xref: /openbmc/linux/net/sched/sch_hfsc.c (revision ba6e8564)
1 /*
2  * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * 2003-10-17 - Ported from altq
10  */
11 /*
12  * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
13  *
14  * Permission to use, copy, modify, and distribute this software and
15  * its documentation is hereby granted (including for commercial or
16  * for-profit use), provided that both the copyright notice and this
17  * permission notice appear in all copies of the software, derivative
18  * works, or modified versions, and any portions thereof.
19  *
20  * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21  * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
22  * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25  * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
33  * DAMAGE.
34  *
35  * Carnegie Mellon encourages (but does not require) users of this
36  * software to return any improvements or extensions that they make,
37  * and to grant Carnegie Mellon the rights to redistribute these
38  * changes without encumbrance.
39  */
40 /*
41  * H-FSC is described in Proceedings of SIGCOMM'97,
42  * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43  * Real-Time and Priority Service"
44  * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
45  *
46  * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47  * when a class has an upperlimit, the fit-time is computed from the
48  * upperlimit service curve.  the link-sharing scheduler does not schedule
49  * a class whose fit-time exceeds the current time.
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/errno.h>
56 #include <linux/jiffies.h>
57 #include <linux/compiler.h>
58 #include <linux/spinlock.h>
59 #include <linux/skbuff.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/timer.h>
63 #include <linux/list.h>
64 #include <linux/rbtree.h>
65 #include <linux/init.h>
66 #include <linux/netdevice.h>
67 #include <linux/rtnetlink.h>
68 #include <linux/pkt_sched.h>
69 #include <net/pkt_sched.h>
70 #include <net/pkt_cls.h>
71 #include <asm/system.h>
72 #include <asm/div64.h>
73 
74 /*
75  * kernel internal service curve representation:
76  *   coordinates are given by 64 bit unsigned integers.
77  *   x-axis: unit is clock count.
78  *   y-axis: unit is byte.
79  *
80  *   The service curve parameters are converted to the internal
81  *   representation. The slope values are scaled to avoid overflow.
82  *   the inverse slope values as well as the y-projection of the 1st
83  *   segment are kept in order to to avoid 64-bit divide operations
84  *   that are expensive on 32-bit architectures.
85  */
86 
87 struct internal_sc
88 {
89 	u64	sm1;	/* scaled slope of the 1st segment */
90 	u64	ism1;	/* scaled inverse-slope of the 1st segment */
91 	u64	dx;	/* the x-projection of the 1st segment */
92 	u64	dy;	/* the y-projection of the 1st segment */
93 	u64	sm2;	/* scaled slope of the 2nd segment */
94 	u64	ism2;	/* scaled inverse-slope of the 2nd segment */
95 };
96 
97 /* runtime service curve */
98 struct runtime_sc
99 {
100 	u64	x;	/* current starting position on x-axis */
101 	u64	y;	/* current starting position on y-axis */
102 	u64	sm1;	/* scaled slope of the 1st segment */
103 	u64	ism1;	/* scaled inverse-slope of the 1st segment */
104 	u64	dx;	/* the x-projection of the 1st segment */
105 	u64	dy;	/* the y-projection of the 1st segment */
106 	u64	sm2;	/* scaled slope of the 2nd segment */
107 	u64	ism2;	/* scaled inverse-slope of the 2nd segment */
108 };
109 
110 enum hfsc_class_flags
111 {
112 	HFSC_RSC = 0x1,
113 	HFSC_FSC = 0x2,
114 	HFSC_USC = 0x4
115 };
116 
117 struct hfsc_class
118 {
119 	u32		classid;	/* class id */
120 	unsigned int	refcnt;		/* usage count */
121 
122 	struct gnet_stats_basic bstats;
123 	struct gnet_stats_queue qstats;
124 	struct gnet_stats_rate_est rate_est;
125 	spinlock_t	*stats_lock;
126 	unsigned int	level;		/* class level in hierarchy */
127 	struct tcf_proto *filter_list;	/* filter list */
128 	unsigned int	filter_cnt;	/* filter count */
129 
130 	struct hfsc_sched *sched;	/* scheduler data */
131 	struct hfsc_class *cl_parent;	/* parent class */
132 	struct list_head siblings;	/* sibling classes */
133 	struct list_head children;	/* child classes */
134 	struct Qdisc	*qdisc;		/* leaf qdisc */
135 
136 	struct rb_node el_node;		/* qdisc's eligible tree member */
137 	struct rb_root vt_tree;		/* active children sorted by cl_vt */
138 	struct rb_node vt_node;		/* parent's vt_tree member */
139 	struct rb_root cf_tree;		/* active children sorted by cl_f */
140 	struct rb_node cf_node;		/* parent's cf_heap member */
141 	struct list_head hlist;		/* hash list member */
142 	struct list_head dlist;		/* drop list member */
143 
144 	u64	cl_total;		/* total work in bytes */
145 	u64	cl_cumul;		/* cumulative work in bytes done by
146 					   real-time criteria */
147 
148 	u64 	cl_d;			/* deadline*/
149 	u64 	cl_e;			/* eligible time */
150 	u64	cl_vt;			/* virtual time */
151 	u64	cl_f;			/* time when this class will fit for
152 					   link-sharing, max(myf, cfmin) */
153 	u64	cl_myf;			/* my fit-time (calculated from this
154 					   class's own upperlimit curve) */
155 	u64	cl_myfadj;		/* my fit-time adjustment (to cancel
156 					   history dependence) */
157 	u64	cl_cfmin;		/* earliest children's fit-time (used
158 					   with cl_myf to obtain cl_f) */
159 	u64	cl_cvtmin;		/* minimal virtual time among the
160 					   children fit for link-sharing
161 					   (monotonic within a period) */
162 	u64	cl_vtadj;		/* intra-period cumulative vt
163 					   adjustment */
164 	u64	cl_vtoff;		/* inter-period cumulative vt offset */
165 	u64	cl_cvtmax;		/* max child's vt in the last period */
166 	u64	cl_cvtoff;		/* cumulative cvtmax of all periods */
167 	u64	cl_pcvtoff;		/* parent's cvtoff at initalization
168 					   time */
169 
170 	struct internal_sc cl_rsc;	/* internal real-time service curve */
171 	struct internal_sc cl_fsc;	/* internal fair service curve */
172 	struct internal_sc cl_usc;	/* internal upperlimit service curve */
173 	struct runtime_sc cl_deadline;	/* deadline curve */
174 	struct runtime_sc cl_eligible;	/* eligible curve */
175 	struct runtime_sc cl_virtual;	/* virtual curve */
176 	struct runtime_sc cl_ulimit;	/* upperlimit curve */
177 
178 	unsigned long	cl_flags;	/* which curves are valid */
179 	unsigned long	cl_vtperiod;	/* vt period sequence number */
180 	unsigned long	cl_parentperiod;/* parent's vt period sequence number*/
181 	unsigned long	cl_nactive;	/* number of active children */
182 };
183 
184 #define HFSC_HSIZE	16
185 
186 struct hfsc_sched
187 {
188 	u16	defcls;				/* default class id */
189 	struct hfsc_class root;			/* root class */
190 	struct list_head clhash[HFSC_HSIZE];	/* class hash */
191 	struct rb_root eligible;		/* eligible tree */
192 	struct list_head droplist;		/* active leaf class list (for
193 						   dropping) */
194 	struct sk_buff_head requeue;		/* requeued packet */
195 	struct timer_list wd_timer;		/* watchdog timer */
196 };
197 
198 /*
199  * macros
200  */
201 #ifdef CONFIG_NET_SCH_CLK_GETTIMEOFDAY
202 #include <linux/time.h>
203 #undef PSCHED_GET_TIME
204 #define PSCHED_GET_TIME(stamp)						\
205 do {									\
206 	struct timeval tv;						\
207 	do_gettimeofday(&tv);						\
208 	(stamp) = 1ULL * USEC_PER_SEC * tv.tv_sec + tv.tv_usec;		\
209 } while (0)
210 #endif
211 
212 #define	HT_INFINITY	0xffffffffffffffffULL	/* infinite time value */
213 
214 
215 /*
216  * eligible tree holds backlogged classes being sorted by their eligible times.
217  * there is one eligible tree per hfsc instance.
218  */
219 
220 static void
221 eltree_insert(struct hfsc_class *cl)
222 {
223 	struct rb_node **p = &cl->sched->eligible.rb_node;
224 	struct rb_node *parent = NULL;
225 	struct hfsc_class *cl1;
226 
227 	while (*p != NULL) {
228 		parent = *p;
229 		cl1 = rb_entry(parent, struct hfsc_class, el_node);
230 		if (cl->cl_e >= cl1->cl_e)
231 			p = &parent->rb_right;
232 		else
233 			p = &parent->rb_left;
234 	}
235 	rb_link_node(&cl->el_node, parent, p);
236 	rb_insert_color(&cl->el_node, &cl->sched->eligible);
237 }
238 
239 static inline void
240 eltree_remove(struct hfsc_class *cl)
241 {
242 	rb_erase(&cl->el_node, &cl->sched->eligible);
243 }
244 
245 static inline void
246 eltree_update(struct hfsc_class *cl)
247 {
248 	eltree_remove(cl);
249 	eltree_insert(cl);
250 }
251 
252 /* find the class with the minimum deadline among the eligible classes */
253 static inline struct hfsc_class *
254 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
255 {
256 	struct hfsc_class *p, *cl = NULL;
257 	struct rb_node *n;
258 
259 	for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
260 		p = rb_entry(n, struct hfsc_class, el_node);
261 		if (p->cl_e > cur_time)
262 			break;
263 		if (cl == NULL || p->cl_d < cl->cl_d)
264 			cl = p;
265 	}
266 	return cl;
267 }
268 
269 /* find the class with minimum eligible time among the eligible classes */
270 static inline struct hfsc_class *
271 eltree_get_minel(struct hfsc_sched *q)
272 {
273 	struct rb_node *n;
274 
275 	n = rb_first(&q->eligible);
276 	if (n == NULL)
277 		return NULL;
278 	return rb_entry(n, struct hfsc_class, el_node);
279 }
280 
281 /*
282  * vttree holds holds backlogged child classes being sorted by their virtual
283  * time. each intermediate class has one vttree.
284  */
285 static void
286 vttree_insert(struct hfsc_class *cl)
287 {
288 	struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
289 	struct rb_node *parent = NULL;
290 	struct hfsc_class *cl1;
291 
292 	while (*p != NULL) {
293 		parent = *p;
294 		cl1 = rb_entry(parent, struct hfsc_class, vt_node);
295 		if (cl->cl_vt >= cl1->cl_vt)
296 			p = &parent->rb_right;
297 		else
298 			p = &parent->rb_left;
299 	}
300 	rb_link_node(&cl->vt_node, parent, p);
301 	rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
302 }
303 
304 static inline void
305 vttree_remove(struct hfsc_class *cl)
306 {
307 	rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
308 }
309 
310 static inline void
311 vttree_update(struct hfsc_class *cl)
312 {
313 	vttree_remove(cl);
314 	vttree_insert(cl);
315 }
316 
317 static inline struct hfsc_class *
318 vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
319 {
320 	struct hfsc_class *p;
321 	struct rb_node *n;
322 
323 	for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
324 		p = rb_entry(n, struct hfsc_class, vt_node);
325 		if (p->cl_f <= cur_time)
326 			return p;
327 	}
328 	return NULL;
329 }
330 
331 /*
332  * get the leaf class with the minimum vt in the hierarchy
333  */
334 static struct hfsc_class *
335 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
336 {
337 	/* if root-class's cfmin is bigger than cur_time nothing to do */
338 	if (cl->cl_cfmin > cur_time)
339 		return NULL;
340 
341 	while (cl->level > 0) {
342 		cl = vttree_firstfit(cl, cur_time);
343 		if (cl == NULL)
344 			return NULL;
345 		/*
346 		 * update parent's cl_cvtmin.
347 		 */
348 		if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
349 			cl->cl_parent->cl_cvtmin = cl->cl_vt;
350 	}
351 	return cl;
352 }
353 
354 static void
355 cftree_insert(struct hfsc_class *cl)
356 {
357 	struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
358 	struct rb_node *parent = NULL;
359 	struct hfsc_class *cl1;
360 
361 	while (*p != NULL) {
362 		parent = *p;
363 		cl1 = rb_entry(parent, struct hfsc_class, cf_node);
364 		if (cl->cl_f >= cl1->cl_f)
365 			p = &parent->rb_right;
366 		else
367 			p = &parent->rb_left;
368 	}
369 	rb_link_node(&cl->cf_node, parent, p);
370 	rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
371 }
372 
373 static inline void
374 cftree_remove(struct hfsc_class *cl)
375 {
376 	rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
377 }
378 
379 static inline void
380 cftree_update(struct hfsc_class *cl)
381 {
382 	cftree_remove(cl);
383 	cftree_insert(cl);
384 }
385 
386 /*
387  * service curve support functions
388  *
389  *  external service curve parameters
390  *	m: bps
391  *	d: us
392  *  internal service curve parameters
393  *	sm: (bytes/psched_us) << SM_SHIFT
394  *	ism: (psched_us/byte) << ISM_SHIFT
395  *	dx: psched_us
396  *
397  * Clock source resolution (CONFIG_NET_SCH_CLK_*)
398  *  JIFFIES: for 48<=HZ<=1534 resolution is between 0.63us and 1.27us.
399  *  CPU: resolution is between 0.5us and 1us.
400  *  GETTIMEOFDAY: resolution is exactly 1us.
401  *
402  * sm and ism are scaled in order to keep effective digits.
403  * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
404  * digits in decimal using the following table.
405  *
406  * Note: We can afford the additional accuracy (altq hfsc keeps at most
407  * 3 effective digits) thanks to the fact that linux clock is bounded
408  * much more tightly.
409  *
410  *  bits/sec      100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
411  *  ------------+-------------------------------------------------------
412  *  bytes/0.5us   6.25e-3    62.5e-3    625e-3     6250e-e    62500e-3
413  *  bytes/us      12.5e-3    125e-3     1250e-3    12500e-3   125000e-3
414  *  bytes/1.27us  15.875e-3  158.75e-3  1587.5e-3  15875e-3   158750e-3
415  *
416  *  0.5us/byte    160        16         1.6        0.16       0.016
417  *  us/byte       80         8          0.8        0.08       0.008
418  *  1.27us/byte   63         6.3        0.63       0.063      0.0063
419  */
420 #define	SM_SHIFT	20
421 #define	ISM_SHIFT	18
422 
423 #define	SM_MASK		((1ULL << SM_SHIFT) - 1)
424 #define	ISM_MASK	((1ULL << ISM_SHIFT) - 1)
425 
426 static inline u64
427 seg_x2y(u64 x, u64 sm)
428 {
429 	u64 y;
430 
431 	/*
432 	 * compute
433 	 *	y = x * sm >> SM_SHIFT
434 	 * but divide it for the upper and lower bits to avoid overflow
435 	 */
436 	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
437 	return y;
438 }
439 
440 static inline u64
441 seg_y2x(u64 y, u64 ism)
442 {
443 	u64 x;
444 
445 	if (y == 0)
446 		x = 0;
447 	else if (ism == HT_INFINITY)
448 		x = HT_INFINITY;
449 	else {
450 		x = (y >> ISM_SHIFT) * ism
451 		    + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
452 	}
453 	return x;
454 }
455 
456 /* Convert m (bps) into sm (bytes/psched us) */
457 static u64
458 m2sm(u32 m)
459 {
460 	u64 sm;
461 
462 	sm = ((u64)m << SM_SHIFT);
463 	sm += PSCHED_JIFFIE2US(HZ) - 1;
464 	do_div(sm, PSCHED_JIFFIE2US(HZ));
465 	return sm;
466 }
467 
468 /* convert m (bps) into ism (psched us/byte) */
469 static u64
470 m2ism(u32 m)
471 {
472 	u64 ism;
473 
474 	if (m == 0)
475 		ism = HT_INFINITY;
476 	else {
477 		ism = ((u64)PSCHED_JIFFIE2US(HZ) << ISM_SHIFT);
478 		ism += m - 1;
479 		do_div(ism, m);
480 	}
481 	return ism;
482 }
483 
484 /* convert d (us) into dx (psched us) */
485 static u64
486 d2dx(u32 d)
487 {
488 	u64 dx;
489 
490 	dx = ((u64)d * PSCHED_JIFFIE2US(HZ));
491 	dx += USEC_PER_SEC - 1;
492 	do_div(dx, USEC_PER_SEC);
493 	return dx;
494 }
495 
496 /* convert sm (bytes/psched us) into m (bps) */
497 static u32
498 sm2m(u64 sm)
499 {
500 	u64 m;
501 
502 	m = (sm * PSCHED_JIFFIE2US(HZ)) >> SM_SHIFT;
503 	return (u32)m;
504 }
505 
506 /* convert dx (psched us) into d (us) */
507 static u32
508 dx2d(u64 dx)
509 {
510 	u64 d;
511 
512 	d = dx * USEC_PER_SEC;
513 	do_div(d, PSCHED_JIFFIE2US(HZ));
514 	return (u32)d;
515 }
516 
517 static void
518 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
519 {
520 	isc->sm1  = m2sm(sc->m1);
521 	isc->ism1 = m2ism(sc->m1);
522 	isc->dx   = d2dx(sc->d);
523 	isc->dy   = seg_x2y(isc->dx, isc->sm1);
524 	isc->sm2  = m2sm(sc->m2);
525 	isc->ism2 = m2ism(sc->m2);
526 }
527 
528 /*
529  * initialize the runtime service curve with the given internal
530  * service curve starting at (x, y).
531  */
532 static void
533 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
534 {
535 	rtsc->x	   = x;
536 	rtsc->y    = y;
537 	rtsc->sm1  = isc->sm1;
538 	rtsc->ism1 = isc->ism1;
539 	rtsc->dx   = isc->dx;
540 	rtsc->dy   = isc->dy;
541 	rtsc->sm2  = isc->sm2;
542 	rtsc->ism2 = isc->ism2;
543 }
544 
545 /*
546  * calculate the y-projection of the runtime service curve by the
547  * given x-projection value
548  */
549 static u64
550 rtsc_y2x(struct runtime_sc *rtsc, u64 y)
551 {
552 	u64 x;
553 
554 	if (y < rtsc->y)
555 		x = rtsc->x;
556 	else if (y <= rtsc->y + rtsc->dy) {
557 		/* x belongs to the 1st segment */
558 		if (rtsc->dy == 0)
559 			x = rtsc->x + rtsc->dx;
560 		else
561 			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
562 	} else {
563 		/* x belongs to the 2nd segment */
564 		x = rtsc->x + rtsc->dx
565 		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
566 	}
567 	return x;
568 }
569 
570 static u64
571 rtsc_x2y(struct runtime_sc *rtsc, u64 x)
572 {
573 	u64 y;
574 
575 	if (x <= rtsc->x)
576 		y = rtsc->y;
577 	else if (x <= rtsc->x + rtsc->dx)
578 		/* y belongs to the 1st segment */
579 		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
580 	else
581 		/* y belongs to the 2nd segment */
582 		y = rtsc->y + rtsc->dy
583 		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
584 	return y;
585 }
586 
587 /*
588  * update the runtime service curve by taking the minimum of the current
589  * runtime service curve and the service curve starting at (x, y).
590  */
591 static void
592 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
593 {
594 	u64 y1, y2, dx, dy;
595 	u32 dsm;
596 
597 	if (isc->sm1 <= isc->sm2) {
598 		/* service curve is convex */
599 		y1 = rtsc_x2y(rtsc, x);
600 		if (y1 < y)
601 			/* the current rtsc is smaller */
602 			return;
603 		rtsc->x = x;
604 		rtsc->y = y;
605 		return;
606 	}
607 
608 	/*
609 	 * service curve is concave
610 	 * compute the two y values of the current rtsc
611 	 *	y1: at x
612 	 *	y2: at (x + dx)
613 	 */
614 	y1 = rtsc_x2y(rtsc, x);
615 	if (y1 <= y) {
616 		/* rtsc is below isc, no change to rtsc */
617 		return;
618 	}
619 
620 	y2 = rtsc_x2y(rtsc, x + isc->dx);
621 	if (y2 >= y + isc->dy) {
622 		/* rtsc is above isc, replace rtsc by isc */
623 		rtsc->x = x;
624 		rtsc->y = y;
625 		rtsc->dx = isc->dx;
626 		rtsc->dy = isc->dy;
627 		return;
628 	}
629 
630 	/*
631 	 * the two curves intersect
632 	 * compute the offsets (dx, dy) using the reverse
633 	 * function of seg_x2y()
634 	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
635 	 */
636 	dx = (y1 - y) << SM_SHIFT;
637 	dsm = isc->sm1 - isc->sm2;
638 	do_div(dx, dsm);
639 	/*
640 	 * check if (x, y1) belongs to the 1st segment of rtsc.
641 	 * if so, add the offset.
642 	 */
643 	if (rtsc->x + rtsc->dx > x)
644 		dx += rtsc->x + rtsc->dx - x;
645 	dy = seg_x2y(dx, isc->sm1);
646 
647 	rtsc->x = x;
648 	rtsc->y = y;
649 	rtsc->dx = dx;
650 	rtsc->dy = dy;
651 	return;
652 }
653 
654 static void
655 init_ed(struct hfsc_class *cl, unsigned int next_len)
656 {
657 	u64 cur_time;
658 
659 	PSCHED_GET_TIME(cur_time);
660 
661 	/* update the deadline curve */
662 	rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
663 
664 	/*
665 	 * update the eligible curve.
666 	 * for concave, it is equal to the deadline curve.
667 	 * for convex, it is a linear curve with slope m2.
668 	 */
669 	cl->cl_eligible = cl->cl_deadline;
670 	if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
671 		cl->cl_eligible.dx = 0;
672 		cl->cl_eligible.dy = 0;
673 	}
674 
675 	/* compute e and d */
676 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
677 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
678 
679 	eltree_insert(cl);
680 }
681 
682 static void
683 update_ed(struct hfsc_class *cl, unsigned int next_len)
684 {
685 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
686 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
687 
688 	eltree_update(cl);
689 }
690 
691 static inline void
692 update_d(struct hfsc_class *cl, unsigned int next_len)
693 {
694 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
695 }
696 
697 static inline void
698 update_cfmin(struct hfsc_class *cl)
699 {
700 	struct rb_node *n = rb_first(&cl->cf_tree);
701 	struct hfsc_class *p;
702 
703 	if (n == NULL) {
704 		cl->cl_cfmin = 0;
705 		return;
706 	}
707 	p = rb_entry(n, struct hfsc_class, cf_node);
708 	cl->cl_cfmin = p->cl_f;
709 }
710 
711 static void
712 init_vf(struct hfsc_class *cl, unsigned int len)
713 {
714 	struct hfsc_class *max_cl;
715 	struct rb_node *n;
716 	u64 vt, f, cur_time;
717 	int go_active;
718 
719 	cur_time = 0;
720 	go_active = 1;
721 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
722 		if (go_active && cl->cl_nactive++ == 0)
723 			go_active = 1;
724 		else
725 			go_active = 0;
726 
727 		if (go_active) {
728 			n = rb_last(&cl->cl_parent->vt_tree);
729 			if (n != NULL) {
730 				max_cl = rb_entry(n, struct hfsc_class,vt_node);
731 				/*
732 				 * set vt to the average of the min and max
733 				 * classes.  if the parent's period didn't
734 				 * change, don't decrease vt of the class.
735 				 */
736 				vt = max_cl->cl_vt;
737 				if (cl->cl_parent->cl_cvtmin != 0)
738 					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
739 
740 				if (cl->cl_parent->cl_vtperiod !=
741 				    cl->cl_parentperiod || vt > cl->cl_vt)
742 					cl->cl_vt = vt;
743 			} else {
744 				/*
745 				 * first child for a new parent backlog period.
746 				 * add parent's cvtmax to cvtoff to make a new
747 				 * vt (vtoff + vt) larger than the vt in the
748 				 * last period for all children.
749 				 */
750 				vt = cl->cl_parent->cl_cvtmax;
751 				cl->cl_parent->cl_cvtoff += vt;
752 				cl->cl_parent->cl_cvtmax = 0;
753 				cl->cl_parent->cl_cvtmin = 0;
754 				cl->cl_vt = 0;
755 			}
756 
757 			cl->cl_vtoff = cl->cl_parent->cl_cvtoff -
758 							cl->cl_pcvtoff;
759 
760 			/* update the virtual curve */
761 			vt = cl->cl_vt + cl->cl_vtoff;
762 			rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt,
763 						      cl->cl_total);
764 			if (cl->cl_virtual.x == vt) {
765 				cl->cl_virtual.x -= cl->cl_vtoff;
766 				cl->cl_vtoff = 0;
767 			}
768 			cl->cl_vtadj = 0;
769 
770 			cl->cl_vtperiod++;  /* increment vt period */
771 			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
772 			if (cl->cl_parent->cl_nactive == 0)
773 				cl->cl_parentperiod++;
774 			cl->cl_f = 0;
775 
776 			vttree_insert(cl);
777 			cftree_insert(cl);
778 
779 			if (cl->cl_flags & HFSC_USC) {
780 				/* class has upper limit curve */
781 				if (cur_time == 0)
782 					PSCHED_GET_TIME(cur_time);
783 
784 				/* update the ulimit curve */
785 				rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
786 					 cl->cl_total);
787 				/* compute myf */
788 				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
789 						      cl->cl_total);
790 				cl->cl_myfadj = 0;
791 			}
792 		}
793 
794 		f = max(cl->cl_myf, cl->cl_cfmin);
795 		if (f != cl->cl_f) {
796 			cl->cl_f = f;
797 			cftree_update(cl);
798 			update_cfmin(cl->cl_parent);
799 		}
800 	}
801 }
802 
803 static void
804 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
805 {
806 	u64 f; /* , myf_bound, delta; */
807 	int go_passive = 0;
808 
809 	if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
810 		go_passive = 1;
811 
812 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
813 		cl->cl_total += len;
814 
815 		if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
816 			continue;
817 
818 		if (go_passive && --cl->cl_nactive == 0)
819 			go_passive = 1;
820 		else
821 			go_passive = 0;
822 
823 		if (go_passive) {
824 			/* no more active child, going passive */
825 
826 			/* update cvtmax of the parent class */
827 			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
828 				cl->cl_parent->cl_cvtmax = cl->cl_vt;
829 
830 			/* remove this class from the vt tree */
831 			vttree_remove(cl);
832 
833 			cftree_remove(cl);
834 			update_cfmin(cl->cl_parent);
835 
836 			continue;
837 		}
838 
839 		/*
840 		 * update vt and f
841 		 */
842 		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
843 			    - cl->cl_vtoff + cl->cl_vtadj;
844 
845 		/*
846 		 * if vt of the class is smaller than cvtmin,
847 		 * the class was skipped in the past due to non-fit.
848 		 * if so, we need to adjust vtadj.
849 		 */
850 		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
851 			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
852 			cl->cl_vt = cl->cl_parent->cl_cvtmin;
853 		}
854 
855 		/* update the vt tree */
856 		vttree_update(cl);
857 
858 		if (cl->cl_flags & HFSC_USC) {
859 			cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
860 							      cl->cl_total);
861 #if 0
862 			/*
863 			 * This code causes classes to stay way under their
864 			 * limit when multiple classes are used at gigabit
865 			 * speed. needs investigation. -kaber
866 			 */
867 			/*
868 			 * if myf lags behind by more than one clock tick
869 			 * from the current time, adjust myfadj to prevent
870 			 * a rate-limited class from going greedy.
871 			 * in a steady state under rate-limiting, myf
872 			 * fluctuates within one clock tick.
873 			 */
874 			myf_bound = cur_time - PSCHED_JIFFIE2US(1);
875 			if (cl->cl_myf < myf_bound) {
876 				delta = cur_time - cl->cl_myf;
877 				cl->cl_myfadj += delta;
878 				cl->cl_myf += delta;
879 			}
880 #endif
881 		}
882 
883 		f = max(cl->cl_myf, cl->cl_cfmin);
884 		if (f != cl->cl_f) {
885 			cl->cl_f = f;
886 			cftree_update(cl);
887 			update_cfmin(cl->cl_parent);
888 		}
889 	}
890 }
891 
892 static void
893 set_active(struct hfsc_class *cl, unsigned int len)
894 {
895 	if (cl->cl_flags & HFSC_RSC)
896 		init_ed(cl, len);
897 	if (cl->cl_flags & HFSC_FSC)
898 		init_vf(cl, len);
899 
900 	list_add_tail(&cl->dlist, &cl->sched->droplist);
901 }
902 
903 static void
904 set_passive(struct hfsc_class *cl)
905 {
906 	if (cl->cl_flags & HFSC_RSC)
907 		eltree_remove(cl);
908 
909 	list_del(&cl->dlist);
910 
911 	/*
912 	 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
913 	 * needs to be called explicitly to remove a class from vttree.
914 	 */
915 }
916 
917 /*
918  * hack to get length of first packet in queue.
919  */
920 static unsigned int
921 qdisc_peek_len(struct Qdisc *sch)
922 {
923 	struct sk_buff *skb;
924 	unsigned int len;
925 
926 	skb = sch->dequeue(sch);
927 	if (skb == NULL) {
928 		if (net_ratelimit())
929 			printk("qdisc_peek_len: non work-conserving qdisc ?\n");
930 		return 0;
931 	}
932 	len = skb->len;
933 	if (unlikely(sch->ops->requeue(skb, sch) != NET_XMIT_SUCCESS)) {
934 		if (net_ratelimit())
935 			printk("qdisc_peek_len: failed to requeue\n");
936 		qdisc_tree_decrease_qlen(sch, 1);
937 		return 0;
938 	}
939 	return len;
940 }
941 
942 static void
943 hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl)
944 {
945 	unsigned int len = cl->qdisc->q.qlen;
946 
947 	qdisc_reset(cl->qdisc);
948 	qdisc_tree_decrease_qlen(cl->qdisc, len);
949 }
950 
951 static void
952 hfsc_adjust_levels(struct hfsc_class *cl)
953 {
954 	struct hfsc_class *p;
955 	unsigned int level;
956 
957 	do {
958 		level = 0;
959 		list_for_each_entry(p, &cl->children, siblings) {
960 			if (p->level >= level)
961 				level = p->level + 1;
962 		}
963 		cl->level = level;
964 	} while ((cl = cl->cl_parent) != NULL);
965 }
966 
967 static inline unsigned int
968 hfsc_hash(u32 h)
969 {
970 	h ^= h >> 8;
971 	h ^= h >> 4;
972 
973 	return h & (HFSC_HSIZE - 1);
974 }
975 
976 static inline struct hfsc_class *
977 hfsc_find_class(u32 classid, struct Qdisc *sch)
978 {
979 	struct hfsc_sched *q = qdisc_priv(sch);
980 	struct hfsc_class *cl;
981 
982 	list_for_each_entry(cl, &q->clhash[hfsc_hash(classid)], hlist) {
983 		if (cl->classid == classid)
984 			return cl;
985 	}
986 	return NULL;
987 }
988 
989 static void
990 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
991 		u64 cur_time)
992 {
993 	sc2isc(rsc, &cl->cl_rsc);
994 	rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
995 	cl->cl_eligible = cl->cl_deadline;
996 	if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
997 		cl->cl_eligible.dx = 0;
998 		cl->cl_eligible.dy = 0;
999 	}
1000 	cl->cl_flags |= HFSC_RSC;
1001 }
1002 
1003 static void
1004 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
1005 {
1006 	sc2isc(fsc, &cl->cl_fsc);
1007 	rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
1008 	cl->cl_flags |= HFSC_FSC;
1009 }
1010 
1011 static void
1012 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
1013 		u64 cur_time)
1014 {
1015 	sc2isc(usc, &cl->cl_usc);
1016 	rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
1017 	cl->cl_flags |= HFSC_USC;
1018 }
1019 
1020 static int
1021 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
1022 		  struct rtattr **tca, unsigned long *arg)
1023 {
1024 	struct hfsc_sched *q = qdisc_priv(sch);
1025 	struct hfsc_class *cl = (struct hfsc_class *)*arg;
1026 	struct hfsc_class *parent = NULL;
1027 	struct rtattr *opt = tca[TCA_OPTIONS-1];
1028 	struct rtattr *tb[TCA_HFSC_MAX];
1029 	struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
1030 	u64 cur_time;
1031 
1032 	if (opt == NULL || rtattr_parse_nested(tb, TCA_HFSC_MAX, opt))
1033 		return -EINVAL;
1034 
1035 	if (tb[TCA_HFSC_RSC-1]) {
1036 		if (RTA_PAYLOAD(tb[TCA_HFSC_RSC-1]) < sizeof(*rsc))
1037 			return -EINVAL;
1038 		rsc = RTA_DATA(tb[TCA_HFSC_RSC-1]);
1039 		if (rsc->m1 == 0 && rsc->m2 == 0)
1040 			rsc = NULL;
1041 	}
1042 
1043 	if (tb[TCA_HFSC_FSC-1]) {
1044 		if (RTA_PAYLOAD(tb[TCA_HFSC_FSC-1]) < sizeof(*fsc))
1045 			return -EINVAL;
1046 		fsc = RTA_DATA(tb[TCA_HFSC_FSC-1]);
1047 		if (fsc->m1 == 0 && fsc->m2 == 0)
1048 			fsc = NULL;
1049 	}
1050 
1051 	if (tb[TCA_HFSC_USC-1]) {
1052 		if (RTA_PAYLOAD(tb[TCA_HFSC_USC-1]) < sizeof(*usc))
1053 			return -EINVAL;
1054 		usc = RTA_DATA(tb[TCA_HFSC_USC-1]);
1055 		if (usc->m1 == 0 && usc->m2 == 0)
1056 			usc = NULL;
1057 	}
1058 
1059 	if (cl != NULL) {
1060 		if (parentid) {
1061 			if (cl->cl_parent && cl->cl_parent->classid != parentid)
1062 				return -EINVAL;
1063 			if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
1064 				return -EINVAL;
1065 		}
1066 		PSCHED_GET_TIME(cur_time);
1067 
1068 		sch_tree_lock(sch);
1069 		if (rsc != NULL)
1070 			hfsc_change_rsc(cl, rsc, cur_time);
1071 		if (fsc != NULL)
1072 			hfsc_change_fsc(cl, fsc);
1073 		if (usc != NULL)
1074 			hfsc_change_usc(cl, usc, cur_time);
1075 
1076 		if (cl->qdisc->q.qlen != 0) {
1077 			if (cl->cl_flags & HFSC_RSC)
1078 				update_ed(cl, qdisc_peek_len(cl->qdisc));
1079 			if (cl->cl_flags & HFSC_FSC)
1080 				update_vf(cl, 0, cur_time);
1081 		}
1082 		sch_tree_unlock(sch);
1083 
1084 #ifdef CONFIG_NET_ESTIMATOR
1085 		if (tca[TCA_RATE-1])
1086 			gen_replace_estimator(&cl->bstats, &cl->rate_est,
1087 				cl->stats_lock, tca[TCA_RATE-1]);
1088 #endif
1089 		return 0;
1090 	}
1091 
1092 	if (parentid == TC_H_ROOT)
1093 		return -EEXIST;
1094 
1095 	parent = &q->root;
1096 	if (parentid) {
1097 		parent = hfsc_find_class(parentid, sch);
1098 		if (parent == NULL)
1099 			return -ENOENT;
1100 	}
1101 
1102 	if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
1103 		return -EINVAL;
1104 	if (hfsc_find_class(classid, sch))
1105 		return -EEXIST;
1106 
1107 	if (rsc == NULL && fsc == NULL)
1108 		return -EINVAL;
1109 
1110 	cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
1111 	if (cl == NULL)
1112 		return -ENOBUFS;
1113 
1114 	if (rsc != NULL)
1115 		hfsc_change_rsc(cl, rsc, 0);
1116 	if (fsc != NULL)
1117 		hfsc_change_fsc(cl, fsc);
1118 	if (usc != NULL)
1119 		hfsc_change_usc(cl, usc, 0);
1120 
1121 	cl->refcnt    = 1;
1122 	cl->classid   = classid;
1123 	cl->sched     = q;
1124 	cl->cl_parent = parent;
1125 	cl->qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops, classid);
1126 	if (cl->qdisc == NULL)
1127 		cl->qdisc = &noop_qdisc;
1128 	cl->stats_lock = &sch->dev->queue_lock;
1129 	INIT_LIST_HEAD(&cl->children);
1130 	cl->vt_tree = RB_ROOT;
1131 	cl->cf_tree = RB_ROOT;
1132 
1133 	sch_tree_lock(sch);
1134 	list_add_tail(&cl->hlist, &q->clhash[hfsc_hash(classid)]);
1135 	list_add_tail(&cl->siblings, &parent->children);
1136 	if (parent->level == 0)
1137 		hfsc_purge_queue(sch, parent);
1138 	hfsc_adjust_levels(parent);
1139 	cl->cl_pcvtoff = parent->cl_cvtoff;
1140 	sch_tree_unlock(sch);
1141 
1142 #ifdef CONFIG_NET_ESTIMATOR
1143 	if (tca[TCA_RATE-1])
1144 		gen_new_estimator(&cl->bstats, &cl->rate_est,
1145 			cl->stats_lock, tca[TCA_RATE-1]);
1146 #endif
1147 	*arg = (unsigned long)cl;
1148 	return 0;
1149 }
1150 
1151 static void
1152 hfsc_destroy_filters(struct tcf_proto **fl)
1153 {
1154 	struct tcf_proto *tp;
1155 
1156 	while ((tp = *fl) != NULL) {
1157 		*fl = tp->next;
1158 		tcf_destroy(tp);
1159 	}
1160 }
1161 
1162 static void
1163 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
1164 {
1165 	struct hfsc_sched *q = qdisc_priv(sch);
1166 
1167 	hfsc_destroy_filters(&cl->filter_list);
1168 	qdisc_destroy(cl->qdisc);
1169 #ifdef CONFIG_NET_ESTIMATOR
1170 	gen_kill_estimator(&cl->bstats, &cl->rate_est);
1171 #endif
1172 	if (cl != &q->root)
1173 		kfree(cl);
1174 }
1175 
1176 static int
1177 hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
1178 {
1179 	struct hfsc_sched *q = qdisc_priv(sch);
1180 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1181 
1182 	if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
1183 		return -EBUSY;
1184 
1185 	sch_tree_lock(sch);
1186 
1187 	list_del(&cl->siblings);
1188 	hfsc_adjust_levels(cl->cl_parent);
1189 
1190 	hfsc_purge_queue(sch, cl);
1191 	list_del(&cl->hlist);
1192 
1193 	if (--cl->refcnt == 0)
1194 		hfsc_destroy_class(sch, cl);
1195 
1196 	sch_tree_unlock(sch);
1197 	return 0;
1198 }
1199 
1200 static struct hfsc_class *
1201 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
1202 {
1203 	struct hfsc_sched *q = qdisc_priv(sch);
1204 	struct hfsc_class *cl;
1205 	struct tcf_result res;
1206 	struct tcf_proto *tcf;
1207 	int result;
1208 
1209 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
1210 	    (cl = hfsc_find_class(skb->priority, sch)) != NULL)
1211 		if (cl->level == 0)
1212 			return cl;
1213 
1214 	*qerr = NET_XMIT_BYPASS;
1215 	tcf = q->root.filter_list;
1216 	while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) {
1217 #ifdef CONFIG_NET_CLS_ACT
1218 		switch (result) {
1219 		case TC_ACT_QUEUED:
1220 		case TC_ACT_STOLEN:
1221 			*qerr = NET_XMIT_SUCCESS;
1222 		case TC_ACT_SHOT:
1223 			return NULL;
1224 		}
1225 #elif defined(CONFIG_NET_CLS_POLICE)
1226 		if (result == TC_POLICE_SHOT)
1227 			return NULL;
1228 #endif
1229 		if ((cl = (struct hfsc_class *)res.class) == NULL) {
1230 			if ((cl = hfsc_find_class(res.classid, sch)) == NULL)
1231 				break; /* filter selected invalid classid */
1232 		}
1233 
1234 		if (cl->level == 0)
1235 			return cl; /* hit leaf class */
1236 
1237 		/* apply inner filter chain */
1238 		tcf = cl->filter_list;
1239 	}
1240 
1241 	/* classification failed, try default class */
1242 	cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
1243 	if (cl == NULL || cl->level > 0)
1244 		return NULL;
1245 
1246 	return cl;
1247 }
1248 
1249 static int
1250 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1251 		 struct Qdisc **old)
1252 {
1253 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1254 
1255 	if (cl == NULL)
1256 		return -ENOENT;
1257 	if (cl->level > 0)
1258 		return -EINVAL;
1259 	if (new == NULL) {
1260 		new = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops,
1261 					cl->classid);
1262 		if (new == NULL)
1263 			new = &noop_qdisc;
1264 	}
1265 
1266 	sch_tree_lock(sch);
1267 	hfsc_purge_queue(sch, cl);
1268 	*old = xchg(&cl->qdisc, new);
1269 	sch_tree_unlock(sch);
1270 	return 0;
1271 }
1272 
1273 static struct Qdisc *
1274 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
1275 {
1276 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1277 
1278 	if (cl != NULL && cl->level == 0)
1279 		return cl->qdisc;
1280 
1281 	return NULL;
1282 }
1283 
1284 static void
1285 hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
1286 {
1287 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1288 
1289 	if (cl->qdisc->q.qlen == 0) {
1290 		update_vf(cl, 0, 0);
1291 		set_passive(cl);
1292 	}
1293 }
1294 
1295 static unsigned long
1296 hfsc_get_class(struct Qdisc *sch, u32 classid)
1297 {
1298 	struct hfsc_class *cl = hfsc_find_class(classid, sch);
1299 
1300 	if (cl != NULL)
1301 		cl->refcnt++;
1302 
1303 	return (unsigned long)cl;
1304 }
1305 
1306 static void
1307 hfsc_put_class(struct Qdisc *sch, unsigned long arg)
1308 {
1309 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1310 
1311 	if (--cl->refcnt == 0)
1312 		hfsc_destroy_class(sch, cl);
1313 }
1314 
1315 static unsigned long
1316 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
1317 {
1318 	struct hfsc_class *p = (struct hfsc_class *)parent;
1319 	struct hfsc_class *cl = hfsc_find_class(classid, sch);
1320 
1321 	if (cl != NULL) {
1322 		if (p != NULL && p->level <= cl->level)
1323 			return 0;
1324 		cl->filter_cnt++;
1325 	}
1326 
1327 	return (unsigned long)cl;
1328 }
1329 
1330 static void
1331 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
1332 {
1333 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1334 
1335 	cl->filter_cnt--;
1336 }
1337 
1338 static struct tcf_proto **
1339 hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg)
1340 {
1341 	struct hfsc_sched *q = qdisc_priv(sch);
1342 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1343 
1344 	if (cl == NULL)
1345 		cl = &q->root;
1346 
1347 	return &cl->filter_list;
1348 }
1349 
1350 static int
1351 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
1352 {
1353 	struct tc_service_curve tsc;
1354 
1355 	tsc.m1 = sm2m(sc->sm1);
1356 	tsc.d  = dx2d(sc->dx);
1357 	tsc.m2 = sm2m(sc->sm2);
1358 	RTA_PUT(skb, attr, sizeof(tsc), &tsc);
1359 
1360 	return skb->len;
1361 
1362  rtattr_failure:
1363 	return -1;
1364 }
1365 
1366 static inline int
1367 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
1368 {
1369 	if ((cl->cl_flags & HFSC_RSC) &&
1370 	    (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
1371 		goto rtattr_failure;
1372 
1373 	if ((cl->cl_flags & HFSC_FSC) &&
1374 	    (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
1375 		goto rtattr_failure;
1376 
1377 	if ((cl->cl_flags & HFSC_USC) &&
1378 	    (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
1379 		goto rtattr_failure;
1380 
1381 	return skb->len;
1382 
1383  rtattr_failure:
1384 	return -1;
1385 }
1386 
1387 static int
1388 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
1389 		struct tcmsg *tcm)
1390 {
1391 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1392 	unsigned char *b = skb->tail;
1393 	struct rtattr *rta = (struct rtattr *)b;
1394 
1395 	tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->classid : TC_H_ROOT;
1396 	tcm->tcm_handle = cl->classid;
1397 	if (cl->level == 0)
1398 		tcm->tcm_info = cl->qdisc->handle;
1399 
1400 	RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
1401 	if (hfsc_dump_curves(skb, cl) < 0)
1402 		goto rtattr_failure;
1403 	rta->rta_len = skb->tail - b;
1404 	return skb->len;
1405 
1406  rtattr_failure:
1407 	skb_trim(skb, b - skb->data);
1408 	return -1;
1409 }
1410 
1411 static int
1412 hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
1413 	struct gnet_dump *d)
1414 {
1415 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1416 	struct tc_hfsc_stats xstats;
1417 
1418 	cl->qstats.qlen = cl->qdisc->q.qlen;
1419 	xstats.level   = cl->level;
1420 	xstats.period  = cl->cl_vtperiod;
1421 	xstats.work    = cl->cl_total;
1422 	xstats.rtwork  = cl->cl_cumul;
1423 
1424 	if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
1425 #ifdef CONFIG_NET_ESTIMATOR
1426 	    gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
1427 #endif
1428 	    gnet_stats_copy_queue(d, &cl->qstats) < 0)
1429 		return -1;
1430 
1431 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
1432 }
1433 
1434 
1435 
1436 static void
1437 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1438 {
1439 	struct hfsc_sched *q = qdisc_priv(sch);
1440 	struct hfsc_class *cl;
1441 	unsigned int i;
1442 
1443 	if (arg->stop)
1444 		return;
1445 
1446 	for (i = 0; i < HFSC_HSIZE; i++) {
1447 		list_for_each_entry(cl, &q->clhash[i], hlist) {
1448 			if (arg->count < arg->skip) {
1449 				arg->count++;
1450 				continue;
1451 			}
1452 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
1453 				arg->stop = 1;
1454 				return;
1455 			}
1456 			arg->count++;
1457 		}
1458 	}
1459 }
1460 
1461 static void
1462 hfsc_watchdog(unsigned long arg)
1463 {
1464 	struct Qdisc *sch = (struct Qdisc *)arg;
1465 
1466 	sch->flags &= ~TCQ_F_THROTTLED;
1467 	netif_schedule(sch->dev);
1468 }
1469 
1470 static void
1471 hfsc_schedule_watchdog(struct Qdisc *sch, u64 cur_time)
1472 {
1473 	struct hfsc_sched *q = qdisc_priv(sch);
1474 	struct hfsc_class *cl;
1475 	u64 next_time = 0;
1476 	long delay;
1477 
1478 	if ((cl = eltree_get_minel(q)) != NULL)
1479 		next_time = cl->cl_e;
1480 	if (q->root.cl_cfmin != 0) {
1481 		if (next_time == 0 || next_time > q->root.cl_cfmin)
1482 			next_time = q->root.cl_cfmin;
1483 	}
1484 	WARN_ON(next_time == 0);
1485 	delay = next_time - cur_time;
1486 	delay = PSCHED_US2JIFFIE(delay);
1487 
1488 	sch->flags |= TCQ_F_THROTTLED;
1489 	mod_timer(&q->wd_timer, jiffies + delay);
1490 }
1491 
1492 static int
1493 hfsc_init_qdisc(struct Qdisc *sch, struct rtattr *opt)
1494 {
1495 	struct hfsc_sched *q = qdisc_priv(sch);
1496 	struct tc_hfsc_qopt *qopt;
1497 	unsigned int i;
1498 
1499 	if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt))
1500 		return -EINVAL;
1501 	qopt = RTA_DATA(opt);
1502 
1503 	sch->stats_lock = &sch->dev->queue_lock;
1504 
1505 	q->defcls = qopt->defcls;
1506 	for (i = 0; i < HFSC_HSIZE; i++)
1507 		INIT_LIST_HEAD(&q->clhash[i]);
1508 	q->eligible = RB_ROOT;
1509 	INIT_LIST_HEAD(&q->droplist);
1510 	skb_queue_head_init(&q->requeue);
1511 
1512 	q->root.refcnt  = 1;
1513 	q->root.classid = sch->handle;
1514 	q->root.sched   = q;
1515 	q->root.qdisc = qdisc_create_dflt(sch->dev, &pfifo_qdisc_ops,
1516 					  sch->handle);
1517 	if (q->root.qdisc == NULL)
1518 		q->root.qdisc = &noop_qdisc;
1519 	q->root.stats_lock = &sch->dev->queue_lock;
1520 	INIT_LIST_HEAD(&q->root.children);
1521 	q->root.vt_tree = RB_ROOT;
1522 	q->root.cf_tree = RB_ROOT;
1523 
1524 	list_add(&q->root.hlist, &q->clhash[hfsc_hash(q->root.classid)]);
1525 
1526 	init_timer(&q->wd_timer);
1527 	q->wd_timer.function = hfsc_watchdog;
1528 	q->wd_timer.data = (unsigned long)sch;
1529 
1530 	return 0;
1531 }
1532 
1533 static int
1534 hfsc_change_qdisc(struct Qdisc *sch, struct rtattr *opt)
1535 {
1536 	struct hfsc_sched *q = qdisc_priv(sch);
1537 	struct tc_hfsc_qopt *qopt;
1538 
1539 	if (opt == NULL || RTA_PAYLOAD(opt) < sizeof(*qopt))
1540 		return -EINVAL;
1541 	qopt = RTA_DATA(opt);
1542 
1543 	sch_tree_lock(sch);
1544 	q->defcls = qopt->defcls;
1545 	sch_tree_unlock(sch);
1546 
1547 	return 0;
1548 }
1549 
1550 static void
1551 hfsc_reset_class(struct hfsc_class *cl)
1552 {
1553 	cl->cl_total        = 0;
1554 	cl->cl_cumul        = 0;
1555 	cl->cl_d            = 0;
1556 	cl->cl_e            = 0;
1557 	cl->cl_vt           = 0;
1558 	cl->cl_vtadj        = 0;
1559 	cl->cl_vtoff        = 0;
1560 	cl->cl_cvtmin       = 0;
1561 	cl->cl_cvtmax       = 0;
1562 	cl->cl_cvtoff       = 0;
1563 	cl->cl_pcvtoff      = 0;
1564 	cl->cl_vtperiod     = 0;
1565 	cl->cl_parentperiod = 0;
1566 	cl->cl_f            = 0;
1567 	cl->cl_myf          = 0;
1568 	cl->cl_myfadj       = 0;
1569 	cl->cl_cfmin        = 0;
1570 	cl->cl_nactive      = 0;
1571 
1572 	cl->vt_tree = RB_ROOT;
1573 	cl->cf_tree = RB_ROOT;
1574 	qdisc_reset(cl->qdisc);
1575 
1576 	if (cl->cl_flags & HFSC_RSC)
1577 		rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
1578 	if (cl->cl_flags & HFSC_FSC)
1579 		rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
1580 	if (cl->cl_flags & HFSC_USC)
1581 		rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
1582 }
1583 
1584 static void
1585 hfsc_reset_qdisc(struct Qdisc *sch)
1586 {
1587 	struct hfsc_sched *q = qdisc_priv(sch);
1588 	struct hfsc_class *cl;
1589 	unsigned int i;
1590 
1591 	for (i = 0; i < HFSC_HSIZE; i++) {
1592 		list_for_each_entry(cl, &q->clhash[i], hlist)
1593 			hfsc_reset_class(cl);
1594 	}
1595 	__skb_queue_purge(&q->requeue);
1596 	q->eligible = RB_ROOT;
1597 	INIT_LIST_HEAD(&q->droplist);
1598 	del_timer(&q->wd_timer);
1599 	sch->flags &= ~TCQ_F_THROTTLED;
1600 	sch->q.qlen = 0;
1601 }
1602 
1603 static void
1604 hfsc_destroy_qdisc(struct Qdisc *sch)
1605 {
1606 	struct hfsc_sched *q = qdisc_priv(sch);
1607 	struct hfsc_class *cl, *next;
1608 	unsigned int i;
1609 
1610 	for (i = 0; i < HFSC_HSIZE; i++) {
1611 		list_for_each_entry_safe(cl, next, &q->clhash[i], hlist)
1612 			hfsc_destroy_class(sch, cl);
1613 	}
1614 	__skb_queue_purge(&q->requeue);
1615 	del_timer(&q->wd_timer);
1616 }
1617 
1618 static int
1619 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
1620 {
1621 	struct hfsc_sched *q = qdisc_priv(sch);
1622 	unsigned char *b = skb->tail;
1623 	struct tc_hfsc_qopt qopt;
1624 
1625 	qopt.defcls = q->defcls;
1626 	RTA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
1627 	return skb->len;
1628 
1629  rtattr_failure:
1630 	skb_trim(skb, b - skb->data);
1631 	return -1;
1632 }
1633 
1634 static int
1635 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1636 {
1637 	struct hfsc_class *cl;
1638 	unsigned int len;
1639 	int err;
1640 
1641 	cl = hfsc_classify(skb, sch, &err);
1642 	if (cl == NULL) {
1643 		if (err == NET_XMIT_BYPASS)
1644 			sch->qstats.drops++;
1645 		kfree_skb(skb);
1646 		return err;
1647 	}
1648 
1649 	len = skb->len;
1650 	err = cl->qdisc->enqueue(skb, cl->qdisc);
1651 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1652 		cl->qstats.drops++;
1653 		sch->qstats.drops++;
1654 		return err;
1655 	}
1656 
1657 	if (cl->qdisc->q.qlen == 1)
1658 		set_active(cl, len);
1659 
1660 	cl->bstats.packets++;
1661 	cl->bstats.bytes += len;
1662 	sch->bstats.packets++;
1663 	sch->bstats.bytes += len;
1664 	sch->q.qlen++;
1665 
1666 	return NET_XMIT_SUCCESS;
1667 }
1668 
1669 static struct sk_buff *
1670 hfsc_dequeue(struct Qdisc *sch)
1671 {
1672 	struct hfsc_sched *q = qdisc_priv(sch);
1673 	struct hfsc_class *cl;
1674 	struct sk_buff *skb;
1675 	u64 cur_time;
1676 	unsigned int next_len;
1677 	int realtime = 0;
1678 
1679 	if (sch->q.qlen == 0)
1680 		return NULL;
1681 	if ((skb = __skb_dequeue(&q->requeue)))
1682 		goto out;
1683 
1684 	PSCHED_GET_TIME(cur_time);
1685 
1686 	/*
1687 	 * if there are eligible classes, use real-time criteria.
1688 	 * find the class with the minimum deadline among
1689 	 * the eligible classes.
1690 	 */
1691 	if ((cl = eltree_get_mindl(q, cur_time)) != NULL) {
1692 		realtime = 1;
1693 	} else {
1694 		/*
1695 		 * use link-sharing criteria
1696 		 * get the class with the minimum vt in the hierarchy
1697 		 */
1698 		cl = vttree_get_minvt(&q->root, cur_time);
1699 		if (cl == NULL) {
1700 			sch->qstats.overlimits++;
1701 			hfsc_schedule_watchdog(sch, cur_time);
1702 			return NULL;
1703 		}
1704 	}
1705 
1706 	skb = cl->qdisc->dequeue(cl->qdisc);
1707 	if (skb == NULL) {
1708 		if (net_ratelimit())
1709 			printk("HFSC: Non-work-conserving qdisc ?\n");
1710 		return NULL;
1711 	}
1712 
1713 	update_vf(cl, skb->len, cur_time);
1714 	if (realtime)
1715 		cl->cl_cumul += skb->len;
1716 
1717 	if (cl->qdisc->q.qlen != 0) {
1718 		if (cl->cl_flags & HFSC_RSC) {
1719 			/* update ed */
1720 			next_len = qdisc_peek_len(cl->qdisc);
1721 			if (realtime)
1722 				update_ed(cl, next_len);
1723 			else
1724 				update_d(cl, next_len);
1725 		}
1726 	} else {
1727 		/* the class becomes passive */
1728 		set_passive(cl);
1729 	}
1730 
1731  out:
1732 	sch->flags &= ~TCQ_F_THROTTLED;
1733 	sch->q.qlen--;
1734 
1735 	return skb;
1736 }
1737 
1738 static int
1739 hfsc_requeue(struct sk_buff *skb, struct Qdisc *sch)
1740 {
1741 	struct hfsc_sched *q = qdisc_priv(sch);
1742 
1743 	__skb_queue_head(&q->requeue, skb);
1744 	sch->q.qlen++;
1745 	sch->qstats.requeues++;
1746 	return NET_XMIT_SUCCESS;
1747 }
1748 
1749 static unsigned int
1750 hfsc_drop(struct Qdisc *sch)
1751 {
1752 	struct hfsc_sched *q = qdisc_priv(sch);
1753 	struct hfsc_class *cl;
1754 	unsigned int len;
1755 
1756 	list_for_each_entry(cl, &q->droplist, dlist) {
1757 		if (cl->qdisc->ops->drop != NULL &&
1758 		    (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) {
1759 			if (cl->qdisc->q.qlen == 0) {
1760 				update_vf(cl, 0, 0);
1761 				set_passive(cl);
1762 			} else {
1763 				list_move_tail(&cl->dlist, &q->droplist);
1764 			}
1765 			cl->qstats.drops++;
1766 			sch->qstats.drops++;
1767 			sch->q.qlen--;
1768 			return len;
1769 		}
1770 	}
1771 	return 0;
1772 }
1773 
1774 static struct Qdisc_class_ops hfsc_class_ops = {
1775 	.change		= hfsc_change_class,
1776 	.delete		= hfsc_delete_class,
1777 	.graft		= hfsc_graft_class,
1778 	.leaf		= hfsc_class_leaf,
1779 	.qlen_notify	= hfsc_qlen_notify,
1780 	.get		= hfsc_get_class,
1781 	.put		= hfsc_put_class,
1782 	.bind_tcf	= hfsc_bind_tcf,
1783 	.unbind_tcf	= hfsc_unbind_tcf,
1784 	.tcf_chain	= hfsc_tcf_chain,
1785 	.dump		= hfsc_dump_class,
1786 	.dump_stats	= hfsc_dump_class_stats,
1787 	.walk		= hfsc_walk
1788 };
1789 
1790 static struct Qdisc_ops hfsc_qdisc_ops = {
1791 	.id		= "hfsc",
1792 	.init		= hfsc_init_qdisc,
1793 	.change		= hfsc_change_qdisc,
1794 	.reset		= hfsc_reset_qdisc,
1795 	.destroy	= hfsc_destroy_qdisc,
1796 	.dump		= hfsc_dump_qdisc,
1797 	.enqueue	= hfsc_enqueue,
1798 	.dequeue	= hfsc_dequeue,
1799 	.requeue	= hfsc_requeue,
1800 	.drop		= hfsc_drop,
1801 	.cl_ops		= &hfsc_class_ops,
1802 	.priv_size	= sizeof(struct hfsc_sched),
1803 	.owner		= THIS_MODULE
1804 };
1805 
1806 static int __init
1807 hfsc_init(void)
1808 {
1809 	return register_qdisc(&hfsc_qdisc_ops);
1810 }
1811 
1812 static void __exit
1813 hfsc_cleanup(void)
1814 {
1815 	unregister_qdisc(&hfsc_qdisc_ops);
1816 }
1817 
1818 MODULE_LICENSE("GPL");
1819 module_init(hfsc_init);
1820 module_exit(hfsc_cleanup);
1821