xref: /openbmc/linux/net/sched/sch_hfsc.c (revision 82ced6fd)
1 /*
2  * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net>
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version 2
7  * of the License, or (at your option) any later version.
8  *
9  * 2003-10-17 - Ported from altq
10  */
11 /*
12  * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
13  *
14  * Permission to use, copy, modify, and distribute this software and
15  * its documentation is hereby granted (including for commercial or
16  * for-profit use), provided that both the copyright notice and this
17  * permission notice appear in all copies of the software, derivative
18  * works, or modified versions, and any portions thereof.
19  *
20  * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
21  * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
22  * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
25  * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
28  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
32  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
33  * DAMAGE.
34  *
35  * Carnegie Mellon encourages (but does not require) users of this
36  * software to return any improvements or extensions that they make,
37  * and to grant Carnegie Mellon the rights to redistribute these
38  * changes without encumbrance.
39  */
40 /*
41  * H-FSC is described in Proceedings of SIGCOMM'97,
42  * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
43  * Real-Time and Priority Service"
44  * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
45  *
46  * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
47  * when a class has an upperlimit, the fit-time is computed from the
48  * upperlimit service curve.  the link-sharing scheduler does not schedule
49  * a class whose fit-time exceeds the current time.
50  */
51 
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/errno.h>
56 #include <linux/compiler.h>
57 #include <linux/spinlock.h>
58 #include <linux/skbuff.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/list.h>
62 #include <linux/rbtree.h>
63 #include <linux/init.h>
64 #include <linux/rtnetlink.h>
65 #include <linux/pkt_sched.h>
66 #include <net/netlink.h>
67 #include <net/pkt_sched.h>
68 #include <net/pkt_cls.h>
69 #include <asm/div64.h>
70 
71 /*
72  * kernel internal service curve representation:
73  *   coordinates are given by 64 bit unsigned integers.
74  *   x-axis: unit is clock count.
75  *   y-axis: unit is byte.
76  *
77  *   The service curve parameters are converted to the internal
78  *   representation. The slope values are scaled to avoid overflow.
79  *   the inverse slope values as well as the y-projection of the 1st
80  *   segment are kept in order to to avoid 64-bit divide operations
81  *   that are expensive on 32-bit architectures.
82  */
83 
84 struct internal_sc
85 {
86 	u64	sm1;	/* scaled slope of the 1st segment */
87 	u64	ism1;	/* scaled inverse-slope of the 1st segment */
88 	u64	dx;	/* the x-projection of the 1st segment */
89 	u64	dy;	/* the y-projection of the 1st segment */
90 	u64	sm2;	/* scaled slope of the 2nd segment */
91 	u64	ism2;	/* scaled inverse-slope of the 2nd segment */
92 };
93 
94 /* runtime service curve */
95 struct runtime_sc
96 {
97 	u64	x;	/* current starting position on x-axis */
98 	u64	y;	/* current starting position on y-axis */
99 	u64	sm1;	/* scaled slope of the 1st segment */
100 	u64	ism1;	/* scaled inverse-slope of the 1st segment */
101 	u64	dx;	/* the x-projection of the 1st segment */
102 	u64	dy;	/* the y-projection of the 1st segment */
103 	u64	sm2;	/* scaled slope of the 2nd segment */
104 	u64	ism2;	/* scaled inverse-slope of the 2nd segment */
105 };
106 
107 enum hfsc_class_flags
108 {
109 	HFSC_RSC = 0x1,
110 	HFSC_FSC = 0x2,
111 	HFSC_USC = 0x4
112 };
113 
114 struct hfsc_class
115 {
116 	struct Qdisc_class_common cl_common;
117 	unsigned int	refcnt;		/* usage count */
118 
119 	struct gnet_stats_basic bstats;
120 	struct gnet_stats_queue qstats;
121 	struct gnet_stats_rate_est rate_est;
122 	unsigned int	level;		/* class level in hierarchy */
123 	struct tcf_proto *filter_list;	/* filter list */
124 	unsigned int	filter_cnt;	/* filter count */
125 
126 	struct hfsc_sched *sched;	/* scheduler data */
127 	struct hfsc_class *cl_parent;	/* parent class */
128 	struct list_head siblings;	/* sibling classes */
129 	struct list_head children;	/* child classes */
130 	struct Qdisc	*qdisc;		/* leaf qdisc */
131 
132 	struct rb_node el_node;		/* qdisc's eligible tree member */
133 	struct rb_root vt_tree;		/* active children sorted by cl_vt */
134 	struct rb_node vt_node;		/* parent's vt_tree member */
135 	struct rb_root cf_tree;		/* active children sorted by cl_f */
136 	struct rb_node cf_node;		/* parent's cf_heap member */
137 	struct list_head dlist;		/* drop list member */
138 
139 	u64	cl_total;		/* total work in bytes */
140 	u64	cl_cumul;		/* cumulative work in bytes done by
141 					   real-time criteria */
142 
143 	u64 	cl_d;			/* deadline*/
144 	u64 	cl_e;			/* eligible time */
145 	u64	cl_vt;			/* virtual time */
146 	u64	cl_f;			/* time when this class will fit for
147 					   link-sharing, max(myf, cfmin) */
148 	u64	cl_myf;			/* my fit-time (calculated from this
149 					   class's own upperlimit curve) */
150 	u64	cl_myfadj;		/* my fit-time adjustment (to cancel
151 					   history dependence) */
152 	u64	cl_cfmin;		/* earliest children's fit-time (used
153 					   with cl_myf to obtain cl_f) */
154 	u64	cl_cvtmin;		/* minimal virtual time among the
155 					   children fit for link-sharing
156 					   (monotonic within a period) */
157 	u64	cl_vtadj;		/* intra-period cumulative vt
158 					   adjustment */
159 	u64	cl_vtoff;		/* inter-period cumulative vt offset */
160 	u64	cl_cvtmax;		/* max child's vt in the last period */
161 	u64	cl_cvtoff;		/* cumulative cvtmax of all periods */
162 	u64	cl_pcvtoff;		/* parent's cvtoff at initialization
163 					   time */
164 
165 	struct internal_sc cl_rsc;	/* internal real-time service curve */
166 	struct internal_sc cl_fsc;	/* internal fair service curve */
167 	struct internal_sc cl_usc;	/* internal upperlimit service curve */
168 	struct runtime_sc cl_deadline;	/* deadline curve */
169 	struct runtime_sc cl_eligible;	/* eligible curve */
170 	struct runtime_sc cl_virtual;	/* virtual curve */
171 	struct runtime_sc cl_ulimit;	/* upperlimit curve */
172 
173 	unsigned long	cl_flags;	/* which curves are valid */
174 	unsigned long	cl_vtperiod;	/* vt period sequence number */
175 	unsigned long	cl_parentperiod;/* parent's vt period sequence number*/
176 	unsigned long	cl_nactive;	/* number of active children */
177 };
178 
179 struct hfsc_sched
180 {
181 	u16	defcls;				/* default class id */
182 	struct hfsc_class root;			/* root class */
183 	struct Qdisc_class_hash clhash;		/* class hash */
184 	struct rb_root eligible;		/* eligible tree */
185 	struct list_head droplist;		/* active leaf class list (for
186 						   dropping) */
187 	struct qdisc_watchdog watchdog;		/* watchdog timer */
188 };
189 
190 #define	HT_INFINITY	0xffffffffffffffffULL	/* infinite time value */
191 
192 
193 /*
194  * eligible tree holds backlogged classes being sorted by their eligible times.
195  * there is one eligible tree per hfsc instance.
196  */
197 
198 static void
199 eltree_insert(struct hfsc_class *cl)
200 {
201 	struct rb_node **p = &cl->sched->eligible.rb_node;
202 	struct rb_node *parent = NULL;
203 	struct hfsc_class *cl1;
204 
205 	while (*p != NULL) {
206 		parent = *p;
207 		cl1 = rb_entry(parent, struct hfsc_class, el_node);
208 		if (cl->cl_e >= cl1->cl_e)
209 			p = &parent->rb_right;
210 		else
211 			p = &parent->rb_left;
212 	}
213 	rb_link_node(&cl->el_node, parent, p);
214 	rb_insert_color(&cl->el_node, &cl->sched->eligible);
215 }
216 
217 static inline void
218 eltree_remove(struct hfsc_class *cl)
219 {
220 	rb_erase(&cl->el_node, &cl->sched->eligible);
221 }
222 
223 static inline void
224 eltree_update(struct hfsc_class *cl)
225 {
226 	eltree_remove(cl);
227 	eltree_insert(cl);
228 }
229 
230 /* find the class with the minimum deadline among the eligible classes */
231 static inline struct hfsc_class *
232 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time)
233 {
234 	struct hfsc_class *p, *cl = NULL;
235 	struct rb_node *n;
236 
237 	for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) {
238 		p = rb_entry(n, struct hfsc_class, el_node);
239 		if (p->cl_e > cur_time)
240 			break;
241 		if (cl == NULL || p->cl_d < cl->cl_d)
242 			cl = p;
243 	}
244 	return cl;
245 }
246 
247 /* find the class with minimum eligible time among the eligible classes */
248 static inline struct hfsc_class *
249 eltree_get_minel(struct hfsc_sched *q)
250 {
251 	struct rb_node *n;
252 
253 	n = rb_first(&q->eligible);
254 	if (n == NULL)
255 		return NULL;
256 	return rb_entry(n, struct hfsc_class, el_node);
257 }
258 
259 /*
260  * vttree holds holds backlogged child classes being sorted by their virtual
261  * time. each intermediate class has one vttree.
262  */
263 static void
264 vttree_insert(struct hfsc_class *cl)
265 {
266 	struct rb_node **p = &cl->cl_parent->vt_tree.rb_node;
267 	struct rb_node *parent = NULL;
268 	struct hfsc_class *cl1;
269 
270 	while (*p != NULL) {
271 		parent = *p;
272 		cl1 = rb_entry(parent, struct hfsc_class, vt_node);
273 		if (cl->cl_vt >= cl1->cl_vt)
274 			p = &parent->rb_right;
275 		else
276 			p = &parent->rb_left;
277 	}
278 	rb_link_node(&cl->vt_node, parent, p);
279 	rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree);
280 }
281 
282 static inline void
283 vttree_remove(struct hfsc_class *cl)
284 {
285 	rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree);
286 }
287 
288 static inline void
289 vttree_update(struct hfsc_class *cl)
290 {
291 	vttree_remove(cl);
292 	vttree_insert(cl);
293 }
294 
295 static inline struct hfsc_class *
296 vttree_firstfit(struct hfsc_class *cl, u64 cur_time)
297 {
298 	struct hfsc_class *p;
299 	struct rb_node *n;
300 
301 	for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) {
302 		p = rb_entry(n, struct hfsc_class, vt_node);
303 		if (p->cl_f <= cur_time)
304 			return p;
305 	}
306 	return NULL;
307 }
308 
309 /*
310  * get the leaf class with the minimum vt in the hierarchy
311  */
312 static struct hfsc_class *
313 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time)
314 {
315 	/* if root-class's cfmin is bigger than cur_time nothing to do */
316 	if (cl->cl_cfmin > cur_time)
317 		return NULL;
318 
319 	while (cl->level > 0) {
320 		cl = vttree_firstfit(cl, cur_time);
321 		if (cl == NULL)
322 			return NULL;
323 		/*
324 		 * update parent's cl_cvtmin.
325 		 */
326 		if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
327 			cl->cl_parent->cl_cvtmin = cl->cl_vt;
328 	}
329 	return cl;
330 }
331 
332 static void
333 cftree_insert(struct hfsc_class *cl)
334 {
335 	struct rb_node **p = &cl->cl_parent->cf_tree.rb_node;
336 	struct rb_node *parent = NULL;
337 	struct hfsc_class *cl1;
338 
339 	while (*p != NULL) {
340 		parent = *p;
341 		cl1 = rb_entry(parent, struct hfsc_class, cf_node);
342 		if (cl->cl_f >= cl1->cl_f)
343 			p = &parent->rb_right;
344 		else
345 			p = &parent->rb_left;
346 	}
347 	rb_link_node(&cl->cf_node, parent, p);
348 	rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree);
349 }
350 
351 static inline void
352 cftree_remove(struct hfsc_class *cl)
353 {
354 	rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree);
355 }
356 
357 static inline void
358 cftree_update(struct hfsc_class *cl)
359 {
360 	cftree_remove(cl);
361 	cftree_insert(cl);
362 }
363 
364 /*
365  * service curve support functions
366  *
367  *  external service curve parameters
368  *	m: bps
369  *	d: us
370  *  internal service curve parameters
371  *	sm: (bytes/psched_us) << SM_SHIFT
372  *	ism: (psched_us/byte) << ISM_SHIFT
373  *	dx: psched_us
374  *
375  * The clock source resolution with ktime is 1.024us.
376  *
377  * sm and ism are scaled in order to keep effective digits.
378  * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective
379  * digits in decimal using the following table.
380  *
381  *  bits/sec      100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
382  *  ------------+-------------------------------------------------------
383  *  bytes/1.024us 12.8e-3    128e-3     1280e-3    12800e-3   128000e-3
384  *
385  *  1.024us/byte  78.125     7.8125     0.78125    0.078125   0.0078125
386  */
387 #define	SM_SHIFT	20
388 #define	ISM_SHIFT	18
389 
390 #define	SM_MASK		((1ULL << SM_SHIFT) - 1)
391 #define	ISM_MASK	((1ULL << ISM_SHIFT) - 1)
392 
393 static inline u64
394 seg_x2y(u64 x, u64 sm)
395 {
396 	u64 y;
397 
398 	/*
399 	 * compute
400 	 *	y = x * sm >> SM_SHIFT
401 	 * but divide it for the upper and lower bits to avoid overflow
402 	 */
403 	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
404 	return y;
405 }
406 
407 static inline u64
408 seg_y2x(u64 y, u64 ism)
409 {
410 	u64 x;
411 
412 	if (y == 0)
413 		x = 0;
414 	else if (ism == HT_INFINITY)
415 		x = HT_INFINITY;
416 	else {
417 		x = (y >> ISM_SHIFT) * ism
418 		    + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
419 	}
420 	return x;
421 }
422 
423 /* Convert m (bps) into sm (bytes/psched us) */
424 static u64
425 m2sm(u32 m)
426 {
427 	u64 sm;
428 
429 	sm = ((u64)m << SM_SHIFT);
430 	sm += PSCHED_TICKS_PER_SEC - 1;
431 	do_div(sm, PSCHED_TICKS_PER_SEC);
432 	return sm;
433 }
434 
435 /* convert m (bps) into ism (psched us/byte) */
436 static u64
437 m2ism(u32 m)
438 {
439 	u64 ism;
440 
441 	if (m == 0)
442 		ism = HT_INFINITY;
443 	else {
444 		ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT);
445 		ism += m - 1;
446 		do_div(ism, m);
447 	}
448 	return ism;
449 }
450 
451 /* convert d (us) into dx (psched us) */
452 static u64
453 d2dx(u32 d)
454 {
455 	u64 dx;
456 
457 	dx = ((u64)d * PSCHED_TICKS_PER_SEC);
458 	dx += USEC_PER_SEC - 1;
459 	do_div(dx, USEC_PER_SEC);
460 	return dx;
461 }
462 
463 /* convert sm (bytes/psched us) into m (bps) */
464 static u32
465 sm2m(u64 sm)
466 {
467 	u64 m;
468 
469 	m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT;
470 	return (u32)m;
471 }
472 
473 /* convert dx (psched us) into d (us) */
474 static u32
475 dx2d(u64 dx)
476 {
477 	u64 d;
478 
479 	d = dx * USEC_PER_SEC;
480 	do_div(d, PSCHED_TICKS_PER_SEC);
481 	return (u32)d;
482 }
483 
484 static void
485 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc)
486 {
487 	isc->sm1  = m2sm(sc->m1);
488 	isc->ism1 = m2ism(sc->m1);
489 	isc->dx   = d2dx(sc->d);
490 	isc->dy   = seg_x2y(isc->dx, isc->sm1);
491 	isc->sm2  = m2sm(sc->m2);
492 	isc->ism2 = m2ism(sc->m2);
493 }
494 
495 /*
496  * initialize the runtime service curve with the given internal
497  * service curve starting at (x, y).
498  */
499 static void
500 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
501 {
502 	rtsc->x	   = x;
503 	rtsc->y    = y;
504 	rtsc->sm1  = isc->sm1;
505 	rtsc->ism1 = isc->ism1;
506 	rtsc->dx   = isc->dx;
507 	rtsc->dy   = isc->dy;
508 	rtsc->sm2  = isc->sm2;
509 	rtsc->ism2 = isc->ism2;
510 }
511 
512 /*
513  * calculate the y-projection of the runtime service curve by the
514  * given x-projection value
515  */
516 static u64
517 rtsc_y2x(struct runtime_sc *rtsc, u64 y)
518 {
519 	u64 x;
520 
521 	if (y < rtsc->y)
522 		x = rtsc->x;
523 	else if (y <= rtsc->y + rtsc->dy) {
524 		/* x belongs to the 1st segment */
525 		if (rtsc->dy == 0)
526 			x = rtsc->x + rtsc->dx;
527 		else
528 			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
529 	} else {
530 		/* x belongs to the 2nd segment */
531 		x = rtsc->x + rtsc->dx
532 		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
533 	}
534 	return x;
535 }
536 
537 static u64
538 rtsc_x2y(struct runtime_sc *rtsc, u64 x)
539 {
540 	u64 y;
541 
542 	if (x <= rtsc->x)
543 		y = rtsc->y;
544 	else if (x <= rtsc->x + rtsc->dx)
545 		/* y belongs to the 1st segment */
546 		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
547 	else
548 		/* y belongs to the 2nd segment */
549 		y = rtsc->y + rtsc->dy
550 		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
551 	return y;
552 }
553 
554 /*
555  * update the runtime service curve by taking the minimum of the current
556  * runtime service curve and the service curve starting at (x, y).
557  */
558 static void
559 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y)
560 {
561 	u64 y1, y2, dx, dy;
562 	u32 dsm;
563 
564 	if (isc->sm1 <= isc->sm2) {
565 		/* service curve is convex */
566 		y1 = rtsc_x2y(rtsc, x);
567 		if (y1 < y)
568 			/* the current rtsc is smaller */
569 			return;
570 		rtsc->x = x;
571 		rtsc->y = y;
572 		return;
573 	}
574 
575 	/*
576 	 * service curve is concave
577 	 * compute the two y values of the current rtsc
578 	 *	y1: at x
579 	 *	y2: at (x + dx)
580 	 */
581 	y1 = rtsc_x2y(rtsc, x);
582 	if (y1 <= y) {
583 		/* rtsc is below isc, no change to rtsc */
584 		return;
585 	}
586 
587 	y2 = rtsc_x2y(rtsc, x + isc->dx);
588 	if (y2 >= y + isc->dy) {
589 		/* rtsc is above isc, replace rtsc by isc */
590 		rtsc->x = x;
591 		rtsc->y = y;
592 		rtsc->dx = isc->dx;
593 		rtsc->dy = isc->dy;
594 		return;
595 	}
596 
597 	/*
598 	 * the two curves intersect
599 	 * compute the offsets (dx, dy) using the reverse
600 	 * function of seg_x2y()
601 	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
602 	 */
603 	dx = (y1 - y) << SM_SHIFT;
604 	dsm = isc->sm1 - isc->sm2;
605 	do_div(dx, dsm);
606 	/*
607 	 * check if (x, y1) belongs to the 1st segment of rtsc.
608 	 * if so, add the offset.
609 	 */
610 	if (rtsc->x + rtsc->dx > x)
611 		dx += rtsc->x + rtsc->dx - x;
612 	dy = seg_x2y(dx, isc->sm1);
613 
614 	rtsc->x = x;
615 	rtsc->y = y;
616 	rtsc->dx = dx;
617 	rtsc->dy = dy;
618 	return;
619 }
620 
621 static void
622 init_ed(struct hfsc_class *cl, unsigned int next_len)
623 {
624 	u64 cur_time = psched_get_time();
625 
626 	/* update the deadline curve */
627 	rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
628 
629 	/*
630 	 * update the eligible curve.
631 	 * for concave, it is equal to the deadline curve.
632 	 * for convex, it is a linear curve with slope m2.
633 	 */
634 	cl->cl_eligible = cl->cl_deadline;
635 	if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
636 		cl->cl_eligible.dx = 0;
637 		cl->cl_eligible.dy = 0;
638 	}
639 
640 	/* compute e and d */
641 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
642 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
643 
644 	eltree_insert(cl);
645 }
646 
647 static void
648 update_ed(struct hfsc_class *cl, unsigned int next_len)
649 {
650 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
651 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
652 
653 	eltree_update(cl);
654 }
655 
656 static inline void
657 update_d(struct hfsc_class *cl, unsigned int next_len)
658 {
659 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
660 }
661 
662 static inline void
663 update_cfmin(struct hfsc_class *cl)
664 {
665 	struct rb_node *n = rb_first(&cl->cf_tree);
666 	struct hfsc_class *p;
667 
668 	if (n == NULL) {
669 		cl->cl_cfmin = 0;
670 		return;
671 	}
672 	p = rb_entry(n, struct hfsc_class, cf_node);
673 	cl->cl_cfmin = p->cl_f;
674 }
675 
676 static void
677 init_vf(struct hfsc_class *cl, unsigned int len)
678 {
679 	struct hfsc_class *max_cl;
680 	struct rb_node *n;
681 	u64 vt, f, cur_time;
682 	int go_active;
683 
684 	cur_time = 0;
685 	go_active = 1;
686 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
687 		if (go_active && cl->cl_nactive++ == 0)
688 			go_active = 1;
689 		else
690 			go_active = 0;
691 
692 		if (go_active) {
693 			n = rb_last(&cl->cl_parent->vt_tree);
694 			if (n != NULL) {
695 				max_cl = rb_entry(n, struct hfsc_class,vt_node);
696 				/*
697 				 * set vt to the average of the min and max
698 				 * classes.  if the parent's period didn't
699 				 * change, don't decrease vt of the class.
700 				 */
701 				vt = max_cl->cl_vt;
702 				if (cl->cl_parent->cl_cvtmin != 0)
703 					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
704 
705 				if (cl->cl_parent->cl_vtperiod !=
706 				    cl->cl_parentperiod || vt > cl->cl_vt)
707 					cl->cl_vt = vt;
708 			} else {
709 				/*
710 				 * first child for a new parent backlog period.
711 				 * add parent's cvtmax to cvtoff to make a new
712 				 * vt (vtoff + vt) larger than the vt in the
713 				 * last period for all children.
714 				 */
715 				vt = cl->cl_parent->cl_cvtmax;
716 				cl->cl_parent->cl_cvtoff += vt;
717 				cl->cl_parent->cl_cvtmax = 0;
718 				cl->cl_parent->cl_cvtmin = 0;
719 				cl->cl_vt = 0;
720 			}
721 
722 			cl->cl_vtoff = cl->cl_parent->cl_cvtoff -
723 							cl->cl_pcvtoff;
724 
725 			/* update the virtual curve */
726 			vt = cl->cl_vt + cl->cl_vtoff;
727 			rtsc_min(&cl->cl_virtual, &cl->cl_fsc, vt,
728 						      cl->cl_total);
729 			if (cl->cl_virtual.x == vt) {
730 				cl->cl_virtual.x -= cl->cl_vtoff;
731 				cl->cl_vtoff = 0;
732 			}
733 			cl->cl_vtadj = 0;
734 
735 			cl->cl_vtperiod++;  /* increment vt period */
736 			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
737 			if (cl->cl_parent->cl_nactive == 0)
738 				cl->cl_parentperiod++;
739 			cl->cl_f = 0;
740 
741 			vttree_insert(cl);
742 			cftree_insert(cl);
743 
744 			if (cl->cl_flags & HFSC_USC) {
745 				/* class has upper limit curve */
746 				if (cur_time == 0)
747 					cur_time = psched_get_time();
748 
749 				/* update the ulimit curve */
750 				rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time,
751 					 cl->cl_total);
752 				/* compute myf */
753 				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
754 						      cl->cl_total);
755 				cl->cl_myfadj = 0;
756 			}
757 		}
758 
759 		f = max(cl->cl_myf, cl->cl_cfmin);
760 		if (f != cl->cl_f) {
761 			cl->cl_f = f;
762 			cftree_update(cl);
763 			update_cfmin(cl->cl_parent);
764 		}
765 	}
766 }
767 
768 static void
769 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time)
770 {
771 	u64 f; /* , myf_bound, delta; */
772 	int go_passive = 0;
773 
774 	if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC)
775 		go_passive = 1;
776 
777 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
778 		cl->cl_total += len;
779 
780 		if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0)
781 			continue;
782 
783 		if (go_passive && --cl->cl_nactive == 0)
784 			go_passive = 1;
785 		else
786 			go_passive = 0;
787 
788 		if (go_passive) {
789 			/* no more active child, going passive */
790 
791 			/* update cvtmax of the parent class */
792 			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
793 				cl->cl_parent->cl_cvtmax = cl->cl_vt;
794 
795 			/* remove this class from the vt tree */
796 			vttree_remove(cl);
797 
798 			cftree_remove(cl);
799 			update_cfmin(cl->cl_parent);
800 
801 			continue;
802 		}
803 
804 		/*
805 		 * update vt and f
806 		 */
807 		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
808 			    - cl->cl_vtoff + cl->cl_vtadj;
809 
810 		/*
811 		 * if vt of the class is smaller than cvtmin,
812 		 * the class was skipped in the past due to non-fit.
813 		 * if so, we need to adjust vtadj.
814 		 */
815 		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
816 			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
817 			cl->cl_vt = cl->cl_parent->cl_cvtmin;
818 		}
819 
820 		/* update the vt tree */
821 		vttree_update(cl);
822 
823 		if (cl->cl_flags & HFSC_USC) {
824 			cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit,
825 							      cl->cl_total);
826 #if 0
827 			/*
828 			 * This code causes classes to stay way under their
829 			 * limit when multiple classes are used at gigabit
830 			 * speed. needs investigation. -kaber
831 			 */
832 			/*
833 			 * if myf lags behind by more than one clock tick
834 			 * from the current time, adjust myfadj to prevent
835 			 * a rate-limited class from going greedy.
836 			 * in a steady state under rate-limiting, myf
837 			 * fluctuates within one clock tick.
838 			 */
839 			myf_bound = cur_time - PSCHED_JIFFIE2US(1);
840 			if (cl->cl_myf < myf_bound) {
841 				delta = cur_time - cl->cl_myf;
842 				cl->cl_myfadj += delta;
843 				cl->cl_myf += delta;
844 			}
845 #endif
846 		}
847 
848 		f = max(cl->cl_myf, cl->cl_cfmin);
849 		if (f != cl->cl_f) {
850 			cl->cl_f = f;
851 			cftree_update(cl);
852 			update_cfmin(cl->cl_parent);
853 		}
854 	}
855 }
856 
857 static void
858 set_active(struct hfsc_class *cl, unsigned int len)
859 {
860 	if (cl->cl_flags & HFSC_RSC)
861 		init_ed(cl, len);
862 	if (cl->cl_flags & HFSC_FSC)
863 		init_vf(cl, len);
864 
865 	list_add_tail(&cl->dlist, &cl->sched->droplist);
866 }
867 
868 static void
869 set_passive(struct hfsc_class *cl)
870 {
871 	if (cl->cl_flags & HFSC_RSC)
872 		eltree_remove(cl);
873 
874 	list_del(&cl->dlist);
875 
876 	/*
877 	 * vttree is now handled in update_vf() so that update_vf(cl, 0, 0)
878 	 * needs to be called explicitly to remove a class from vttree.
879 	 */
880 }
881 
882 static unsigned int
883 qdisc_peek_len(struct Qdisc *sch)
884 {
885 	struct sk_buff *skb;
886 	unsigned int len;
887 
888 	skb = sch->ops->peek(sch);
889 	if (skb == NULL) {
890 		qdisc_warn_nonwc("qdisc_peek_len", sch);
891 		return 0;
892 	}
893 	len = qdisc_pkt_len(skb);
894 
895 	return len;
896 }
897 
898 static void
899 hfsc_purge_queue(struct Qdisc *sch, struct hfsc_class *cl)
900 {
901 	unsigned int len = cl->qdisc->q.qlen;
902 
903 	qdisc_reset(cl->qdisc);
904 	qdisc_tree_decrease_qlen(cl->qdisc, len);
905 }
906 
907 static void
908 hfsc_adjust_levels(struct hfsc_class *cl)
909 {
910 	struct hfsc_class *p;
911 	unsigned int level;
912 
913 	do {
914 		level = 0;
915 		list_for_each_entry(p, &cl->children, siblings) {
916 			if (p->level >= level)
917 				level = p->level + 1;
918 		}
919 		cl->level = level;
920 	} while ((cl = cl->cl_parent) != NULL);
921 }
922 
923 static inline struct hfsc_class *
924 hfsc_find_class(u32 classid, struct Qdisc *sch)
925 {
926 	struct hfsc_sched *q = qdisc_priv(sch);
927 	struct Qdisc_class_common *clc;
928 
929 	clc = qdisc_class_find(&q->clhash, classid);
930 	if (clc == NULL)
931 		return NULL;
932 	return container_of(clc, struct hfsc_class, cl_common);
933 }
934 
935 static void
936 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc,
937 		u64 cur_time)
938 {
939 	sc2isc(rsc, &cl->cl_rsc);
940 	rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul);
941 	cl->cl_eligible = cl->cl_deadline;
942 	if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) {
943 		cl->cl_eligible.dx = 0;
944 		cl->cl_eligible.dy = 0;
945 	}
946 	cl->cl_flags |= HFSC_RSC;
947 }
948 
949 static void
950 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc)
951 {
952 	sc2isc(fsc, &cl->cl_fsc);
953 	rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total);
954 	cl->cl_flags |= HFSC_FSC;
955 }
956 
957 static void
958 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc,
959 		u64 cur_time)
960 {
961 	sc2isc(usc, &cl->cl_usc);
962 	rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total);
963 	cl->cl_flags |= HFSC_USC;
964 }
965 
966 static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = {
967 	[TCA_HFSC_RSC]	= { .len = sizeof(struct tc_service_curve) },
968 	[TCA_HFSC_FSC]	= { .len = sizeof(struct tc_service_curve) },
969 	[TCA_HFSC_USC]	= { .len = sizeof(struct tc_service_curve) },
970 };
971 
972 static int
973 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
974 		  struct nlattr **tca, unsigned long *arg)
975 {
976 	struct hfsc_sched *q = qdisc_priv(sch);
977 	struct hfsc_class *cl = (struct hfsc_class *)*arg;
978 	struct hfsc_class *parent = NULL;
979 	struct nlattr *opt = tca[TCA_OPTIONS];
980 	struct nlattr *tb[TCA_HFSC_MAX + 1];
981 	struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL;
982 	u64 cur_time;
983 	int err;
984 
985 	if (opt == NULL)
986 		return -EINVAL;
987 
988 	err = nla_parse_nested(tb, TCA_HFSC_MAX, opt, hfsc_policy);
989 	if (err < 0)
990 		return err;
991 
992 	if (tb[TCA_HFSC_RSC]) {
993 		rsc = nla_data(tb[TCA_HFSC_RSC]);
994 		if (rsc->m1 == 0 && rsc->m2 == 0)
995 			rsc = NULL;
996 	}
997 
998 	if (tb[TCA_HFSC_FSC]) {
999 		fsc = nla_data(tb[TCA_HFSC_FSC]);
1000 		if (fsc->m1 == 0 && fsc->m2 == 0)
1001 			fsc = NULL;
1002 	}
1003 
1004 	if (tb[TCA_HFSC_USC]) {
1005 		usc = nla_data(tb[TCA_HFSC_USC]);
1006 		if (usc->m1 == 0 && usc->m2 == 0)
1007 			usc = NULL;
1008 	}
1009 
1010 	if (cl != NULL) {
1011 		if (parentid) {
1012 			if (cl->cl_parent &&
1013 			    cl->cl_parent->cl_common.classid != parentid)
1014 				return -EINVAL;
1015 			if (cl->cl_parent == NULL && parentid != TC_H_ROOT)
1016 				return -EINVAL;
1017 		}
1018 		cur_time = psched_get_time();
1019 
1020 		if (tca[TCA_RATE]) {
1021 			err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
1022 					      qdisc_root_sleeping_lock(sch),
1023 					      tca[TCA_RATE]);
1024 			if (err)
1025 				return err;
1026 		}
1027 
1028 		sch_tree_lock(sch);
1029 		if (rsc != NULL)
1030 			hfsc_change_rsc(cl, rsc, cur_time);
1031 		if (fsc != NULL)
1032 			hfsc_change_fsc(cl, fsc);
1033 		if (usc != NULL)
1034 			hfsc_change_usc(cl, usc, cur_time);
1035 
1036 		if (cl->qdisc->q.qlen != 0) {
1037 			if (cl->cl_flags & HFSC_RSC)
1038 				update_ed(cl, qdisc_peek_len(cl->qdisc));
1039 			if (cl->cl_flags & HFSC_FSC)
1040 				update_vf(cl, 0, cur_time);
1041 		}
1042 		sch_tree_unlock(sch);
1043 
1044 		return 0;
1045 	}
1046 
1047 	if (parentid == TC_H_ROOT)
1048 		return -EEXIST;
1049 
1050 	parent = &q->root;
1051 	if (parentid) {
1052 		parent = hfsc_find_class(parentid, sch);
1053 		if (parent == NULL)
1054 			return -ENOENT;
1055 	}
1056 
1057 	if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0)
1058 		return -EINVAL;
1059 	if (hfsc_find_class(classid, sch))
1060 		return -EEXIST;
1061 
1062 	if (rsc == NULL && fsc == NULL)
1063 		return -EINVAL;
1064 
1065 	cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL);
1066 	if (cl == NULL)
1067 		return -ENOBUFS;
1068 
1069 	if (tca[TCA_RATE]) {
1070 		err = gen_new_estimator(&cl->bstats, &cl->rate_est,
1071 					qdisc_root_sleeping_lock(sch),
1072 					tca[TCA_RATE]);
1073 		if (err) {
1074 			kfree(cl);
1075 			return err;
1076 		}
1077 	}
1078 
1079 	if (rsc != NULL)
1080 		hfsc_change_rsc(cl, rsc, 0);
1081 	if (fsc != NULL)
1082 		hfsc_change_fsc(cl, fsc);
1083 	if (usc != NULL)
1084 		hfsc_change_usc(cl, usc, 0);
1085 
1086 	cl->cl_common.classid = classid;
1087 	cl->refcnt    = 1;
1088 	cl->sched     = q;
1089 	cl->cl_parent = parent;
1090 	cl->qdisc = qdisc_create_dflt(qdisc_dev(sch), sch->dev_queue,
1091 				      &pfifo_qdisc_ops, classid);
1092 	if (cl->qdisc == NULL)
1093 		cl->qdisc = &noop_qdisc;
1094 	INIT_LIST_HEAD(&cl->children);
1095 	cl->vt_tree = RB_ROOT;
1096 	cl->cf_tree = RB_ROOT;
1097 
1098 	sch_tree_lock(sch);
1099 	qdisc_class_hash_insert(&q->clhash, &cl->cl_common);
1100 	list_add_tail(&cl->siblings, &parent->children);
1101 	if (parent->level == 0)
1102 		hfsc_purge_queue(sch, parent);
1103 	hfsc_adjust_levels(parent);
1104 	cl->cl_pcvtoff = parent->cl_cvtoff;
1105 	sch_tree_unlock(sch);
1106 
1107 	qdisc_class_hash_grow(sch, &q->clhash);
1108 
1109 	*arg = (unsigned long)cl;
1110 	return 0;
1111 }
1112 
1113 static void
1114 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl)
1115 {
1116 	struct hfsc_sched *q = qdisc_priv(sch);
1117 
1118 	tcf_destroy_chain(&cl->filter_list);
1119 	qdisc_destroy(cl->qdisc);
1120 	gen_kill_estimator(&cl->bstats, &cl->rate_est);
1121 	if (cl != &q->root)
1122 		kfree(cl);
1123 }
1124 
1125 static int
1126 hfsc_delete_class(struct Qdisc *sch, unsigned long arg)
1127 {
1128 	struct hfsc_sched *q = qdisc_priv(sch);
1129 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1130 
1131 	if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root)
1132 		return -EBUSY;
1133 
1134 	sch_tree_lock(sch);
1135 
1136 	list_del(&cl->siblings);
1137 	hfsc_adjust_levels(cl->cl_parent);
1138 
1139 	hfsc_purge_queue(sch, cl);
1140 	qdisc_class_hash_remove(&q->clhash, &cl->cl_common);
1141 
1142 	BUG_ON(--cl->refcnt == 0);
1143 	/*
1144 	 * This shouldn't happen: we "hold" one cops->get() when called
1145 	 * from tc_ctl_tclass; the destroy method is done from cops->put().
1146 	 */
1147 
1148 	sch_tree_unlock(sch);
1149 	return 0;
1150 }
1151 
1152 static struct hfsc_class *
1153 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr)
1154 {
1155 	struct hfsc_sched *q = qdisc_priv(sch);
1156 	struct hfsc_class *cl;
1157 	struct tcf_result res;
1158 	struct tcf_proto *tcf;
1159 	int result;
1160 
1161 	if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 &&
1162 	    (cl = hfsc_find_class(skb->priority, sch)) != NULL)
1163 		if (cl->level == 0)
1164 			return cl;
1165 
1166 	*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1167 	tcf = q->root.filter_list;
1168 	while (tcf && (result = tc_classify(skb, tcf, &res)) >= 0) {
1169 #ifdef CONFIG_NET_CLS_ACT
1170 		switch (result) {
1171 		case TC_ACT_QUEUED:
1172 		case TC_ACT_STOLEN:
1173 			*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1174 		case TC_ACT_SHOT:
1175 			return NULL;
1176 		}
1177 #endif
1178 		if ((cl = (struct hfsc_class *)res.class) == NULL) {
1179 			if ((cl = hfsc_find_class(res.classid, sch)) == NULL)
1180 				break; /* filter selected invalid classid */
1181 		}
1182 
1183 		if (cl->level == 0)
1184 			return cl; /* hit leaf class */
1185 
1186 		/* apply inner filter chain */
1187 		tcf = cl->filter_list;
1188 	}
1189 
1190 	/* classification failed, try default class */
1191 	cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch);
1192 	if (cl == NULL || cl->level > 0)
1193 		return NULL;
1194 
1195 	return cl;
1196 }
1197 
1198 static int
1199 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1200 		 struct Qdisc **old)
1201 {
1202 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1203 
1204 	if (cl == NULL)
1205 		return -ENOENT;
1206 	if (cl->level > 0)
1207 		return -EINVAL;
1208 	if (new == NULL) {
1209 		new = qdisc_create_dflt(qdisc_dev(sch), sch->dev_queue,
1210 					&pfifo_qdisc_ops,
1211 					cl->cl_common.classid);
1212 		if (new == NULL)
1213 			new = &noop_qdisc;
1214 	}
1215 
1216 	sch_tree_lock(sch);
1217 	hfsc_purge_queue(sch, cl);
1218 	*old = cl->qdisc;
1219 	cl->qdisc = new;
1220 	sch_tree_unlock(sch);
1221 	return 0;
1222 }
1223 
1224 static struct Qdisc *
1225 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg)
1226 {
1227 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1228 
1229 	if (cl != NULL && cl->level == 0)
1230 		return cl->qdisc;
1231 
1232 	return NULL;
1233 }
1234 
1235 static void
1236 hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg)
1237 {
1238 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1239 
1240 	if (cl->qdisc->q.qlen == 0) {
1241 		update_vf(cl, 0, 0);
1242 		set_passive(cl);
1243 	}
1244 }
1245 
1246 static unsigned long
1247 hfsc_get_class(struct Qdisc *sch, u32 classid)
1248 {
1249 	struct hfsc_class *cl = hfsc_find_class(classid, sch);
1250 
1251 	if (cl != NULL)
1252 		cl->refcnt++;
1253 
1254 	return (unsigned long)cl;
1255 }
1256 
1257 static void
1258 hfsc_put_class(struct Qdisc *sch, unsigned long arg)
1259 {
1260 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1261 
1262 	if (--cl->refcnt == 0)
1263 		hfsc_destroy_class(sch, cl);
1264 }
1265 
1266 static unsigned long
1267 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid)
1268 {
1269 	struct hfsc_class *p = (struct hfsc_class *)parent;
1270 	struct hfsc_class *cl = hfsc_find_class(classid, sch);
1271 
1272 	if (cl != NULL) {
1273 		if (p != NULL && p->level <= cl->level)
1274 			return 0;
1275 		cl->filter_cnt++;
1276 	}
1277 
1278 	return (unsigned long)cl;
1279 }
1280 
1281 static void
1282 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg)
1283 {
1284 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1285 
1286 	cl->filter_cnt--;
1287 }
1288 
1289 static struct tcf_proto **
1290 hfsc_tcf_chain(struct Qdisc *sch, unsigned long arg)
1291 {
1292 	struct hfsc_sched *q = qdisc_priv(sch);
1293 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1294 
1295 	if (cl == NULL)
1296 		cl = &q->root;
1297 
1298 	return &cl->filter_list;
1299 }
1300 
1301 static int
1302 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc)
1303 {
1304 	struct tc_service_curve tsc;
1305 
1306 	tsc.m1 = sm2m(sc->sm1);
1307 	tsc.d  = dx2d(sc->dx);
1308 	tsc.m2 = sm2m(sc->sm2);
1309 	NLA_PUT(skb, attr, sizeof(tsc), &tsc);
1310 
1311 	return skb->len;
1312 
1313  nla_put_failure:
1314 	return -1;
1315 }
1316 
1317 static inline int
1318 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl)
1319 {
1320 	if ((cl->cl_flags & HFSC_RSC) &&
1321 	    (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0))
1322 		goto nla_put_failure;
1323 
1324 	if ((cl->cl_flags & HFSC_FSC) &&
1325 	    (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0))
1326 		goto nla_put_failure;
1327 
1328 	if ((cl->cl_flags & HFSC_USC) &&
1329 	    (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0))
1330 		goto nla_put_failure;
1331 
1332 	return skb->len;
1333 
1334  nla_put_failure:
1335 	return -1;
1336 }
1337 
1338 static int
1339 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb,
1340 		struct tcmsg *tcm)
1341 {
1342 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1343 	struct nlattr *nest;
1344 
1345 	tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid :
1346 					  TC_H_ROOT;
1347 	tcm->tcm_handle = cl->cl_common.classid;
1348 	if (cl->level == 0)
1349 		tcm->tcm_info = cl->qdisc->handle;
1350 
1351 	nest = nla_nest_start(skb, TCA_OPTIONS);
1352 	if (nest == NULL)
1353 		goto nla_put_failure;
1354 	if (hfsc_dump_curves(skb, cl) < 0)
1355 		goto nla_put_failure;
1356 	nla_nest_end(skb, nest);
1357 	return skb->len;
1358 
1359  nla_put_failure:
1360 	nla_nest_cancel(skb, nest);
1361 	return -EMSGSIZE;
1362 }
1363 
1364 static int
1365 hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg,
1366 	struct gnet_dump *d)
1367 {
1368 	struct hfsc_class *cl = (struct hfsc_class *)arg;
1369 	struct tc_hfsc_stats xstats;
1370 
1371 	cl->qstats.qlen = cl->qdisc->q.qlen;
1372 	xstats.level   = cl->level;
1373 	xstats.period  = cl->cl_vtperiod;
1374 	xstats.work    = cl->cl_total;
1375 	xstats.rtwork  = cl->cl_cumul;
1376 
1377 	if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
1378 	    gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
1379 	    gnet_stats_copy_queue(d, &cl->qstats) < 0)
1380 		return -1;
1381 
1382 	return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
1383 }
1384 
1385 
1386 
1387 static void
1388 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1389 {
1390 	struct hfsc_sched *q = qdisc_priv(sch);
1391 	struct hlist_node *n;
1392 	struct hfsc_class *cl;
1393 	unsigned int i;
1394 
1395 	if (arg->stop)
1396 		return;
1397 
1398 	for (i = 0; i < q->clhash.hashsize; i++) {
1399 		hlist_for_each_entry(cl, n, &q->clhash.hash[i],
1400 				     cl_common.hnode) {
1401 			if (arg->count < arg->skip) {
1402 				arg->count++;
1403 				continue;
1404 			}
1405 			if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
1406 				arg->stop = 1;
1407 				return;
1408 			}
1409 			arg->count++;
1410 		}
1411 	}
1412 }
1413 
1414 static void
1415 hfsc_schedule_watchdog(struct Qdisc *sch)
1416 {
1417 	struct hfsc_sched *q = qdisc_priv(sch);
1418 	struct hfsc_class *cl;
1419 	u64 next_time = 0;
1420 
1421 	if ((cl = eltree_get_minel(q)) != NULL)
1422 		next_time = cl->cl_e;
1423 	if (q->root.cl_cfmin != 0) {
1424 		if (next_time == 0 || next_time > q->root.cl_cfmin)
1425 			next_time = q->root.cl_cfmin;
1426 	}
1427 	WARN_ON(next_time == 0);
1428 	qdisc_watchdog_schedule(&q->watchdog, next_time);
1429 }
1430 
1431 static int
1432 hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1433 {
1434 	struct hfsc_sched *q = qdisc_priv(sch);
1435 	struct tc_hfsc_qopt *qopt;
1436 	int err;
1437 
1438 	if (opt == NULL || nla_len(opt) < sizeof(*qopt))
1439 		return -EINVAL;
1440 	qopt = nla_data(opt);
1441 
1442 	q->defcls = qopt->defcls;
1443 	err = qdisc_class_hash_init(&q->clhash);
1444 	if (err < 0)
1445 		return err;
1446 	q->eligible = RB_ROOT;
1447 	INIT_LIST_HEAD(&q->droplist);
1448 
1449 	q->root.cl_common.classid = sch->handle;
1450 	q->root.refcnt  = 1;
1451 	q->root.sched   = q;
1452 	q->root.qdisc = qdisc_create_dflt(qdisc_dev(sch), sch->dev_queue,
1453 					  &pfifo_qdisc_ops,
1454 					  sch->handle);
1455 	if (q->root.qdisc == NULL)
1456 		q->root.qdisc = &noop_qdisc;
1457 	INIT_LIST_HEAD(&q->root.children);
1458 	q->root.vt_tree = RB_ROOT;
1459 	q->root.cf_tree = RB_ROOT;
1460 
1461 	qdisc_class_hash_insert(&q->clhash, &q->root.cl_common);
1462 	qdisc_class_hash_grow(sch, &q->clhash);
1463 
1464 	qdisc_watchdog_init(&q->watchdog, sch);
1465 
1466 	return 0;
1467 }
1468 
1469 static int
1470 hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt)
1471 {
1472 	struct hfsc_sched *q = qdisc_priv(sch);
1473 	struct tc_hfsc_qopt *qopt;
1474 
1475 	if (opt == NULL || nla_len(opt) < sizeof(*qopt))
1476 		return -EINVAL;
1477 	qopt = nla_data(opt);
1478 
1479 	sch_tree_lock(sch);
1480 	q->defcls = qopt->defcls;
1481 	sch_tree_unlock(sch);
1482 
1483 	return 0;
1484 }
1485 
1486 static void
1487 hfsc_reset_class(struct hfsc_class *cl)
1488 {
1489 	cl->cl_total        = 0;
1490 	cl->cl_cumul        = 0;
1491 	cl->cl_d            = 0;
1492 	cl->cl_e            = 0;
1493 	cl->cl_vt           = 0;
1494 	cl->cl_vtadj        = 0;
1495 	cl->cl_vtoff        = 0;
1496 	cl->cl_cvtmin       = 0;
1497 	cl->cl_cvtmax       = 0;
1498 	cl->cl_cvtoff       = 0;
1499 	cl->cl_pcvtoff      = 0;
1500 	cl->cl_vtperiod     = 0;
1501 	cl->cl_parentperiod = 0;
1502 	cl->cl_f            = 0;
1503 	cl->cl_myf          = 0;
1504 	cl->cl_myfadj       = 0;
1505 	cl->cl_cfmin        = 0;
1506 	cl->cl_nactive      = 0;
1507 
1508 	cl->vt_tree = RB_ROOT;
1509 	cl->cf_tree = RB_ROOT;
1510 	qdisc_reset(cl->qdisc);
1511 
1512 	if (cl->cl_flags & HFSC_RSC)
1513 		rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0);
1514 	if (cl->cl_flags & HFSC_FSC)
1515 		rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0);
1516 	if (cl->cl_flags & HFSC_USC)
1517 		rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0);
1518 }
1519 
1520 static void
1521 hfsc_reset_qdisc(struct Qdisc *sch)
1522 {
1523 	struct hfsc_sched *q = qdisc_priv(sch);
1524 	struct hfsc_class *cl;
1525 	struct hlist_node *n;
1526 	unsigned int i;
1527 
1528 	for (i = 0; i < q->clhash.hashsize; i++) {
1529 		hlist_for_each_entry(cl, n, &q->clhash.hash[i], cl_common.hnode)
1530 			hfsc_reset_class(cl);
1531 	}
1532 	q->eligible = RB_ROOT;
1533 	INIT_LIST_HEAD(&q->droplist);
1534 	qdisc_watchdog_cancel(&q->watchdog);
1535 	sch->q.qlen = 0;
1536 }
1537 
1538 static void
1539 hfsc_destroy_qdisc(struct Qdisc *sch)
1540 {
1541 	struct hfsc_sched *q = qdisc_priv(sch);
1542 	struct hlist_node *n, *next;
1543 	struct hfsc_class *cl;
1544 	unsigned int i;
1545 
1546 	for (i = 0; i < q->clhash.hashsize; i++) {
1547 		hlist_for_each_entry(cl, n, &q->clhash.hash[i], cl_common.hnode)
1548 			tcf_destroy_chain(&cl->filter_list);
1549 	}
1550 	for (i = 0; i < q->clhash.hashsize; i++) {
1551 		hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i],
1552 					  cl_common.hnode)
1553 			hfsc_destroy_class(sch, cl);
1554 	}
1555 	qdisc_class_hash_destroy(&q->clhash);
1556 	qdisc_watchdog_cancel(&q->watchdog);
1557 }
1558 
1559 static int
1560 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb)
1561 {
1562 	struct hfsc_sched *q = qdisc_priv(sch);
1563 	unsigned char *b = skb_tail_pointer(skb);
1564 	struct tc_hfsc_qopt qopt;
1565 
1566 	qopt.defcls = q->defcls;
1567 	NLA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
1568 	return skb->len;
1569 
1570  nla_put_failure:
1571 	nlmsg_trim(skb, b);
1572 	return -1;
1573 }
1574 
1575 static int
1576 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1577 {
1578 	struct hfsc_class *cl;
1579 	int uninitialized_var(err);
1580 
1581 	cl = hfsc_classify(skb, sch, &err);
1582 	if (cl == NULL) {
1583 		if (err & __NET_XMIT_BYPASS)
1584 			sch->qstats.drops++;
1585 		kfree_skb(skb);
1586 		return err;
1587 	}
1588 
1589 	err = qdisc_enqueue(skb, cl->qdisc);
1590 	if (unlikely(err != NET_XMIT_SUCCESS)) {
1591 		if (net_xmit_drop_count(err)) {
1592 			cl->qstats.drops++;
1593 			sch->qstats.drops++;
1594 		}
1595 		return err;
1596 	}
1597 
1598 	if (cl->qdisc->q.qlen == 1)
1599 		set_active(cl, qdisc_pkt_len(skb));
1600 
1601 	cl->bstats.packets++;
1602 	cl->bstats.bytes += qdisc_pkt_len(skb);
1603 	sch->bstats.packets++;
1604 	sch->bstats.bytes += qdisc_pkt_len(skb);
1605 	sch->q.qlen++;
1606 
1607 	return NET_XMIT_SUCCESS;
1608 }
1609 
1610 static struct sk_buff *
1611 hfsc_dequeue(struct Qdisc *sch)
1612 {
1613 	struct hfsc_sched *q = qdisc_priv(sch);
1614 	struct hfsc_class *cl;
1615 	struct sk_buff *skb;
1616 	u64 cur_time;
1617 	unsigned int next_len;
1618 	int realtime = 0;
1619 
1620 	if (sch->q.qlen == 0)
1621 		return NULL;
1622 
1623 	cur_time = psched_get_time();
1624 
1625 	/*
1626 	 * if there are eligible classes, use real-time criteria.
1627 	 * find the class with the minimum deadline among
1628 	 * the eligible classes.
1629 	 */
1630 	if ((cl = eltree_get_mindl(q, cur_time)) != NULL) {
1631 		realtime = 1;
1632 	} else {
1633 		/*
1634 		 * use link-sharing criteria
1635 		 * get the class with the minimum vt in the hierarchy
1636 		 */
1637 		cl = vttree_get_minvt(&q->root, cur_time);
1638 		if (cl == NULL) {
1639 			sch->qstats.overlimits++;
1640 			hfsc_schedule_watchdog(sch);
1641 			return NULL;
1642 		}
1643 	}
1644 
1645 	skb = qdisc_dequeue_peeked(cl->qdisc);
1646 	if (skb == NULL) {
1647 		qdisc_warn_nonwc("HFSC", cl->qdisc);
1648 		return NULL;
1649 	}
1650 
1651 	update_vf(cl, qdisc_pkt_len(skb), cur_time);
1652 	if (realtime)
1653 		cl->cl_cumul += qdisc_pkt_len(skb);
1654 
1655 	if (cl->qdisc->q.qlen != 0) {
1656 		if (cl->cl_flags & HFSC_RSC) {
1657 			/* update ed */
1658 			next_len = qdisc_peek_len(cl->qdisc);
1659 			if (realtime)
1660 				update_ed(cl, next_len);
1661 			else
1662 				update_d(cl, next_len);
1663 		}
1664 	} else {
1665 		/* the class becomes passive */
1666 		set_passive(cl);
1667 	}
1668 
1669 	sch->flags &= ~TCQ_F_THROTTLED;
1670 	sch->q.qlen--;
1671 
1672 	return skb;
1673 }
1674 
1675 static unsigned int
1676 hfsc_drop(struct Qdisc *sch)
1677 {
1678 	struct hfsc_sched *q = qdisc_priv(sch);
1679 	struct hfsc_class *cl;
1680 	unsigned int len;
1681 
1682 	list_for_each_entry(cl, &q->droplist, dlist) {
1683 		if (cl->qdisc->ops->drop != NULL &&
1684 		    (len = cl->qdisc->ops->drop(cl->qdisc)) > 0) {
1685 			if (cl->qdisc->q.qlen == 0) {
1686 				update_vf(cl, 0, 0);
1687 				set_passive(cl);
1688 			} else {
1689 				list_move_tail(&cl->dlist, &q->droplist);
1690 			}
1691 			cl->qstats.drops++;
1692 			sch->qstats.drops++;
1693 			sch->q.qlen--;
1694 			return len;
1695 		}
1696 	}
1697 	return 0;
1698 }
1699 
1700 static const struct Qdisc_class_ops hfsc_class_ops = {
1701 	.change		= hfsc_change_class,
1702 	.delete		= hfsc_delete_class,
1703 	.graft		= hfsc_graft_class,
1704 	.leaf		= hfsc_class_leaf,
1705 	.qlen_notify	= hfsc_qlen_notify,
1706 	.get		= hfsc_get_class,
1707 	.put		= hfsc_put_class,
1708 	.bind_tcf	= hfsc_bind_tcf,
1709 	.unbind_tcf	= hfsc_unbind_tcf,
1710 	.tcf_chain	= hfsc_tcf_chain,
1711 	.dump		= hfsc_dump_class,
1712 	.dump_stats	= hfsc_dump_class_stats,
1713 	.walk		= hfsc_walk
1714 };
1715 
1716 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = {
1717 	.id		= "hfsc",
1718 	.init		= hfsc_init_qdisc,
1719 	.change		= hfsc_change_qdisc,
1720 	.reset		= hfsc_reset_qdisc,
1721 	.destroy	= hfsc_destroy_qdisc,
1722 	.dump		= hfsc_dump_qdisc,
1723 	.enqueue	= hfsc_enqueue,
1724 	.dequeue	= hfsc_dequeue,
1725 	.peek		= qdisc_peek_dequeued,
1726 	.drop		= hfsc_drop,
1727 	.cl_ops		= &hfsc_class_ops,
1728 	.priv_size	= sizeof(struct hfsc_sched),
1729 	.owner		= THIS_MODULE
1730 };
1731 
1732 static int __init
1733 hfsc_init(void)
1734 {
1735 	return register_qdisc(&hfsc_qdisc_ops);
1736 }
1737 
1738 static void __exit
1739 hfsc_cleanup(void)
1740 {
1741 	unregister_qdisc(&hfsc_qdisc_ops);
1742 }
1743 
1744 MODULE_LICENSE("GPL");
1745 module_init(hfsc_init);
1746 module_exit(hfsc_cleanup);
1747