1 /* 2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net> 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 2 7 * of the License, or (at your option) any later version. 8 * 9 * 2003-10-17 - Ported from altq 10 */ 11 /* 12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved. 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation is hereby granted (including for commercial or 16 * for-profit use), provided that both the copyright notice and this 17 * permission notice appear in all copies of the software, derivative 18 * works, or modified versions, and any portions thereof. 19 * 20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF 21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS 22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED 23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 33 * DAMAGE. 34 * 35 * Carnegie Mellon encourages (but does not require) users of this 36 * software to return any improvements or extensions that they make, 37 * and to grant Carnegie Mellon the rights to redistribute these 38 * changes without encumbrance. 39 */ 40 /* 41 * H-FSC is described in Proceedings of SIGCOMM'97, 42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing, 43 * Real-Time and Priority Service" 44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng. 45 * 46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing. 47 * when a class has an upperlimit, the fit-time is computed from the 48 * upperlimit service curve. the link-sharing scheduler does not schedule 49 * a class whose fit-time exceeds the current time. 50 */ 51 52 #include <linux/kernel.h> 53 #include <linux/module.h> 54 #include <linux/types.h> 55 #include <linux/errno.h> 56 #include <linux/compiler.h> 57 #include <linux/spinlock.h> 58 #include <linux/skbuff.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/list.h> 62 #include <linux/rbtree.h> 63 #include <linux/init.h> 64 #include <linux/rtnetlink.h> 65 #include <linux/pkt_sched.h> 66 #include <net/netlink.h> 67 #include <net/pkt_sched.h> 68 #include <net/pkt_cls.h> 69 #include <asm/div64.h> 70 71 /* 72 * kernel internal service curve representation: 73 * coordinates are given by 64 bit unsigned integers. 74 * x-axis: unit is clock count. 75 * y-axis: unit is byte. 76 * 77 * The service curve parameters are converted to the internal 78 * representation. The slope values are scaled to avoid overflow. 79 * the inverse slope values as well as the y-projection of the 1st 80 * segment are kept in order to to avoid 64-bit divide operations 81 * that are expensive on 32-bit architectures. 82 */ 83 84 struct internal_sc 85 { 86 u64 sm1; /* scaled slope of the 1st segment */ 87 u64 ism1; /* scaled inverse-slope of the 1st segment */ 88 u64 dx; /* the x-projection of the 1st segment */ 89 u64 dy; /* the y-projection of the 1st segment */ 90 u64 sm2; /* scaled slope of the 2nd segment */ 91 u64 ism2; /* scaled inverse-slope of the 2nd segment */ 92 }; 93 94 /* runtime service curve */ 95 struct runtime_sc 96 { 97 u64 x; /* current starting position on x-axis */ 98 u64 y; /* current starting position on y-axis */ 99 u64 sm1; /* scaled slope of the 1st segment */ 100 u64 ism1; /* scaled inverse-slope of the 1st segment */ 101 u64 dx; /* the x-projection of the 1st segment */ 102 u64 dy; /* the y-projection of the 1st segment */ 103 u64 sm2; /* scaled slope of the 2nd segment */ 104 u64 ism2; /* scaled inverse-slope of the 2nd segment */ 105 }; 106 107 enum hfsc_class_flags 108 { 109 HFSC_RSC = 0x1, 110 HFSC_FSC = 0x2, 111 HFSC_USC = 0x4 112 }; 113 114 struct hfsc_class 115 { 116 struct Qdisc_class_common cl_common; 117 unsigned int refcnt; /* usage count */ 118 119 struct gnet_stats_basic bstats; 120 struct gnet_stats_queue qstats; 121 struct gnet_stats_rate_est rate_est; 122 unsigned int level; /* class level in hierarchy */ 123 struct tcf_proto *filter_list; /* filter list */ 124 unsigned int filter_cnt; /* filter count */ 125 126 struct hfsc_sched *sched; /* scheduler data */ 127 struct hfsc_class *cl_parent; /* parent class */ 128 struct list_head siblings; /* sibling classes */ 129 struct list_head children; /* child classes */ 130 struct Qdisc *qdisc; /* leaf qdisc */ 131 132 struct rb_node el_node; /* qdisc's eligible tree member */ 133 struct rb_root vt_tree; /* active children sorted by cl_vt */ 134 struct rb_node vt_node; /* parent's vt_tree member */ 135 struct rb_root cf_tree; /* active children sorted by cl_f */ 136 struct rb_node cf_node; /* parent's cf_heap member */ 137 struct list_head dlist; /* drop list member */ 138 139 u64 cl_total; /* total work in bytes */ 140 u64 cl_cumul; /* cumulative work in bytes done by 141 real-time criteria */ 142 143 u64 cl_d; /* deadline*/ 144 u64 cl_e; /* eligible time */ 145 u64 cl_vt; /* virtual time */ 146 u64 cl_f; /* time when this class will fit for 147 link-sharing, max(myf, cfmin) */ 148 u64 cl_myf; /* my fit-time (calculated from this 149 class's own upperlimit curve) */ 150 u64 cl_myfadj; /* my fit-time adjustment (to cancel 151 history dependence) */ 152 u64 cl_cfmin; /* earliest children's fit-time (used 153 with cl_myf to obtain cl_f) */ 154 u64 cl_cvtmin; /* minimal virtual time among the 155 children fit for link-sharing 156 (monotonic within a period) */ 157 u64 cl_vtadj; /* intra-period cumulative vt 158 adjustment */ 159 u64 cl_vtoff; /* inter-period cumulative vt offset */ 160 u64 cl_cvtmax; /* max child's vt in the last period */ 161 u64 cl_cvtoff; /* cumulative cvtmax of all periods */ 162 u64 cl_pcvtoff; /* parent's cvtoff at initialization 163 time */ 164 165 struct internal_sc cl_rsc; /* internal real-time service curve */ 166 struct internal_sc cl_fsc; /* internal fair service curve */ 167 struct internal_sc cl_usc; /* internal upperlimit service curve */ 168 struct runtime_sc cl_deadline; /* deadline curve */ 169 struct runtime_sc cl_eligible; /* eligible curve */ 170 struct runtime_sc cl_virtual; /* virtual curve */ 171 struct runtime_sc cl_ulimit; /* upperlimit curve */ 172 173 unsigned long cl_flags; /* which curves are valid */ 174 unsigned long cl_vtperiod; /* vt period sequence number */ 175 unsigned long cl_parentperiod;/* parent's vt period sequence number*/ 176 unsigned long cl_nactive; /* number of active children */ 177 }; 178 179 struct hfsc_sched 180 { 181 u16 defcls; /* default class id */ 182 struct hfsc_class root; /* root class */ 183 struct Qdisc_class_hash clhash; /* class hash */ 184 struct rb_root eligible; /* eligible tree */ 185 struct list_head droplist; /* active leaf class list (for 186 dropping) */ 187 struct qdisc_watchdog watchdog; /* watchdog timer */ 188 }; 189 190 #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */ 191 192 193 /* 194 * eligible tree holds backlogged classes being sorted by their eligible times. 195 * there is one eligible tree per hfsc instance. 196 */ 197 198 static void 199 eltree_insert(struct hfsc_class *cl) 200 { 201 struct rb_node **p = &cl->sched->eligible.rb_node; 202 struct rb_node *parent = NULL; 203 struct hfsc_class *cl1; 204 205 while (*p != NULL) { 206 parent = *p; 207 cl1 = rb_entry(parent, struct hfsc_class, el_node); 208 if (cl->cl_e >= cl1->cl_e) 209 p = &parent->rb_right; 210 else 211 p = &parent->rb_left; 212 } 213 rb_link_node(&cl->el_node, parent, p); 214 rb_insert_color(&cl->el_node, &cl->sched->eligible); 215 } 216 217 static inline void 218 eltree_remove(struct hfsc_class *cl) 219 { 220 rb_erase(&cl->el_node, &cl->sched->eligible); 221 } 222 223 static inline void 224 eltree_update(struct hfsc_class *cl) 225 { 226 eltree_remove(cl); 227 eltree_insert(cl); 228 } 229 230 /* find the class with the minimum deadline among the eligible classes */ 231 static inline struct hfsc_class * 232 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time) 233 { 234 struct hfsc_class *p, *cl = NULL; 235 struct rb_node *n; 236 237 for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) { 238 p = rb_entry(n, struct hfsc_class, el_node); 239 if (p->cl_e > cur_time) 240 break; 241 if (cl == NULL || p->cl_d < cl->cl_d) 242 cl = p; 243 } 244 return cl; 245 } 246 247 /* find the class with minimum eligible time among the eligible classes */ 248 static inline struct hfsc_class * 249 eltree_get_minel(struct hfsc_sched *q) 250 { 251 struct rb_node *n; 252 253 n = rb_first(&q->eligible); 254 if (n == NULL) 255 return NULL; 256 return rb_entry(n, struct hfsc_class, el_node); 257 } 258 259 /* 260 * vttree holds holds backlogged child classes being sorted by their virtual 261 * time. each intermediate class has one vttree. 262 */ 263 static void 264 vttree_insert(struct hfsc_class *cl) 265 { 266 struct rb_node **p = &cl->cl_parent->vt_tree.rb_node; 267 struct rb_node *parent = NULL; 268 struct hfsc_class *cl1; 269 270 while (*p != NULL) { 271 parent = *p; 272 cl1 = rb_entry(parent, struct hfsc_class, vt_node); 273 if (cl->cl_vt >= cl1->cl_vt) 274 p = &parent->rb_right; 275 else 276 p = &parent->rb_left; 277 } 278 rb_link_node(&cl->vt_node, parent, p); 279 rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree); 280 } 281 282 static inline void 283 vttree_remove(struct hfsc_class *cl) 284 { 285 rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree); 286 } 287 288 static inline void 289 vttree_update(struct hfsc_class *cl) 290 { 291 vttree_remove(cl); 292 vttree_insert(cl); 293 } 294 295 static inline struct hfsc_class * 296 vttree_firstfit(struct hfsc_class *cl, u64 cur_time) 297 { 298 struct hfsc_class *p; 299 struct rb_node *n; 300 301 for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) { 302 p = rb_entry(n, struct hfsc_class, vt_node); 303 if (p->cl_f <= cur_time) 304 return p; 305 } 306 return NULL; 307 } 308 309 /* 310 * get the leaf class with the minimum vt in the hierarchy 311 */ 312 static struct hfsc_class * 313 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time) 314 { 315 /* if root-class's cfmin is bigger than cur_time nothing to do */ 316 if (cl->cl_cfmin > cur_time) 317 return NULL; 318 319 while (cl->level > 0) { 320 cl = vttree_firstfit(cl, cur_time); 321 if (cl == NULL) 322 return NULL; 323 /* 324 * update parent's cl_cvtmin. 325 */ 326 if (cl->cl_parent->cl_cvtmin < cl->cl_vt) 327 cl->cl_parent->cl_cvtmin = cl->cl_vt; 328 } 329 return cl; 330 } 331 332 static void 333 cftree_insert(struct hfsc_class *cl) 334 { 335 struct rb_node **p = &cl->cl_parent->cf_tree.rb_node; 336 struct rb_node *parent = NULL; 337 struct hfsc_class *cl1; 338 339 while (*p != NULL) { 340 parent = *p; 341 cl1 = rb_entry(parent, struct hfsc_class, cf_node); 342 if (cl->cl_f >= cl1->cl_f) 343 p = &parent->rb_right; 344 else 345 p = &parent->rb_left; 346 } 347 rb_link_node(&cl->cf_node, parent, p); 348 rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree); 349 } 350 351 static inline void 352 cftree_remove(struct hfsc_class *cl) 353 { 354 rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree); 355 } 356 357 static inline void 358 cftree_update(struct hfsc_class *cl) 359 { 360 cftree_remove(cl); 361 cftree_insert(cl); 362 } 363 364 /* 365 * service curve support functions 366 * 367 * external service curve parameters 368 * m: bps 369 * d: us 370 * internal service curve parameters 371 * sm: (bytes/psched_us) << SM_SHIFT 372 * ism: (psched_us/byte) << ISM_SHIFT 373 * dx: psched_us 374 * 375 * The clock source resolution with ktime is 1.024us. 376 * 377 * sm and ism are scaled in order to keep effective digits. 378 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective 379 * digits in decimal using the following table. 380 * 381 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps 382 * ------------+------------------------------------------------------- 383 * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3 384 * 385 * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125 386 */ 387 #define SM_SHIFT 20 388 #define ISM_SHIFT 18 389 390 #define SM_MASK ((1ULL << SM_SHIFT) - 1) 391 #define ISM_MASK ((1ULL << ISM_SHIFT) - 1) 392 393 static inline u64 394 seg_x2y(u64 x, u64 sm) 395 { 396 u64 y; 397 398 /* 399 * compute 400 * y = x * sm >> SM_SHIFT 401 * but divide it for the upper and lower bits to avoid overflow 402 */ 403 y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT); 404 return y; 405 } 406 407 static inline u64 408 seg_y2x(u64 y, u64 ism) 409 { 410 u64 x; 411 412 if (y == 0) 413 x = 0; 414 else if (ism == HT_INFINITY) 415 x = HT_INFINITY; 416 else { 417 x = (y >> ISM_SHIFT) * ism 418 + (((y & ISM_MASK) * ism) >> ISM_SHIFT); 419 } 420 return x; 421 } 422 423 /* Convert m (bps) into sm (bytes/psched us) */ 424 static u64 425 m2sm(u32 m) 426 { 427 u64 sm; 428 429 sm = ((u64)m << SM_SHIFT); 430 sm += PSCHED_TICKS_PER_SEC - 1; 431 do_div(sm, PSCHED_TICKS_PER_SEC); 432 return sm; 433 } 434 435 /* convert m (bps) into ism (psched us/byte) */ 436 static u64 437 m2ism(u32 m) 438 { 439 u64 ism; 440 441 if (m == 0) 442 ism = HT_INFINITY; 443 else { 444 ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT); 445 ism += m - 1; 446 do_div(ism, m); 447 } 448 return ism; 449 } 450 451 /* convert d (us) into dx (psched us) */ 452 static u64 453 d2dx(u32 d) 454 { 455 u64 dx; 456 457 dx = ((u64)d * PSCHED_TICKS_PER_SEC); 458 dx += USEC_PER_SEC - 1; 459 do_div(dx, USEC_PER_SEC); 460 return dx; 461 } 462 463 /* convert sm (bytes/psched us) into m (bps) */ 464 static u32 465 sm2m(u64 sm) 466 { 467 u64 m; 468 469 m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT; 470 return (u32)m; 471 } 472 473 /* convert dx (psched us) into d (us) */ 474 static u32 475 dx2d(u64 dx) 476 { 477 u64 d; 478 479 d = dx * USEC_PER_SEC; 480 do_div(d, PSCHED_TICKS_PER_SEC); 481 return (u32)d; 482 } 483 484 static void 485 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc) 486 { 487 isc->sm1 = m2sm(sc->m1); 488 isc->ism1 = m2ism(sc->m1); 489 isc->dx = d2dx(sc->d); 490 isc->dy = seg_x2y(isc->dx, isc->sm1); 491 isc->sm2 = m2sm(sc->m2); 492 isc->ism2 = m2ism(sc->m2); 493 } 494 495 /* 496 * initialize the runtime service curve with the given internal 497 * service curve starting at (x, y). 498 */ 499 static void 500 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) 501 { 502 rtsc->x = x; 503 rtsc->y = y; 504 rtsc->sm1 = isc->sm1; 505 rtsc->ism1 = isc->ism1; 506 rtsc->dx = isc->dx; 507 rtsc->dy = isc->dy; 508 rtsc->sm2 = isc->sm2; 509 rtsc->ism2 = isc->ism2; 510 } 511 512 /* 513 * calculate the y-projection of the runtime service curve by the 514 * given x-projection value 515 */ 516 static u64 517 rtsc_y2x(struct runtime_sc *rtsc, u64 y) 518 { 519 u64 x; 520 521 if (y < rtsc->y) 522 x = rtsc->x; 523 else if (y <= rtsc->y + rtsc->dy) { 524 /* x belongs to the 1st segment */ 525 if (rtsc->dy == 0) 526 x = rtsc->x + rtsc->dx; 527 else 528 x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1); 529 } else { 530 /* x belongs to the 2nd segment */ 531 x = rtsc->x + rtsc->dx 532 + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2); 533 } 534 return x; 535 } 536 537 static u64 538 rtsc_x2y(struct runtime_sc *rtsc, u64 x) 539 { 540 u64 y; 541 542 if (x <= rtsc->x) 543 y = rtsc->y; 544 else if (x <= rtsc->x + rtsc->dx) 545 /* y belongs to the 1st segment */ 546 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1); 547 else 548 /* y belongs to the 2nd segment */ 549 y = rtsc->y + rtsc->dy 550 + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2); 551 return y; 552 } 553 554 /* 555 * update the runtime service curve by taking the minimum of the current 556 * runtime service curve and the service curve starting at (x, y). 557 */ 558 static void 559 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) 560 { 561 u64 y1, y2, dx, dy; 562 u32 dsm; 563 564 if (isc->sm1 <= isc->sm2) { 565 /* service curve is convex */ 566 y1 = rtsc_x2y(rtsc, x); 567 if (y1 < y) 568 /* the current rtsc is smaller */ 569 return; 570 rtsc->x = x; 571 rtsc->y = y; 572 return; 573 } 574 575 /* 576 * service curve is concave 577 * compute the two y values of the current rtsc 578 * y1: at x 579 * y2: at (x + dx) 580 */ 581 y1 = rtsc_x2y(rtsc, x); 582 if (y1 <= y) { 583 /* rtsc is below isc, no change to rtsc */ 584 return; 585 } 586 587 y2 = rtsc_x2y(rtsc, x + isc->dx); 588 if (y2 >= y + isc->dy) { 589 /* rtsc is above isc, replace rtsc by isc */ 590 rtsc->x = x; 591 rtsc->y = y; 592 rtsc->dx = isc->dx; 593 rtsc->dy = isc->dy; 594 return; 595 } 596 597 /* 598 * the two curves intersect 599 * compute the offsets (dx, dy) using the reverse 600 * function of seg_x2y() 601 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y) 602 */ 603 dx = (y1 - y) << SM_SHIFT; 604 dsm = isc->sm1 - isc->sm2; 605 do_div(dx, dsm); 606 /* 607 * check if (x, y1) belongs to the 1st segment of rtsc. 608 * if so, add the offset. 609 */ 610 if (rtsc->x + rtsc->dx > x) 611 dx += rtsc->x + rtsc->dx - x; 612 dy = seg_x2y(dx, isc->sm1); 613 614 rtsc->x = x; 615 rtsc->y = y; 616 rtsc->dx = dx; 617 rtsc->dy = dy; 618 return; 619 } 620 621 static void 622 init_ed(struct hfsc_class *cl, unsigned int next_len) 623 { 624 u64 cur_time = psched_get_time(); 625 626 /* update the deadline curve */ 627 rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); 628 629 /* 630 * update the eligible curve. 631 * for concave, it is equal to the deadline curve. 632 * for convex, it is a linear curve with slope m2. 633 */ 634 cl->cl_eligible = cl->cl_deadline; 635 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { 636 cl->cl_eligible.dx = 0; 637 cl->cl_eligible.dy = 0; 638 } 639 640 /* compute e and d */ 641 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); 642 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 643 644 eltree_insert(cl); 645 } 646 647 static void 648 update_ed(struct hfsc_class *cl, unsigned int next_len) 649 { 650 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); 651 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 652 653 eltree_update(cl); 654 } 655 656 static inline void 657 update_d(struct hfsc_class *cl, unsigned int next_len) 658 { 659 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 660 } 661 662 static inline void 663 update_cfmin(struct hfsc_class *cl) 664 { 665 struct rb_node *n = rb_first(&cl->cf_tree); 666 struct hfsc_class *p; 667 668 if (n == NULL) { 669 cl->cl_cfmin = 0; 670 return; 671 } 672 p = rb_entry(n, struct hfsc_class, cf_node); 673 cl->cl_cfmin = p->cl_f; 674 } 675 676 static void 677 init_vf(struct hfsc_class *cl, unsigned int len) 678 { 679 struct hfsc_class *max_cl; 680 struct rb_node *n; 681 u64 vt, f, cur_time; 682 int go_active; 683 684 cur_time = 0; 685 go_active = 1; 686 for (; cl->cl_parent != NULL; cl = cl->cl_parent) { 687 if (go_active && cl->cl_nactive++ == 0) 688 go_active = 1; 689 else 690 go_active = 0; 691 692 if (go_active) { 693 n = rb_last(&cl->cl_parent->vt_tree); 694 if (n != NULL) { 695 max_cl = rb_entry(n, struct hfsc_class,vt_node); 696 /* 697 * set vt to the average of the min and max 698 * classes. if the parent's period didn't 699 * change, don't decrease vt of the class. 700 */ 701 vt = max_cl->cl_vt; 702 if (cl->cl_parent->cl_cvtmin != 0) 703 vt = (cl->cl_parent->cl_cvtmin + vt)/2; 704 705 if (cl->cl_parent->cl_vtperiod != 706 cl->cl_parentperiod || vt > cl->cl_vt) 707 cl->cl_vt = vt; 708 } else { 709 /* 710 * first child for a new parent backlog period. 711 * add parent's cvtmax to cvtoff to make a new 712 * vt (vtoff + vt) larger than the vt in the 713 * last period for all children. 714 */ 715 vt = cl->cl_parent->cl_cvtmax; 716 cl->cl_parent->cl_cvtoff += vt; 717 cl->cl_parent->cl_cvtmax = 0; 718 cl->cl_parent->cl_cvtmin = 0; 719 cl->cl_vt = 0; 720 } 721 722 cl->cl_vtoff = cl->cl_parent->cl_cvtoff - 723 cl->cl_pcvtoff; 724 725 /* update the virtual curve */ 726 vt = cl->cl_vt + cl->cl_vtoff; 727 rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt, 728 cl->cl_total); 729 if (cl->cl_virtual.x == vt) { 730 cl->cl_virtual.x -= cl->cl_vtoff; 731 cl->cl_vtoff = 0; 732 } 733 cl->cl_vtadj = 0; 734 735 cl->cl_vtperiod++; /* increment vt period */ 736 cl->cl_parentperiod = cl->cl_parent->cl_vtperiod; 737 if (cl->cl_parent->cl_nactive == 0) 738 cl->cl_parentperiod++; 739 cl->cl_f = 0; 740 741 vttree_insert(cl); 742 cftree_insert(cl); 743 744 if (cl->cl_flags & HFSC_USC) { 745 /* class has upper limit curve */ 746 if (cur_time == 0) 747 cur_time = psched_get_time(); 748 749 /* update the ulimit curve */ 750 rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time, 751 cl->cl_total); 752 /* compute myf */ 753 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, 754 cl->cl_total); 755 cl->cl_myfadj = 0; 756 } 757 } 758 759 f = max(cl->cl_myf, cl->cl_cfmin); 760 if (f != cl->cl_f) { 761 cl->cl_f = f; 762 cftree_update(cl); 763 update_cfmin(cl->cl_parent); 764 } 765 } 766 } 767 768 static void 769 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time) 770 { 771 u64 f; /* , myf_bound, delta; */ 772 int go_passive = 0; 773 774 if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC) 775 go_passive = 1; 776 777 for (; cl->cl_parent != NULL; cl = cl->cl_parent) { 778 cl->cl_total += len; 779 780 if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0) 781 continue; 782 783 if (go_passive && --cl->cl_nactive == 0) 784 go_passive = 1; 785 else 786 go_passive = 0; 787 788 if (go_passive) { 789 /* no more active child, going passive */ 790 791 /* update cvtmax of the parent class */ 792 if (cl->cl_vt > cl->cl_parent->cl_cvtmax) 793 cl->cl_parent->cl_cvtmax = cl->cl_vt; 794 795 /* remove this class from the vt tree */ 796 vttree_remove(cl); 797 798 cftree_remove(cl); 799 update_cfmin(cl->cl_parent); 800 801 continue; 802 } 803 804 /* 805 * update vt and f 806 */ 807 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total) 808 - cl->cl_vtoff + cl->cl_vtadj; 809 810 /* 811 * if vt of the class is smaller than cvtmin, 812 * the class was skipped in the past due to non-fit. 813 * if so, we need to adjust vtadj. 814 */ 815 if (cl->cl_vt < cl->cl_parent->cl_cvtmin) { 816 cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt; 817 cl->cl_vt = cl->cl_parent->cl_cvtmin; 818 } 819 820 /* update the vt tree */ 821 vttree_update(cl); 822 823 if (cl->cl_flags & HFSC_USC) { 824 cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit, 825 cl->cl_total); 826 #if 0 827 /* 828 * This code causes classes to stay way under their 829 * limit when multiple classes are used at gigabit 830 * speed. needs investigation. -kaber 831 */ 832 /* 833 * if myf lags behind by more than one clock tick 834 * from the current time, adjust myfadj to prevent 835 * a rate-limited class from going greedy. 836 * in a steady state under rate-limiting, myf 837 * fluctuates within one clock tick. 838 */ 839 myf_bound = cur_time - PSCHED_JIFFIE2US(1); 840 if (cl->cl_myf < myf_bound) { 841 delta = cur_time - cl->cl_myf; 842 cl->cl_myfadj += delta; 843 cl->cl_myf += delta; 844 } 845 #endif 846 } 847 848 f = max(cl->cl_myf, cl->cl_cfmin); 849 if (f != cl->cl_f) { 850 cl->cl_f = f; 851 cftree_update(cl); 852 update_cfmin(cl->cl_parent); 853 } 854 } 855 } 856 857 static void 858 set_active(struct hfsc_class *cl, unsigned int len) 859 { 860 if (cl->cl_flags & HFSC_RSC) 861 init_ed(cl, len); 862 if (cl->cl_flags & HFSC_FSC) 863 init_vf(cl, len); 864 865 list_add_tail(&cl->dlist, &cl->sched->droplist); 866 } 867 868 static void 869 set_passive(struct hfsc_class *cl) 870 { 871 if (cl->cl_flags & HFSC_RSC) 872 eltree_remove(cl); 873 874 list_del(&cl->dlist); 875 876 /* 877 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0) 878 * needs to be called explicitly to remove a class from vttree. 879 */ 880 } 881 882 static unsigned int 883 qdisc_peek_len(struct Qdisc *sch) 884 { 885 struct sk_buff *skb; 886 unsigned int len; 887 888 skb = sch->ops->peek(sch); 889 if (skb == NULL) { 890 qdisc_warn_nonwc("qdisc_peek_len", sch); 891 return 0; 892 } 893 len = qdisc_pkt_len(skb); 894 895 return len; 896 } 897 898 static void 899 hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl) 900 { 901 unsigned int len = cl->qdisc->q.qlen; 902 903 qdisc_reset(cl->qdisc); 904 qdisc_tree_decrease_qlen(cl->qdisc, len); 905 } 906 907 static void 908 hfsc_adjust_levels(struct hfsc_class *cl) 909 { 910 struct hfsc_class *p; 911 unsigned int level; 912 913 do { 914 level = 0; 915 list_for_each_entry(p, &cl->children, siblings) { 916 if (p->level >= level) 917 level = p->level + 1; 918 } 919 cl->level = level; 920 } while ((cl = cl->cl_parent) != NULL); 921 } 922 923 static inline struct hfsc_class * 924 hfsc_find_class(u32 classid, struct Qdisc *sch) 925 { 926 struct hfsc_sched *q = qdisc_priv(sch); 927 struct Qdisc_class_common *clc; 928 929 clc = qdisc_class_find(&q->clhash, classid); 930 if (clc == NULL) 931 return NULL; 932 return container_of(clc, struct hfsc_class, cl_common); 933 } 934 935 static void 936 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc, 937 u64 cur_time) 938 { 939 sc2isc(rsc, &cl->cl_rsc); 940 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); 941 cl->cl_eligible = cl->cl_deadline; 942 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { 943 cl->cl_eligible.dx = 0; 944 cl->cl_eligible.dy = 0; 945 } 946 cl->cl_flags |= HFSC_RSC; 947 } 948 949 static void 950 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc) 951 { 952 sc2isc(fsc, &cl->cl_fsc); 953 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total); 954 cl->cl_flags |= HFSC_FSC; 955 } 956 957 static void 958 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc, 959 u64 cur_time) 960 { 961 sc2isc(usc, &cl->cl_usc); 962 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total); 963 cl->cl_flags |= HFSC_USC; 964 } 965 966 static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = { 967 [TCA_HFSC_RSC] = { .len = sizeof(struct tc_service_curve) }, 968 [TCA_HFSC_FSC] = { .len = sizeof(struct tc_service_curve) }, 969 [TCA_HFSC_USC] = { .len = sizeof(struct tc_service_curve) }, 970 }; 971 972 static int 973 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 974 struct nlattr **tca, unsigned long *arg) 975 { 976 struct hfsc_sched *q = qdisc_priv(sch); 977 struct hfsc_class *cl = (struct hfsc_class *)*arg; 978 struct hfsc_class *parent = NULL; 979 struct nlattr *opt = tca[TCA_OPTIONS]; 980 struct nlattr *tb[TCA_HFSC_MAX + 1]; 981 struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL; 982 u64 cur_time; 983 int err; 984 985 if (opt == NULL) 986 return -EINVAL; 987 988 err = nla_parse_nested(tb, TCA_HFSC_MAX, opt, hfsc_policy); 989 if (err < 0) 990 return err; 991 992 if (tb[TCA_HFSC_RSC]) { 993 rsc = nla_data(tb[TCA_HFSC_RSC]); 994 if (rsc->m1 == 0 && rsc->m2 == 0) 995 rsc = NULL; 996 } 997 998 if (tb[TCA_HFSC_FSC]) { 999 fsc = nla_data(tb[TCA_HFSC_FSC]); 1000 if (fsc->m1 == 0 && fsc->m2 == 0) 1001 fsc = NULL; 1002 } 1003 1004 if (tb[TCA_HFSC_USC]) { 1005 usc = nla_data(tb[TCA_HFSC_USC]); 1006 if (usc->m1 == 0 && usc->m2 == 0) 1007 usc = NULL; 1008 } 1009 1010 if (cl != NULL) { 1011 if (parentid) { 1012 if (cl->cl_parent && 1013 cl->cl_parent->cl_common.classid != parentid) 1014 return -EINVAL; 1015 if (cl->cl_parent == NULL && parentid != TC_H_ROOT) 1016 return -EINVAL; 1017 } 1018 cur_time = psched_get_time(); 1019 1020 if (tca[TCA_RATE]) { 1021 err = gen_replace_estimator(&cl->bstats, &cl->rate_est, 1022 qdisc_root_sleeping_lock(sch), 1023 tca[TCA_RATE]); 1024 if (err) 1025 return err; 1026 } 1027 1028 sch_tree_lock(sch); 1029 if (rsc != NULL) 1030 hfsc_change_rsc(cl, rsc, cur_time); 1031 if (fsc != NULL) 1032 hfsc_change_fsc(cl, fsc); 1033 if (usc != NULL) 1034 hfsc_change_usc(cl, usc, cur_time); 1035 1036 if (cl->qdisc->q.qlen != 0) { 1037 if (cl->cl_flags & HFSC_RSC) 1038 update_ed(cl, qdisc_peek_len(cl->qdisc)); 1039 if (cl->cl_flags & HFSC_FSC) 1040 update_vf(cl, 0, cur_time); 1041 } 1042 sch_tree_unlock(sch); 1043 1044 return 0; 1045 } 1046 1047 if (parentid == TC_H_ROOT) 1048 return -EEXIST; 1049 1050 parent = &q->root; 1051 if (parentid) { 1052 parent = hfsc_find_class(parentid, sch); 1053 if (parent == NULL) 1054 return -ENOENT; 1055 } 1056 1057 if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0) 1058 return -EINVAL; 1059 if (hfsc_find_class(classid, sch)) 1060 return -EEXIST; 1061 1062 if (rsc == NULL && fsc == NULL) 1063 return -EINVAL; 1064 1065 cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL); 1066 if (cl == NULL) 1067 return -ENOBUFS; 1068 1069 if (tca[TCA_RATE]) { 1070 err = gen_new_estimator(&cl->bstats, &cl->rate_est, 1071 qdisc_root_sleeping_lock(sch), 1072 tca[TCA_RATE]); 1073 if (err) { 1074 kfree(cl); 1075 return err; 1076 } 1077 } 1078 1079 if (rsc != NULL) 1080 hfsc_change_rsc(cl, rsc, 0); 1081 if (fsc != NULL) 1082 hfsc_change_fsc(cl, fsc); 1083 if (usc != NULL) 1084 hfsc_change_usc(cl, usc, 0); 1085 1086 cl->cl_common.classid = classid; 1087 cl->refcnt = 1; 1088 cl->sched = q; 1089 cl->cl_parent = parent; 1090 cl->qdisc = qdisc_create_dflt(qdisc_dev(sch), sch->dev_queue, 1091 &pfifo_qdisc_ops, classid); 1092 if (cl->qdisc == NULL) 1093 cl->qdisc = &noop_qdisc; 1094 INIT_LIST_HEAD(&cl->children); 1095 cl->vt_tree = RB_ROOT; 1096 cl->cf_tree = RB_ROOT; 1097 1098 sch_tree_lock(sch); 1099 qdisc_class_hash_insert(&q->clhash, &cl->cl_common); 1100 list_add_tail(&cl->siblings, &parent->children); 1101 if (parent->level == 0) 1102 hfsc_purge_queue(sch, parent); 1103 hfsc_adjust_levels(parent); 1104 cl->cl_pcvtoff = parent->cl_cvtoff; 1105 sch_tree_unlock(sch); 1106 1107 qdisc_class_hash_grow(sch, &q->clhash); 1108 1109 *arg = (unsigned long)cl; 1110 return 0; 1111 } 1112 1113 static void 1114 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl) 1115 { 1116 struct hfsc_sched *q = qdisc_priv(sch); 1117 1118 tcf_destroy_chain(&cl->filter_list); 1119 qdisc_destroy(cl->qdisc); 1120 gen_kill_estimator(&cl->bstats, &cl->rate_est); 1121 if (cl != &q->root) 1122 kfree(cl); 1123 } 1124 1125 static int 1126 hfsc_delete_class(struct Qdisc *sch, unsigned long arg) 1127 { 1128 struct hfsc_sched *q = qdisc_priv(sch); 1129 struct hfsc_class *cl = (struct hfsc_class *)arg; 1130 1131 if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root) 1132 return -EBUSY; 1133 1134 sch_tree_lock(sch); 1135 1136 list_del(&cl->siblings); 1137 hfsc_adjust_levels(cl->cl_parent); 1138 1139 hfsc_purge_queue(sch, cl); 1140 qdisc_class_hash_remove(&q->clhash, &cl->cl_common); 1141 1142 BUG_ON(--cl->refcnt == 0); 1143 /* 1144 * This shouldn't happen: we "hold" one cops->get() when called 1145 * from tc_ctl_tclass; the destroy method is done from cops->put(). 1146 */ 1147 1148 sch_tree_unlock(sch); 1149 return 0; 1150 } 1151 1152 static struct hfsc_class * 1153 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr) 1154 { 1155 struct hfsc_sched *q = qdisc_priv(sch); 1156 struct hfsc_class *cl; 1157 struct tcf_result res; 1158 struct tcf_proto *tcf; 1159 int result; 1160 1161 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 && 1162 (cl = hfsc_find_class(skb->priority, sch)) != NULL) 1163 if (cl->level == 0) 1164 return cl; 1165 1166 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 1167 tcf = q->root.filter_list; 1168 while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) { 1169 #ifdef CONFIG_NET_CLS_ACT 1170 switch (result) { 1171 case TC_ACT_QUEUED: 1172 case TC_ACT_STOLEN: 1173 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 1174 case TC_ACT_SHOT: 1175 return NULL; 1176 } 1177 #endif 1178 if ((cl = (struct hfsc_class *)res.class) == NULL) { 1179 if ((cl = hfsc_find_class(res.classid, sch)) == NULL) 1180 break; /* filter selected invalid classid */ 1181 } 1182 1183 if (cl->level == 0) 1184 return cl; /* hit leaf class */ 1185 1186 /* apply inner filter chain */ 1187 tcf = cl->filter_list; 1188 } 1189 1190 /* classification failed, try default class */ 1191 cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch); 1192 if (cl == NULL || cl->level > 0) 1193 return NULL; 1194 1195 return cl; 1196 } 1197 1198 static int 1199 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 1200 struct Qdisc **old) 1201 { 1202 struct hfsc_class *cl = (struct hfsc_class *)arg; 1203 1204 if (cl == NULL) 1205 return -ENOENT; 1206 if (cl->level > 0) 1207 return -EINVAL; 1208 if (new == NULL) { 1209 new = qdisc_create_dflt(qdisc_dev(sch), sch->dev_queue, 1210 &pfifo_qdisc_ops, 1211 cl->cl_common.classid); 1212 if (new == NULL) 1213 new = &noop_qdisc; 1214 } 1215 1216 sch_tree_lock(sch); 1217 hfsc_purge_queue(sch, cl); 1218 *old = cl->qdisc; 1219 cl->qdisc = new; 1220 sch_tree_unlock(sch); 1221 return 0; 1222 } 1223 1224 static struct Qdisc * 1225 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg) 1226 { 1227 struct hfsc_class *cl = (struct hfsc_class *)arg; 1228 1229 if (cl != NULL && cl->level == 0) 1230 return cl->qdisc; 1231 1232 return NULL; 1233 } 1234 1235 static void 1236 hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg) 1237 { 1238 struct hfsc_class *cl = (struct hfsc_class *)arg; 1239 1240 if (cl->qdisc->q.qlen == 0) { 1241 update_vf(cl, 0, 0); 1242 set_passive(cl); 1243 } 1244 } 1245 1246 static unsigned long 1247 hfsc_get_class(struct Qdisc *sch, u32 classid) 1248 { 1249 struct hfsc_class *cl = hfsc_find_class(classid, sch); 1250 1251 if (cl != NULL) 1252 cl->refcnt++; 1253 1254 return (unsigned long)cl; 1255 } 1256 1257 static void 1258 hfsc_put_class(struct Qdisc *sch, unsigned long arg) 1259 { 1260 struct hfsc_class *cl = (struct hfsc_class *)arg; 1261 1262 if (--cl->refcnt == 0) 1263 hfsc_destroy_class(sch, cl); 1264 } 1265 1266 static unsigned long 1267 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid) 1268 { 1269 struct hfsc_class *p = (struct hfsc_class *)parent; 1270 struct hfsc_class *cl = hfsc_find_class(classid, sch); 1271 1272 if (cl != NULL) { 1273 if (p != NULL && p->level <= cl->level) 1274 return 0; 1275 cl->filter_cnt++; 1276 } 1277 1278 return (unsigned long)cl; 1279 } 1280 1281 static void 1282 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg) 1283 { 1284 struct hfsc_class *cl = (struct hfsc_class *)arg; 1285 1286 cl->filter_cnt--; 1287 } 1288 1289 static struct tcf_proto ** 1290 hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg) 1291 { 1292 struct hfsc_sched *q = qdisc_priv(sch); 1293 struct hfsc_class *cl = (struct hfsc_class *)arg; 1294 1295 if (cl == NULL) 1296 cl = &q->root; 1297 1298 return &cl->filter_list; 1299 } 1300 1301 static int 1302 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc) 1303 { 1304 struct tc_service_curve tsc; 1305 1306 tsc.m1 = sm2m(sc->sm1); 1307 tsc.d = dx2d(sc->dx); 1308 tsc.m2 = sm2m(sc->sm2); 1309 NLA_PUT(skb, attr, sizeof(tsc), &tsc); 1310 1311 return skb->len; 1312 1313 nla_put_failure: 1314 return -1; 1315 } 1316 1317 static inline int 1318 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl) 1319 { 1320 if ((cl->cl_flags & HFSC_RSC) && 1321 (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0)) 1322 goto nla_put_failure; 1323 1324 if ((cl->cl_flags & HFSC_FSC) && 1325 (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0)) 1326 goto nla_put_failure; 1327 1328 if ((cl->cl_flags & HFSC_USC) && 1329 (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0)) 1330 goto nla_put_failure; 1331 1332 return skb->len; 1333 1334 nla_put_failure: 1335 return -1; 1336 } 1337 1338 static int 1339 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb, 1340 struct tcmsg *tcm) 1341 { 1342 struct hfsc_class *cl = (struct hfsc_class *)arg; 1343 struct nlattr *nest; 1344 1345 tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid : 1346 TC_H_ROOT; 1347 tcm->tcm_handle = cl->cl_common.classid; 1348 if (cl->level == 0) 1349 tcm->tcm_info = cl->qdisc->handle; 1350 1351 nest = nla_nest_start(skb, TCA_OPTIONS); 1352 if (nest == NULL) 1353 goto nla_put_failure; 1354 if (hfsc_dump_curves(skb, cl) < 0) 1355 goto nla_put_failure; 1356 nla_nest_end(skb, nest); 1357 return skb->len; 1358 1359 nla_put_failure: 1360 nla_nest_cancel(skb, nest); 1361 return -EMSGSIZE; 1362 } 1363 1364 static int 1365 hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg, 1366 struct gnet_dump *d) 1367 { 1368 struct hfsc_class *cl = (struct hfsc_class *)arg; 1369 struct tc_hfsc_stats xstats; 1370 1371 cl->qstats.qlen = cl->qdisc->q.qlen; 1372 xstats.level = cl->level; 1373 xstats.period = cl->cl_vtperiod; 1374 xstats.work = cl->cl_total; 1375 xstats.rtwork = cl->cl_cumul; 1376 1377 if (gnet_stats_copy_basic(d, &cl->bstats) < 0 || 1378 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || 1379 gnet_stats_copy_queue(d, &cl->qstats) < 0) 1380 return -1; 1381 1382 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 1383 } 1384 1385 1386 1387 static void 1388 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1389 { 1390 struct hfsc_sched *q = qdisc_priv(sch); 1391 struct hlist_node *n; 1392 struct hfsc_class *cl; 1393 unsigned int i; 1394 1395 if (arg->stop) 1396 return; 1397 1398 for (i = 0; i < q->clhash.hashsize; i++) { 1399 hlist_for_each_entry(cl, n, &q->clhash.hash[i], 1400 cl_common.hnode) { 1401 if (arg->count < arg->skip) { 1402 arg->count++; 1403 continue; 1404 } 1405 if (arg->fn(sch, (unsigned long)cl, arg) < 0) { 1406 arg->stop = 1; 1407 return; 1408 } 1409 arg->count++; 1410 } 1411 } 1412 } 1413 1414 static void 1415 hfsc_schedule_watchdog(struct Qdisc *sch) 1416 { 1417 struct hfsc_sched *q = qdisc_priv(sch); 1418 struct hfsc_class *cl; 1419 u64 next_time = 0; 1420 1421 if ((cl = eltree_get_minel(q)) != NULL) 1422 next_time = cl->cl_e; 1423 if (q->root.cl_cfmin != 0) { 1424 if (next_time == 0 || next_time > q->root.cl_cfmin) 1425 next_time = q->root.cl_cfmin; 1426 } 1427 WARN_ON(next_time == 0); 1428 qdisc_watchdog_schedule(&q->watchdog, next_time); 1429 } 1430 1431 static int 1432 hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt) 1433 { 1434 struct hfsc_sched *q = qdisc_priv(sch); 1435 struct tc_hfsc_qopt *qopt; 1436 int err; 1437 1438 if (opt == NULL || nla_len(opt) < sizeof(*qopt)) 1439 return -EINVAL; 1440 qopt = nla_data(opt); 1441 1442 q->defcls = qopt->defcls; 1443 err = qdisc_class_hash_init(&q->clhash); 1444 if (err < 0) 1445 return err; 1446 q->eligible = RB_ROOT; 1447 INIT_LIST_HEAD(&q->droplist); 1448 1449 q->root.cl_common.classid = sch->handle; 1450 q->root.refcnt = 1; 1451 q->root.sched = q; 1452 q->root.qdisc = qdisc_create_dflt(qdisc_dev(sch), sch->dev_queue, 1453 &pfifo_qdisc_ops, 1454 sch->handle); 1455 if (q->root.qdisc == NULL) 1456 q->root.qdisc = &noop_qdisc; 1457 INIT_LIST_HEAD(&q->root.children); 1458 q->root.vt_tree = RB_ROOT; 1459 q->root.cf_tree = RB_ROOT; 1460 1461 qdisc_class_hash_insert(&q->clhash, &q->root.cl_common); 1462 qdisc_class_hash_grow(sch, &q->clhash); 1463 1464 qdisc_watchdog_init(&q->watchdog, sch); 1465 1466 return 0; 1467 } 1468 1469 static int 1470 hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt) 1471 { 1472 struct hfsc_sched *q = qdisc_priv(sch); 1473 struct tc_hfsc_qopt *qopt; 1474 1475 if (opt == NULL || nla_len(opt) < sizeof(*qopt)) 1476 return -EINVAL; 1477 qopt = nla_data(opt); 1478 1479 sch_tree_lock(sch); 1480 q->defcls = qopt->defcls; 1481 sch_tree_unlock(sch); 1482 1483 return 0; 1484 } 1485 1486 static void 1487 hfsc_reset_class(struct hfsc_class *cl) 1488 { 1489 cl->cl_total = 0; 1490 cl->cl_cumul = 0; 1491 cl->cl_d = 0; 1492 cl->cl_e = 0; 1493 cl->cl_vt = 0; 1494 cl->cl_vtadj = 0; 1495 cl->cl_vtoff = 0; 1496 cl->cl_cvtmin = 0; 1497 cl->cl_cvtmax = 0; 1498 cl->cl_cvtoff = 0; 1499 cl->cl_pcvtoff = 0; 1500 cl->cl_vtperiod = 0; 1501 cl->cl_parentperiod = 0; 1502 cl->cl_f = 0; 1503 cl->cl_myf = 0; 1504 cl->cl_myfadj = 0; 1505 cl->cl_cfmin = 0; 1506 cl->cl_nactive = 0; 1507 1508 cl->vt_tree = RB_ROOT; 1509 cl->cf_tree = RB_ROOT; 1510 qdisc_reset(cl->qdisc); 1511 1512 if (cl->cl_flags & HFSC_RSC) 1513 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0); 1514 if (cl->cl_flags & HFSC_FSC) 1515 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0); 1516 if (cl->cl_flags & HFSC_USC) 1517 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0); 1518 } 1519 1520 static void 1521 hfsc_reset_qdisc(struct Qdisc *sch) 1522 { 1523 struct hfsc_sched *q = qdisc_priv(sch); 1524 struct hfsc_class *cl; 1525 struct hlist_node *n; 1526 unsigned int i; 1527 1528 for (i = 0; i < q->clhash.hashsize; i++) { 1529 hlist_for_each_entry(cl, n, &q->clhash.hash[i], cl_common.hnode) 1530 hfsc_reset_class(cl); 1531 } 1532 q->eligible = RB_ROOT; 1533 INIT_LIST_HEAD(&q->droplist); 1534 qdisc_watchdog_cancel(&q->watchdog); 1535 sch->q.qlen = 0; 1536 } 1537 1538 static void 1539 hfsc_destroy_qdisc(struct Qdisc *sch) 1540 { 1541 struct hfsc_sched *q = qdisc_priv(sch); 1542 struct hlist_node *n, *next; 1543 struct hfsc_class *cl; 1544 unsigned int i; 1545 1546 for (i = 0; i < q->clhash.hashsize; i++) { 1547 hlist_for_each_entry(cl, n, &q->clhash.hash[i], cl_common.hnode) 1548 tcf_destroy_chain(&cl->filter_list); 1549 } 1550 for (i = 0; i < q->clhash.hashsize; i++) { 1551 hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i], 1552 cl_common.hnode) 1553 hfsc_destroy_class(sch, cl); 1554 } 1555 qdisc_class_hash_destroy(&q->clhash); 1556 qdisc_watchdog_cancel(&q->watchdog); 1557 } 1558 1559 static int 1560 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb) 1561 { 1562 struct hfsc_sched *q = qdisc_priv(sch); 1563 unsigned char *b = skb_tail_pointer(skb); 1564 struct tc_hfsc_qopt qopt; 1565 1566 qopt.defcls = q->defcls; 1567 NLA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt); 1568 return skb->len; 1569 1570 nla_put_failure: 1571 nlmsg_trim(skb, b); 1572 return -1; 1573 } 1574 1575 static int 1576 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch) 1577 { 1578 struct hfsc_class *cl; 1579 int uninitialized_var(err); 1580 1581 cl = hfsc_classify(skb, sch, &err); 1582 if (cl == NULL) { 1583 if (err & __NET_XMIT_BYPASS) 1584 sch->qstats.drops++; 1585 kfree_skb(skb); 1586 return err; 1587 } 1588 1589 err = qdisc_enqueue(skb, cl->qdisc); 1590 if (unlikely(err != NET_XMIT_SUCCESS)) { 1591 if (net_xmit_drop_count(err)) { 1592 cl->qstats.drops++; 1593 sch->qstats.drops++; 1594 } 1595 return err; 1596 } 1597 1598 if (cl->qdisc->q.qlen == 1) 1599 set_active(cl, qdisc_pkt_len(skb)); 1600 1601 cl->bstats.packets++; 1602 cl->bstats.bytes += qdisc_pkt_len(skb); 1603 sch->bstats.packets++; 1604 sch->bstats.bytes += qdisc_pkt_len(skb); 1605 sch->q.qlen++; 1606 1607 return NET_XMIT_SUCCESS; 1608 } 1609 1610 static struct sk_buff * 1611 hfsc_dequeue(struct Qdisc *sch) 1612 { 1613 struct hfsc_sched *q = qdisc_priv(sch); 1614 struct hfsc_class *cl; 1615 struct sk_buff *skb; 1616 u64 cur_time; 1617 unsigned int next_len; 1618 int realtime = 0; 1619 1620 if (sch->q.qlen == 0) 1621 return NULL; 1622 1623 cur_time = psched_get_time(); 1624 1625 /* 1626 * if there are eligible classes, use real-time criteria. 1627 * find the class with the minimum deadline among 1628 * the eligible classes. 1629 */ 1630 if ((cl = eltree_get_mindl(q, cur_time)) != NULL) { 1631 realtime = 1; 1632 } else { 1633 /* 1634 * use link-sharing criteria 1635 * get the class with the minimum vt in the hierarchy 1636 */ 1637 cl = vttree_get_minvt(&q->root, cur_time); 1638 if (cl == NULL) { 1639 sch->qstats.overlimits++; 1640 hfsc_schedule_watchdog(sch); 1641 return NULL; 1642 } 1643 } 1644 1645 skb = qdisc_dequeue_peeked(cl->qdisc); 1646 if (skb == NULL) { 1647 qdisc_warn_nonwc("HFSC", cl->qdisc); 1648 return NULL; 1649 } 1650 1651 update_vf(cl, qdisc_pkt_len(skb), cur_time); 1652 if (realtime) 1653 cl->cl_cumul += qdisc_pkt_len(skb); 1654 1655 if (cl->qdisc->q.qlen != 0) { 1656 if (cl->cl_flags & HFSC_RSC) { 1657 /* update ed */ 1658 next_len = qdisc_peek_len(cl->qdisc); 1659 if (realtime) 1660 update_ed(cl, next_len); 1661 else 1662 update_d(cl, next_len); 1663 } 1664 } else { 1665 /* the class becomes passive */ 1666 set_passive(cl); 1667 } 1668 1669 sch->flags &= ~TCQ_F_THROTTLED; 1670 sch->q.qlen--; 1671 1672 return skb; 1673 } 1674 1675 static unsigned int 1676 hfsc_drop(struct Qdisc *sch) 1677 { 1678 struct hfsc_sched *q = qdisc_priv(sch); 1679 struct hfsc_class *cl; 1680 unsigned int len; 1681 1682 list_for_each_entry(cl, &q->droplist, dlist) { 1683 if (cl->qdisc->ops->drop != NULL && 1684 (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) { 1685 if (cl->qdisc->q.qlen == 0) { 1686 update_vf(cl, 0, 0); 1687 set_passive(cl); 1688 } else { 1689 list_move_tail(&cl->dlist, &q->droplist); 1690 } 1691 cl->qstats.drops++; 1692 sch->qstats.drops++; 1693 sch->q.qlen--; 1694 return len; 1695 } 1696 } 1697 return 0; 1698 } 1699 1700 static const struct Qdisc_class_ops hfsc_class_ops = { 1701 .change = hfsc_change_class, 1702 .delete = hfsc_delete_class, 1703 .graft = hfsc_graft_class, 1704 .leaf = hfsc_class_leaf, 1705 .qlen_notify = hfsc_qlen_notify, 1706 .get = hfsc_get_class, 1707 .put = hfsc_put_class, 1708 .bind_tcf = hfsc_bind_tcf, 1709 .unbind_tcf = hfsc_unbind_tcf, 1710 .tcf_chain = hfsc_tcf_chain, 1711 .dump = hfsc_dump_class, 1712 .dump_stats = hfsc_dump_class_stats, 1713 .walk = hfsc_walk 1714 }; 1715 1716 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = { 1717 .id = "hfsc", 1718 .init = hfsc_init_qdisc, 1719 .change = hfsc_change_qdisc, 1720 .reset = hfsc_reset_qdisc, 1721 .destroy = hfsc_destroy_qdisc, 1722 .dump = hfsc_dump_qdisc, 1723 .enqueue = hfsc_enqueue, 1724 .dequeue = hfsc_dequeue, 1725 .peek = qdisc_peek_dequeued, 1726 .drop = hfsc_drop, 1727 .cl_ops = &hfsc_class_ops, 1728 .priv_size = sizeof(struct hfsc_sched), 1729 .owner = THIS_MODULE 1730 }; 1731 1732 static int __init 1733 hfsc_init(void) 1734 { 1735 return register_qdisc(&hfsc_qdisc_ops); 1736 } 1737 1738 static void __exit 1739 hfsc_cleanup(void) 1740 { 1741 unregister_qdisc(&hfsc_qdisc_ops); 1742 } 1743 1744 MODULE_LICENSE("GPL"); 1745 module_init(hfsc_init); 1746 module_exit(hfsc_cleanup); 1747