = qdisc_peek_dequeued, 1700 .cl_ops = &hfsc_class_ops, 1701 .priv_size = sizeof(struct hfsc_sched), 1702 .owner = THIS_MODULE 1703 }; 1704 1705 static int __init 1706 hfsc_init(void) 1707 { 1708 return register_qdisc(&hfsc_qdisc_ops); 1709 } 1710 1711 static void __exit 1712 hfsc_cleanup(void) 1713 { 1714 unregister_qdisc(&hfsc_qdisc_ops); 1715 } 1716 1717 MODULE_LICENSE("GPL"); 1718 module_init(hfsc_init); 1719 module_exit(hfsc_cleanup); 1720