1 /* 2 * Copyright (c) 2003 Patrick McHardy, <kaber@trash.net> 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 2 7 * of the License, or (at your option) any later version. 8 * 9 * 2003-10-17 - Ported from altq 10 */ 11 /* 12 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved. 13 * 14 * Permission to use, copy, modify, and distribute this software and 15 * its documentation is hereby granted (including for commercial or 16 * for-profit use), provided that both the copyright notice and this 17 * permission notice appear in all copies of the software, derivative 18 * works, or modified versions, and any portions thereof. 19 * 20 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF 21 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS 22 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED 23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 25 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 28 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 32 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 33 * DAMAGE. 34 * 35 * Carnegie Mellon encourages (but does not require) users of this 36 * software to return any improvements or extensions that they make, 37 * and to grant Carnegie Mellon the rights to redistribute these 38 * changes without encumbrance. 39 */ 40 /* 41 * H-FSC is described in Proceedings of SIGCOMM'97, 42 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing, 43 * Real-Time and Priority Service" 44 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng. 45 * 46 * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing. 47 * when a class has an upperlimit, the fit-time is computed from the 48 * upperlimit service curve. the link-sharing scheduler does not schedule 49 * a class whose fit-time exceeds the current time. 50 */ 51 52 #include <linux/kernel.h> 53 #include <linux/module.h> 54 #include <linux/types.h> 55 #include <linux/errno.h> 56 #include <linux/compiler.h> 57 #include <linux/spinlock.h> 58 #include <linux/skbuff.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/list.h> 62 #include <linux/rbtree.h> 63 #include <linux/init.h> 64 #include <linux/rtnetlink.h> 65 #include <linux/pkt_sched.h> 66 #include <net/netlink.h> 67 #include <net/pkt_sched.h> 68 #include <net/pkt_cls.h> 69 #include <asm/div64.h> 70 71 /* 72 * kernel internal service curve representation: 73 * coordinates are given by 64 bit unsigned integers. 74 * x-axis: unit is clock count. 75 * y-axis: unit is byte. 76 * 77 * The service curve parameters are converted to the internal 78 * representation. The slope values are scaled to avoid overflow. 79 * the inverse slope values as well as the y-projection of the 1st 80 * segment are kept in order to avoid 64-bit divide operations 81 * that are expensive on 32-bit architectures. 82 */ 83 84 struct internal_sc { 85 u64 sm1; /* scaled slope of the 1st segment */ 86 u64 ism1; /* scaled inverse-slope of the 1st segment */ 87 u64 dx; /* the x-projection of the 1st segment */ 88 u64 dy; /* the y-projection of the 1st segment */ 89 u64 sm2; /* scaled slope of the 2nd segment */ 90 u64 ism2; /* scaled inverse-slope of the 2nd segment */ 91 }; 92 93 /* runtime service curve */ 94 struct runtime_sc { 95 u64 x; /* current starting position on x-axis */ 96 u64 y; /* current starting position on y-axis */ 97 u64 sm1; /* scaled slope of the 1st segment */ 98 u64 ism1; /* scaled inverse-slope of the 1st segment */ 99 u64 dx; /* the x-projection of the 1st segment */ 100 u64 dy; /* the y-projection of the 1st segment */ 101 u64 sm2; /* scaled slope of the 2nd segment */ 102 u64 ism2; /* scaled inverse-slope of the 2nd segment */ 103 }; 104 105 enum hfsc_class_flags { 106 HFSC_RSC = 0x1, 107 HFSC_FSC = 0x2, 108 HFSC_USC = 0x4 109 }; 110 111 struct hfsc_class { 112 struct Qdisc_class_common cl_common; 113 114 struct gnet_stats_basic_sync bstats; 115 struct gnet_stats_queue qstats; 116 struct net_rate_estimator __rcu *rate_est; 117 struct tcf_proto __rcu *filter_list; /* filter list */ 118 struct tcf_block *block; 119 unsigned int filter_cnt; /* filter count */ 120 unsigned int level; /* class level in hierarchy */ 121 122 struct hfsc_sched *sched; /* scheduler data */ 123 struct hfsc_class *cl_parent; /* parent class */ 124 struct list_head siblings; /* sibling classes */ 125 struct list_head children; /* child classes */ 126 struct Qdisc *qdisc; /* leaf qdisc */ 127 128 struct rb_node el_node; /* qdisc's eligible tree member */ 129 struct rb_root vt_tree; /* active children sorted by cl_vt */ 130 struct rb_node vt_node; /* parent's vt_tree member */ 131 struct rb_root cf_tree; /* active children sorted by cl_f */ 132 struct rb_node cf_node; /* parent's cf_heap member */ 133 134 u64 cl_total; /* total work in bytes */ 135 u64 cl_cumul; /* cumulative work in bytes done by 136 real-time criteria */ 137 138 u64 cl_d; /* deadline*/ 139 u64 cl_e; /* eligible time */ 140 u64 cl_vt; /* virtual time */ 141 u64 cl_f; /* time when this class will fit for 142 link-sharing, max(myf, cfmin) */ 143 u64 cl_myf; /* my fit-time (calculated from this 144 class's own upperlimit curve) */ 145 u64 cl_cfmin; /* earliest children's fit-time (used 146 with cl_myf to obtain cl_f) */ 147 u64 cl_cvtmin; /* minimal virtual time among the 148 children fit for link-sharing 149 (monotonic within a period) */ 150 u64 cl_vtadj; /* intra-period cumulative vt 151 adjustment */ 152 u64 cl_cvtoff; /* largest virtual time seen among 153 the children */ 154 155 struct internal_sc cl_rsc; /* internal real-time service curve */ 156 struct internal_sc cl_fsc; /* internal fair service curve */ 157 struct internal_sc cl_usc; /* internal upperlimit service curve */ 158 struct runtime_sc cl_deadline; /* deadline curve */ 159 struct runtime_sc cl_eligible; /* eligible curve */ 160 struct runtime_sc cl_virtual; /* virtual curve */ 161 struct runtime_sc cl_ulimit; /* upperlimit curve */ 162 163 u8 cl_flags; /* which curves are valid */ 164 u32 cl_vtperiod; /* vt period sequence number */ 165 u32 cl_parentperiod;/* parent's vt period sequence number*/ 166 u32 cl_nactive; /* number of active children */ 167 }; 168 169 struct hfsc_sched { 170 u16 defcls; /* default class id */ 171 struct hfsc_class root; /* root class */ 172 struct Qdisc_class_hash clhash; /* class hash */ 173 struct rb_root eligible; /* eligible tree */ 174 struct qdisc_watchdog watchdog; /* watchdog timer */ 175 }; 176 177 #define HT_INFINITY 0xffffffffffffffffULL /* infinite time value */ 178 179 180 /* 181 * eligible tree holds backlogged classes being sorted by their eligible times. 182 * there is one eligible tree per hfsc instance. 183 */ 184 185 static void 186 eltree_insert(struct hfsc_class *cl) 187 { 188 struct rb_node **p = &cl->sched->eligible.rb_node; 189 struct rb_node *parent = NULL; 190 struct hfsc_class *cl1; 191 192 while (*p != NULL) { 193 parent = *p; 194 cl1 = rb_entry(parent, struct hfsc_class, el_node); 195 if (cl->cl_e >= cl1->cl_e) 196 p = &parent->rb_right; 197 else 198 p = &parent->rb_left; 199 } 200 rb_link_node(&cl->el_node, parent, p); 201 rb_insert_color(&cl->el_node, &cl->sched->eligible); 202 } 203 204 static inline void 205 eltree_remove(struct hfsc_class *cl) 206 { 207 rb_erase(&cl->el_node, &cl->sched->eligible); 208 } 209 210 static inline void 211 eltree_update(struct hfsc_class *cl) 212 { 213 eltree_remove(cl); 214 eltree_insert(cl); 215 } 216 217 /* find the class with the minimum deadline among the eligible classes */ 218 static inline struct hfsc_class * 219 eltree_get_mindl(struct hfsc_sched *q, u64 cur_time) 220 { 221 struct hfsc_class *p, *cl = NULL; 222 struct rb_node *n; 223 224 for (n = rb_first(&q->eligible); n != NULL; n = rb_next(n)) { 225 p = rb_entry(n, struct hfsc_class, el_node); 226 if (p->cl_e > cur_time) 227 break; 228 if (cl == NULL || p->cl_d < cl->cl_d) 229 cl = p; 230 } 231 return cl; 232 } 233 234 /* find the class with minimum eligible time among the eligible classes */ 235 static inline struct hfsc_class * 236 eltree_get_minel(struct hfsc_sched *q) 237 { 238 struct rb_node *n; 239 240 n = rb_first(&q->eligible); 241 if (n == NULL) 242 return NULL; 243 return rb_entry(n, struct hfsc_class, el_node); 244 } 245 246 /* 247 * vttree holds holds backlogged child classes being sorted by their virtual 248 * time. each intermediate class has one vttree. 249 */ 250 static void 251 vttree_insert(struct hfsc_class *cl) 252 { 253 struct rb_node **p = &cl->cl_parent->vt_tree.rb_node; 254 struct rb_node *parent = NULL; 255 struct hfsc_class *cl1; 256 257 while (*p != NULL) { 258 parent = *p; 259 cl1 = rb_entry(parent, struct hfsc_class, vt_node); 260 if (cl->cl_vt >= cl1->cl_vt) 261 p = &parent->rb_right; 262 else 263 p = &parent->rb_left; 264 } 265 rb_link_node(&cl->vt_node, parent, p); 266 rb_insert_color(&cl->vt_node, &cl->cl_parent->vt_tree); 267 } 268 269 static inline void 270 vttree_remove(struct hfsc_class *cl) 271 { 272 rb_erase(&cl->vt_node, &cl->cl_parent->vt_tree); 273 } 274 275 static inline void 276 vttree_update(struct hfsc_class *cl) 277 { 278 vttree_remove(cl); 279 vttree_insert(cl); 280 } 281 282 static inline struct hfsc_class * 283 vttree_firstfit(struct hfsc_class *cl, u64 cur_time) 284 { 285 struct hfsc_class *p; 286 struct rb_node *n; 287 288 for (n = rb_first(&cl->vt_tree); n != NULL; n = rb_next(n)) { 289 p = rb_entry(n, struct hfsc_class, vt_node); 290 if (p->cl_f <= cur_time) 291 return p; 292 } 293 return NULL; 294 } 295 296 /* 297 * get the leaf class with the minimum vt in the hierarchy 298 */ 299 static struct hfsc_class * 300 vttree_get_minvt(struct hfsc_class *cl, u64 cur_time) 301 { 302 /* if root-class's cfmin is bigger than cur_time nothing to do */ 303 if (cl->cl_cfmin > cur_time) 304 return NULL; 305 306 while (cl->level > 0) { 307 cl = vttree_firstfit(cl, cur_time); 308 if (cl == NULL) 309 return NULL; 310 /* 311 * update parent's cl_cvtmin. 312 */ 313 if (cl->cl_parent->cl_cvtmin < cl->cl_vt) 314 cl->cl_parent->cl_cvtmin = cl->cl_vt; 315 } 316 return cl; 317 } 318 319 static void 320 cftree_insert(struct hfsc_class *cl) 321 { 322 struct rb_node **p = &cl->cl_parent->cf_tree.rb_node; 323 struct rb_node *parent = NULL; 324 struct hfsc_class *cl1; 325 326 while (*p != NULL) { 327 parent = *p; 328 cl1 = rb_entry(parent, struct hfsc_class, cf_node); 329 if (cl->cl_f >= cl1->cl_f) 330 p = &parent->rb_right; 331 else 332 p = &parent->rb_left; 333 } 334 rb_link_node(&cl->cf_node, parent, p); 335 rb_insert_color(&cl->cf_node, &cl->cl_parent->cf_tree); 336 } 337 338 static inline void 339 cftree_remove(struct hfsc_class *cl) 340 { 341 rb_erase(&cl->cf_node, &cl->cl_parent->cf_tree); 342 } 343 344 static inline void 345 cftree_update(struct hfsc_class *cl) 346 { 347 cftree_remove(cl); 348 cftree_insert(cl); 349 } 350 351 /* 352 * service curve support functions 353 * 354 * external service curve parameters 355 * m: bps 356 * d: us 357 * internal service curve parameters 358 * sm: (bytes/psched_us) << SM_SHIFT 359 * ism: (psched_us/byte) << ISM_SHIFT 360 * dx: psched_us 361 * 362 * The clock source resolution with ktime and PSCHED_SHIFT 10 is 1.024us. 363 * 364 * sm and ism are scaled in order to keep effective digits. 365 * SM_SHIFT and ISM_SHIFT are selected to keep at least 4 effective 366 * digits in decimal using the following table. 367 * 368 * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps 369 * ------------+------------------------------------------------------- 370 * bytes/1.024us 12.8e-3 128e-3 1280e-3 12800e-3 128000e-3 371 * 372 * 1.024us/byte 78.125 7.8125 0.78125 0.078125 0.0078125 373 * 374 * So, for PSCHED_SHIFT 10 we need: SM_SHIFT 20, ISM_SHIFT 18. 375 */ 376 #define SM_SHIFT (30 - PSCHED_SHIFT) 377 #define ISM_SHIFT (8 + PSCHED_SHIFT) 378 379 #define SM_MASK ((1ULL << SM_SHIFT) - 1) 380 #define ISM_MASK ((1ULL << ISM_SHIFT) - 1) 381 382 static inline u64 383 seg_x2y(u64 x, u64 sm) 384 { 385 u64 y; 386 387 /* 388 * compute 389 * y = x * sm >> SM_SHIFT 390 * but divide it for the upper and lower bits to avoid overflow 391 */ 392 y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT); 393 return y; 394 } 395 396 static inline u64 397 seg_y2x(u64 y, u64 ism) 398 { 399 u64 x; 400 401 if (y == 0) 402 x = 0; 403 else if (ism == HT_INFINITY) 404 x = HT_INFINITY; 405 else { 406 x = (y >> ISM_SHIFT) * ism 407 + (((y & ISM_MASK) * ism) >> ISM_SHIFT); 408 } 409 return x; 410 } 411 412 /* Convert m (bps) into sm (bytes/psched us) */ 413 static u64 414 m2sm(u32 m) 415 { 416 u64 sm; 417 418 sm = ((u64)m << SM_SHIFT); 419 sm += PSCHED_TICKS_PER_SEC - 1; 420 do_div(sm, PSCHED_TICKS_PER_SEC); 421 return sm; 422 } 423 424 /* convert m (bps) into ism (psched us/byte) */ 425 static u64 426 m2ism(u32 m) 427 { 428 u64 ism; 429 430 if (m == 0) 431 ism = HT_INFINITY; 432 else { 433 ism = ((u64)PSCHED_TICKS_PER_SEC << ISM_SHIFT); 434 ism += m - 1; 435 do_div(ism, m); 436 } 437 return ism; 438 } 439 440 /* convert d (us) into dx (psched us) */ 441 static u64 442 d2dx(u32 d) 443 { 444 u64 dx; 445 446 dx = ((u64)d * PSCHED_TICKS_PER_SEC); 447 dx += USEC_PER_SEC - 1; 448 do_div(dx, USEC_PER_SEC); 449 return dx; 450 } 451 452 /* convert sm (bytes/psched us) into m (bps) */ 453 static u32 454 sm2m(u64 sm) 455 { 456 u64 m; 457 458 m = (sm * PSCHED_TICKS_PER_SEC) >> SM_SHIFT; 459 return (u32)m; 460 } 461 462 /* convert dx (psched us) into d (us) */ 463 static u32 464 dx2d(u64 dx) 465 { 466 u64 d; 467 468 d = dx * USEC_PER_SEC; 469 do_div(d, PSCHED_TICKS_PER_SEC); 470 return (u32)d; 471 } 472 473 static void 474 sc2isc(struct tc_service_curve *sc, struct internal_sc *isc) 475 { 476 isc->sm1 = m2sm(sc->m1); 477 isc->ism1 = m2ism(sc->m1); 478 isc->dx = d2dx(sc->d); 479 isc->dy = seg_x2y(isc->dx, isc->sm1); 480 isc->sm2 = m2sm(sc->m2); 481 isc->ism2 = m2ism(sc->m2); 482 } 483 484 /* 485 * initialize the runtime service curve with the given internal 486 * service curve starting at (x, y). 487 */ 488 static void 489 rtsc_init(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) 490 { 491 rtsc->x = x; 492 rtsc->y = y; 493 rtsc->sm1 = isc->sm1; 494 rtsc->ism1 = isc->ism1; 495 rtsc->dx = isc->dx; 496 rtsc->dy = isc->dy; 497 rtsc->sm2 = isc->sm2; 498 rtsc->ism2 = isc->ism2; 499 } 500 501 /* 502 * calculate the y-projection of the runtime service curve by the 503 * given x-projection value 504 */ 505 static u64 506 rtsc_y2x(struct runtime_sc *rtsc, u64 y) 507 { 508 u64 x; 509 510 if (y < rtsc->y) 511 x = rtsc->x; 512 else if (y <= rtsc->y + rtsc->dy) { 513 /* x belongs to the 1st segment */ 514 if (rtsc->dy == 0) 515 x = rtsc->x + rtsc->dx; 516 else 517 x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1); 518 } else { 519 /* x belongs to the 2nd segment */ 520 x = rtsc->x + rtsc->dx 521 + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2); 522 } 523 return x; 524 } 525 526 static u64 527 rtsc_x2y(struct runtime_sc *rtsc, u64 x) 528 { 529 u64 y; 530 531 if (x <= rtsc->x) 532 y = rtsc->y; 533 else if (x <= rtsc->x + rtsc->dx) 534 /* y belongs to the 1st segment */ 535 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1); 536 else 537 /* y belongs to the 2nd segment */ 538 y = rtsc->y + rtsc->dy 539 + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2); 540 return y; 541 } 542 543 /* 544 * update the runtime service curve by taking the minimum of the current 545 * runtime service curve and the service curve starting at (x, y). 546 */ 547 static void 548 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u64 x, u64 y) 549 { 550 u64 y1, y2, dx, dy; 551 u32 dsm; 552 553 if (isc->sm1 <= isc->sm2) { 554 /* service curve is convex */ 555 y1 = rtsc_x2y(rtsc, x); 556 if (y1 < y) 557 /* the current rtsc is smaller */ 558 return; 559 rtsc->x = x; 560 rtsc->y = y; 561 return; 562 } 563 564 /* 565 * service curve is concave 566 * compute the two y values of the current rtsc 567 * y1: at x 568 * y2: at (x + dx) 569 */ 570 y1 = rtsc_x2y(rtsc, x); 571 if (y1 <= y) { 572 /* rtsc is below isc, no change to rtsc */ 573 return; 574 } 575 576 y2 = rtsc_x2y(rtsc, x + isc->dx); 577 if (y2 >= y + isc->dy) { 578 /* rtsc is above isc, replace rtsc by isc */ 579 rtsc->x = x; 580 rtsc->y = y; 581 rtsc->dx = isc->dx; 582 rtsc->dy = isc->dy; 583 return; 584 } 585 586 /* 587 * the two curves intersect 588 * compute the offsets (dx, dy) using the reverse 589 * function of seg_x2y() 590 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y) 591 */ 592 dx = (y1 - y) << SM_SHIFT; 593 dsm = isc->sm1 - isc->sm2; 594 do_div(dx, dsm); 595 /* 596 * check if (x, y1) belongs to the 1st segment of rtsc. 597 * if so, add the offset. 598 */ 599 if (rtsc->x + rtsc->dx > x) 600 dx += rtsc->x + rtsc->dx - x; 601 dy = seg_x2y(dx, isc->sm1); 602 603 rtsc->x = x; 604 rtsc->y = y; 605 rtsc->dx = dx; 606 rtsc->dy = dy; 607 } 608 609 static void 610 init_ed(struct hfsc_class *cl, unsigned int next_len) 611 { 612 u64 cur_time = psched_get_time(); 613 614 /* update the deadline curve */ 615 rtsc_min(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); 616 617 /* 618 * update the eligible curve. 619 * for concave, it is equal to the deadline curve. 620 * for convex, it is a linear curve with slope m2. 621 */ 622 cl->cl_eligible = cl->cl_deadline; 623 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { 624 cl->cl_eligible.dx = 0; 625 cl->cl_eligible.dy = 0; 626 } 627 628 /* compute e and d */ 629 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); 630 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 631 632 eltree_insert(cl); 633 } 634 635 static void 636 update_ed(struct hfsc_class *cl, unsigned int next_len) 637 { 638 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul); 639 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 640 641 eltree_update(cl); 642 } 643 644 static inline void 645 update_d(struct hfsc_class *cl, unsigned int next_len) 646 { 647 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len); 648 } 649 650 static inline void 651 update_cfmin(struct hfsc_class *cl) 652 { 653 struct rb_node *n = rb_first(&cl->cf_tree); 654 struct hfsc_class *p; 655 656 if (n == NULL) { 657 cl->cl_cfmin = 0; 658 return; 659 } 660 p = rb_entry(n, struct hfsc_class, cf_node); 661 cl->cl_cfmin = p->cl_f; 662 } 663 664 static void 665 init_vf(struct hfsc_class *cl, unsigned int len) 666 { 667 struct hfsc_class *max_cl; 668 struct rb_node *n; 669 u64 vt, f, cur_time; 670 int go_active; 671 672 cur_time = 0; 673 go_active = 1; 674 for (; cl->cl_parent != NULL; cl = cl->cl_parent) { 675 if (go_active && cl->cl_nactive++ == 0) 676 go_active = 1; 677 else 678 go_active = 0; 679 680 if (go_active) { 681 n = rb_last(&cl->cl_parent->vt_tree); 682 if (n != NULL) { 683 max_cl = rb_entry(n, struct hfsc_class, vt_node); 684 /* 685 * set vt to the average of the min and max 686 * classes. if the parent's period didn't 687 * change, don't decrease vt of the class. 688 */ 689 vt = max_cl->cl_vt; 690 if (cl->cl_parent->cl_cvtmin != 0) 691 vt = (cl->cl_parent->cl_cvtmin + vt)/2; 692 693 if (cl->cl_parent->cl_vtperiod != 694 cl->cl_parentperiod || vt > cl->cl_vt) 695 cl->cl_vt = vt; 696 } else { 697 /* 698 * first child for a new parent backlog period. 699 * initialize cl_vt to the highest value seen 700 * among the siblings. this is analogous to 701 * what cur_time would provide in realtime case. 702 */ 703 cl->cl_vt = cl->cl_parent->cl_cvtoff; 704 cl->cl_parent->cl_cvtmin = 0; 705 } 706 707 /* update the virtual curve */ 708 rtsc_min(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total); 709 cl->cl_vtadj = 0; 710 711 cl->cl_vtperiod++; /* increment vt period */ 712 cl->cl_parentperiod = cl->cl_parent->cl_vtperiod; 713 if (cl->cl_parent->cl_nactive == 0) 714 cl->cl_parentperiod++; 715 cl->cl_f = 0; 716 717 vttree_insert(cl); 718 cftree_insert(cl); 719 720 if (cl->cl_flags & HFSC_USC) { 721 /* class has upper limit curve */ 722 if (cur_time == 0) 723 cur_time = psched_get_time(); 724 725 /* update the ulimit curve */ 726 rtsc_min(&cl->cl_ulimit, &cl->cl_usc, cur_time, 727 cl->cl_total); 728 /* compute myf */ 729 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, 730 cl->cl_total); 731 } 732 } 733 734 f = max(cl->cl_myf, cl->cl_cfmin); 735 if (f != cl->cl_f) { 736 cl->cl_f = f; 737 cftree_update(cl); 738 } 739 update_cfmin(cl->cl_parent); 740 } 741 } 742 743 static void 744 update_vf(struct hfsc_class *cl, unsigned int len, u64 cur_time) 745 { 746 u64 f; /* , myf_bound, delta; */ 747 int go_passive = 0; 748 749 if (cl->qdisc->q.qlen == 0 && cl->cl_flags & HFSC_FSC) 750 go_passive = 1; 751 752 for (; cl->cl_parent != NULL; cl = cl->cl_parent) { 753 cl->cl_total += len; 754 755 if (!(cl->cl_flags & HFSC_FSC) || cl->cl_nactive == 0) 756 continue; 757 758 if (go_passive && --cl->cl_nactive == 0) 759 go_passive = 1; 760 else 761 go_passive = 0; 762 763 /* update vt */ 764 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total) + cl->cl_vtadj; 765 766 /* 767 * if vt of the class is smaller than cvtmin, 768 * the class was skipped in the past due to non-fit. 769 * if so, we need to adjust vtadj. 770 */ 771 if (cl->cl_vt < cl->cl_parent->cl_cvtmin) { 772 cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt; 773 cl->cl_vt = cl->cl_parent->cl_cvtmin; 774 } 775 776 if (go_passive) { 777 /* no more active child, going passive */ 778 779 /* update cvtoff of the parent class */ 780 if (cl->cl_vt > cl->cl_parent->cl_cvtoff) 781 cl->cl_parent->cl_cvtoff = cl->cl_vt; 782 783 /* remove this class from the vt tree */ 784 vttree_remove(cl); 785 786 cftree_remove(cl); 787 update_cfmin(cl->cl_parent); 788 789 continue; 790 } 791 792 /* update the vt tree */ 793 vttree_update(cl); 794 795 /* update f */ 796 if (cl->cl_flags & HFSC_USC) { 797 cl->cl_myf = rtsc_y2x(&cl->cl_ulimit, cl->cl_total); 798 #if 0 799 cl->cl_myf = cl->cl_myfadj + rtsc_y2x(&cl->cl_ulimit, 800 cl->cl_total); 801 /* 802 * This code causes classes to stay way under their 803 * limit when multiple classes are used at gigabit 804 * speed. needs investigation. -kaber 805 */ 806 /* 807 * if myf lags behind by more than one clock tick 808 * from the current time, adjust myfadj to prevent 809 * a rate-limited class from going greedy. 810 * in a steady state under rate-limiting, myf 811 * fluctuates within one clock tick. 812 */ 813 myf_bound = cur_time - PSCHED_JIFFIE2US(1); 814 if (cl->cl_myf < myf_bound) { 815 delta = cur_time - cl->cl_myf; 816 cl->cl_myfadj += delta; 817 cl->cl_myf += delta; 818 } 819 #endif 820 } 821 822 f = max(cl->cl_myf, cl->cl_cfmin); 823 if (f != cl->cl_f) { 824 cl->cl_f = f; 825 cftree_update(cl); 826 update_cfmin(cl->cl_parent); 827 } 828 } 829 } 830 831 static unsigned int 832 qdisc_peek_len(struct Qdisc *sch) 833 { 834 struct sk_buff *skb; 835 unsigned int len; 836 837 skb = sch->ops->peek(sch); 838 if (unlikely(skb == NULL)) { 839 qdisc_warn_nonwc("qdisc_peek_len", sch); 840 return 0; 841 } 842 len = qdisc_pkt_len(skb); 843 844 return len; 845 } 846 847 static void 848 hfsc_adjust_levels(struct hfsc_class *cl) 849 { 850 struct hfsc_class *p; 851 unsigned int level; 852 853 do { 854 level = 0; 855 list_for_each_entry(p, &cl->children, siblings) { 856 if (p->level >= level) 857 level = p->level + 1; 858 } 859 cl->level = level; 860 } while ((cl = cl->cl_parent) != NULL); 861 } 862 863 static inline struct hfsc_class * 864 hfsc_find_class(u32 classid, struct Qdisc *sch) 865 { 866 struct hfsc_sched *q = qdisc_priv(sch); 867 struct Qdisc_class_common *clc; 868 869 clc = qdisc_class_find(&q->clhash, classid); 870 if (clc == NULL) 871 return NULL; 872 return container_of(clc, struct hfsc_class, cl_common); 873 } 874 875 static void 876 hfsc_change_rsc(struct hfsc_class *cl, struct tc_service_curve *rsc, 877 u64 cur_time) 878 { 879 sc2isc(rsc, &cl->cl_rsc); 880 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, cur_time, cl->cl_cumul); 881 cl->cl_eligible = cl->cl_deadline; 882 if (cl->cl_rsc.sm1 <= cl->cl_rsc.sm2) { 883 cl->cl_eligible.dx = 0; 884 cl->cl_eligible.dy = 0; 885 } 886 cl->cl_flags |= HFSC_RSC; 887 } 888 889 static void 890 hfsc_change_fsc(struct hfsc_class *cl, struct tc_service_curve *fsc) 891 { 892 sc2isc(fsc, &cl->cl_fsc); 893 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, cl->cl_vt, cl->cl_total); 894 cl->cl_flags |= HFSC_FSC; 895 } 896 897 static void 898 hfsc_change_usc(struct hfsc_class *cl, struct tc_service_curve *usc, 899 u64 cur_time) 900 { 901 sc2isc(usc, &cl->cl_usc); 902 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, cur_time, cl->cl_total); 903 cl->cl_flags |= HFSC_USC; 904 } 905 906 static const struct nla_policy hfsc_policy[TCA_HFSC_MAX + 1] = { 907 [TCA_HFSC_RSC] = { .len = sizeof(struct tc_service_curve) }, 908 [TCA_HFSC_FSC] = { .len = sizeof(struct tc_service_curve) }, 909 [TCA_HFSC_USC] = { .len = sizeof(struct tc_service_curve) }, 910 }; 911 912 static int 913 hfsc_change_class(struct Qdisc *sch, u32 classid, u32 parentid, 914 struct nlattr **tca, unsigned long *arg, 915 struct netlink_ext_ack *extack) 916 { 917 struct hfsc_sched *q = qdisc_priv(sch); 918 struct hfsc_class *cl = (struct hfsc_class *)*arg; 919 struct hfsc_class *parent = NULL; 920 struct nlattr *opt = tca[TCA_OPTIONS]; 921 struct nlattr *tb[TCA_HFSC_MAX + 1]; 922 struct tc_service_curve *rsc = NULL, *fsc = NULL, *usc = NULL; 923 u64 cur_time; 924 int err; 925 926 if (opt == NULL) 927 return -EINVAL; 928 929 err = nla_parse_nested_deprecated(tb, TCA_HFSC_MAX, opt, hfsc_policy, 930 NULL); 931 if (err < 0) 932 return err; 933 934 if (tb[TCA_HFSC_RSC]) { 935 rsc = nla_data(tb[TCA_HFSC_RSC]); 936 if (rsc->m1 == 0 && rsc->m2 == 0) 937 rsc = NULL; 938 } 939 940 if (tb[TCA_HFSC_FSC]) { 941 fsc = nla_data(tb[TCA_HFSC_FSC]); 942 if (fsc->m1 == 0 && fsc->m2 == 0) 943 fsc = NULL; 944 } 945 946 if (tb[TCA_HFSC_USC]) { 947 usc = nla_data(tb[TCA_HFSC_USC]); 948 if (usc->m1 == 0 && usc->m2 == 0) 949 usc = NULL; 950 } 951 952 if (cl != NULL) { 953 int old_flags; 954 955 if (parentid) { 956 if (cl->cl_parent && 957 cl->cl_parent->cl_common.classid != parentid) 958 return -EINVAL; 959 if (cl->cl_parent == NULL && parentid != TC_H_ROOT) 960 return -EINVAL; 961 } 962 cur_time = psched_get_time(); 963 964 if (tca[TCA_RATE]) { 965 err = gen_replace_estimator(&cl->bstats, NULL, 966 &cl->rate_est, 967 NULL, 968 true, 969 tca[TCA_RATE]); 970 if (err) 971 return err; 972 } 973 974 sch_tree_lock(sch); 975 old_flags = cl->cl_flags; 976 977 if (rsc != NULL) 978 hfsc_change_rsc(cl, rsc, cur_time); 979 if (fsc != NULL) 980 hfsc_change_fsc(cl, fsc); 981 if (usc != NULL) 982 hfsc_change_usc(cl, usc, cur_time); 983 984 if (cl->qdisc->q.qlen != 0) { 985 int len = qdisc_peek_len(cl->qdisc); 986 987 if (cl->cl_flags & HFSC_RSC) { 988 if (old_flags & HFSC_RSC) 989 update_ed(cl, len); 990 else 991 init_ed(cl, len); 992 } 993 994 if (cl->cl_flags & HFSC_FSC) { 995 if (old_flags & HFSC_FSC) 996 update_vf(cl, 0, cur_time); 997 else 998 init_vf(cl, len); 999 } 1000 } 1001 sch_tree_unlock(sch); 1002 1003 return 0; 1004 } 1005 1006 if (parentid == TC_H_ROOT) 1007 return -EEXIST; 1008 1009 parent = &q->root; 1010 if (parentid) { 1011 parent = hfsc_find_class(parentid, sch); 1012 if (parent == NULL) 1013 return -ENOENT; 1014 } 1015 1016 if (classid == 0 || TC_H_MAJ(classid ^ sch->handle) != 0) 1017 return -EINVAL; 1018 if (hfsc_find_class(classid, sch)) 1019 return -EEXIST; 1020 1021 if (rsc == NULL && fsc == NULL) 1022 return -EINVAL; 1023 1024 cl = kzalloc(sizeof(struct hfsc_class), GFP_KERNEL); 1025 if (cl == NULL) 1026 return -ENOBUFS; 1027 1028 err = tcf_block_get(&cl->block, &cl->filter_list, sch, extack); 1029 if (err) { 1030 kfree(cl); 1031 return err; 1032 } 1033 1034 if (tca[TCA_RATE]) { 1035 err = gen_new_estimator(&cl->bstats, NULL, &cl->rate_est, 1036 NULL, true, tca[TCA_RATE]); 1037 if (err) { 1038 tcf_block_put(cl->block); 1039 kfree(cl); 1040 return err; 1041 } 1042 } 1043 1044 if (rsc != NULL) 1045 hfsc_change_rsc(cl, rsc, 0); 1046 if (fsc != NULL) 1047 hfsc_change_fsc(cl, fsc); 1048 if (usc != NULL) 1049 hfsc_change_usc(cl, usc, 0); 1050 1051 cl->cl_common.classid = classid; 1052 cl->sched = q; 1053 cl->cl_parent = parent; 1054 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 1055 classid, NULL); 1056 if (cl->qdisc == NULL) 1057 cl->qdisc = &noop_qdisc; 1058 else 1059 qdisc_hash_add(cl->qdisc, true); 1060 INIT_LIST_HEAD(&cl->children); 1061 cl->vt_tree = RB_ROOT; 1062 cl->cf_tree = RB_ROOT; 1063 1064 sch_tree_lock(sch); 1065 qdisc_class_hash_insert(&q->clhash, &cl->cl_common); 1066 list_add_tail(&cl->siblings, &parent->children); 1067 if (parent->level == 0) 1068 qdisc_purge_queue(parent->qdisc); 1069 hfsc_adjust_levels(parent); 1070 sch_tree_unlock(sch); 1071 1072 qdisc_class_hash_grow(sch, &q->clhash); 1073 1074 *arg = (unsigned long)cl; 1075 return 0; 1076 } 1077 1078 static void 1079 hfsc_destroy_class(struct Qdisc *sch, struct hfsc_class *cl) 1080 { 1081 struct hfsc_sched *q = qdisc_priv(sch); 1082 1083 tcf_block_put(cl->block); 1084 qdisc_put(cl->qdisc); 1085 gen_kill_estimator(&cl->rate_est); 1086 if (cl != &q->root) 1087 kfree(cl); 1088 } 1089 1090 static int 1091 hfsc_delete_class(struct Qdisc *sch, unsigned long arg, 1092 struct netlink_ext_ack *extack) 1093 { 1094 struct hfsc_sched *q = qdisc_priv(sch); 1095 struct hfsc_class *cl = (struct hfsc_class *)arg; 1096 1097 if (cl->level > 0 || cl->filter_cnt > 0 || cl == &q->root) 1098 return -EBUSY; 1099 1100 sch_tree_lock(sch); 1101 1102 list_del(&cl->siblings); 1103 hfsc_adjust_levels(cl->cl_parent); 1104 1105 qdisc_purge_queue(cl->qdisc); 1106 qdisc_class_hash_remove(&q->clhash, &cl->cl_common); 1107 1108 sch_tree_unlock(sch); 1109 1110 hfsc_destroy_class(sch, cl); 1111 return 0; 1112 } 1113 1114 static struct hfsc_class * 1115 hfsc_classify(struct sk_buff *skb, struct Qdisc *sch, int *qerr) 1116 { 1117 struct hfsc_sched *q = qdisc_priv(sch); 1118 struct hfsc_class *head, *cl; 1119 struct tcf_result res; 1120 struct tcf_proto *tcf; 1121 int result; 1122 1123 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0 && 1124 (cl = hfsc_find_class(skb->priority, sch)) != NULL) 1125 if (cl->level == 0) 1126 return cl; 1127 1128 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS; 1129 head = &q->root; 1130 tcf = rcu_dereference_bh(q->root.filter_list); 1131 while (tcf && (result = tcf_classify(skb, NULL, tcf, &res, false)) >= 0) { 1132 #ifdef CONFIG_NET_CLS_ACT 1133 switch (result) { 1134 case TC_ACT_QUEUED: 1135 case TC_ACT_STOLEN: 1136 case TC_ACT_TRAP: 1137 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN; 1138 fallthrough; 1139 case TC_ACT_SHOT: 1140 return NULL; 1141 } 1142 #endif 1143 cl = (struct hfsc_class *)res.class; 1144 if (!cl) { 1145 cl = hfsc_find_class(res.classid, sch); 1146 if (!cl) 1147 break; /* filter selected invalid classid */ 1148 if (cl->level >= head->level) 1149 break; /* filter may only point downwards */ 1150 } 1151 1152 if (cl->level == 0) 1153 return cl; /* hit leaf class */ 1154 1155 /* apply inner filter chain */ 1156 tcf = rcu_dereference_bh(cl->filter_list); 1157 head = cl; 1158 } 1159 1160 /* classification failed, try default class */ 1161 cl = hfsc_find_class(TC_H_MAKE(TC_H_MAJ(sch->handle), q->defcls), sch); 1162 if (cl == NULL || cl->level > 0) 1163 return NULL; 1164 1165 return cl; 1166 } 1167 1168 static int 1169 hfsc_graft_class(struct Qdisc *sch, unsigned long arg, struct Qdisc *new, 1170 struct Qdisc **old, struct netlink_ext_ack *extack) 1171 { 1172 struct hfsc_class *cl = (struct hfsc_class *)arg; 1173 1174 if (cl->level > 0) 1175 return -EINVAL; 1176 if (new == NULL) { 1177 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 1178 cl->cl_common.classid, NULL); 1179 if (new == NULL) 1180 new = &noop_qdisc; 1181 } 1182 1183 *old = qdisc_replace(sch, new, &cl->qdisc); 1184 return 0; 1185 } 1186 1187 static struct Qdisc * 1188 hfsc_class_leaf(struct Qdisc *sch, unsigned long arg) 1189 { 1190 struct hfsc_class *cl = (struct hfsc_class *)arg; 1191 1192 if (cl->level == 0) 1193 return cl->qdisc; 1194 1195 return NULL; 1196 } 1197 1198 static void 1199 hfsc_qlen_notify(struct Qdisc *sch, unsigned long arg) 1200 { 1201 struct hfsc_class *cl = (struct hfsc_class *)arg; 1202 1203 /* vttree is now handled in update_vf() so that update_vf(cl, 0, 0) 1204 * needs to be called explicitly to remove a class from vttree. 1205 */ 1206 update_vf(cl, 0, 0); 1207 if (cl->cl_flags & HFSC_RSC) 1208 eltree_remove(cl); 1209 } 1210 1211 static unsigned long 1212 hfsc_search_class(struct Qdisc *sch, u32 classid) 1213 { 1214 return (unsigned long)hfsc_find_class(classid, sch); 1215 } 1216 1217 static unsigned long 1218 hfsc_bind_tcf(struct Qdisc *sch, unsigned long parent, u32 classid) 1219 { 1220 struct hfsc_class *p = (struct hfsc_class *)parent; 1221 struct hfsc_class *cl = hfsc_find_class(classid, sch); 1222 1223 if (cl != NULL) { 1224 if (p != NULL && p->level <= cl->level) 1225 return 0; 1226 cl->filter_cnt++; 1227 } 1228 1229 return (unsigned long)cl; 1230 } 1231 1232 static void 1233 hfsc_unbind_tcf(struct Qdisc *sch, unsigned long arg) 1234 { 1235 struct hfsc_class *cl = (struct hfsc_class *)arg; 1236 1237 cl->filter_cnt--; 1238 } 1239 1240 static struct tcf_block *hfsc_tcf_block(struct Qdisc *sch, unsigned long arg, 1241 struct netlink_ext_ack *extack) 1242 { 1243 struct hfsc_sched *q = qdisc_priv(sch); 1244 struct hfsc_class *cl = (struct hfsc_class *)arg; 1245 1246 if (cl == NULL) 1247 cl = &q->root; 1248 1249 return cl->block; 1250 } 1251 1252 static int 1253 hfsc_dump_sc(struct sk_buff *skb, int attr, struct internal_sc *sc) 1254 { 1255 struct tc_service_curve tsc; 1256 1257 tsc.m1 = sm2m(sc->sm1); 1258 tsc.d = dx2d(sc->dx); 1259 tsc.m2 = sm2m(sc->sm2); 1260 if (nla_put(skb, attr, sizeof(tsc), &tsc)) 1261 goto nla_put_failure; 1262 1263 return skb->len; 1264 1265 nla_put_failure: 1266 return -1; 1267 } 1268 1269 static int 1270 hfsc_dump_curves(struct sk_buff *skb, struct hfsc_class *cl) 1271 { 1272 if ((cl->cl_flags & HFSC_RSC) && 1273 (hfsc_dump_sc(skb, TCA_HFSC_RSC, &cl->cl_rsc) < 0)) 1274 goto nla_put_failure; 1275 1276 if ((cl->cl_flags & HFSC_FSC) && 1277 (hfsc_dump_sc(skb, TCA_HFSC_FSC, &cl->cl_fsc) < 0)) 1278 goto nla_put_failure; 1279 1280 if ((cl->cl_flags & HFSC_USC) && 1281 (hfsc_dump_sc(skb, TCA_HFSC_USC, &cl->cl_usc) < 0)) 1282 goto nla_put_failure; 1283 1284 return skb->len; 1285 1286 nla_put_failure: 1287 return -1; 1288 } 1289 1290 static int 1291 hfsc_dump_class(struct Qdisc *sch, unsigned long arg, struct sk_buff *skb, 1292 struct tcmsg *tcm) 1293 { 1294 struct hfsc_class *cl = (struct hfsc_class *)arg; 1295 struct nlattr *nest; 1296 1297 tcm->tcm_parent = cl->cl_parent ? cl->cl_parent->cl_common.classid : 1298 TC_H_ROOT; 1299 tcm->tcm_handle = cl->cl_common.classid; 1300 if (cl->level == 0) 1301 tcm->tcm_info = cl->qdisc->handle; 1302 1303 nest = nla_nest_start_noflag(skb, TCA_OPTIONS); 1304 if (nest == NULL) 1305 goto nla_put_failure; 1306 if (hfsc_dump_curves(skb, cl) < 0) 1307 goto nla_put_failure; 1308 return nla_nest_end(skb, nest); 1309 1310 nla_put_failure: 1311 nla_nest_cancel(skb, nest); 1312 return -EMSGSIZE; 1313 } 1314 1315 static int 1316 hfsc_dump_class_stats(struct Qdisc *sch, unsigned long arg, 1317 struct gnet_dump *d) 1318 { 1319 struct hfsc_class *cl = (struct hfsc_class *)arg; 1320 struct tc_hfsc_stats xstats; 1321 __u32 qlen; 1322 1323 qdisc_qstats_qlen_backlog(cl->qdisc, &qlen, &cl->qstats.backlog); 1324 xstats.level = cl->level; 1325 xstats.period = cl->cl_vtperiod; 1326 xstats.work = cl->cl_total; 1327 xstats.rtwork = cl->cl_cumul; 1328 1329 if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 || 1330 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 || 1331 gnet_stats_copy_queue(d, NULL, &cl->qstats, qlen) < 0) 1332 return -1; 1333 1334 return gnet_stats_copy_app(d, &xstats, sizeof(xstats)); 1335 } 1336 1337 1338 1339 static void 1340 hfsc_walk(struct Qdisc *sch, struct qdisc_walker *arg) 1341 { 1342 struct hfsc_sched *q = qdisc_priv(sch); 1343 struct hfsc_class *cl; 1344 unsigned int i; 1345 1346 if (arg->stop) 1347 return; 1348 1349 for (i = 0; i < q->clhash.hashsize; i++) { 1350 hlist_for_each_entry(cl, &q->clhash.hash[i], 1351 cl_common.hnode) { 1352 if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg)) 1353 return; 1354 } 1355 } 1356 } 1357 1358 static void 1359 hfsc_schedule_watchdog(struct Qdisc *sch) 1360 { 1361 struct hfsc_sched *q = qdisc_priv(sch); 1362 struct hfsc_class *cl; 1363 u64 next_time = 0; 1364 1365 cl = eltree_get_minel(q); 1366 if (cl) 1367 next_time = cl->cl_e; 1368 if (q->root.cl_cfmin != 0) { 1369 if (next_time == 0 || next_time > q->root.cl_cfmin) 1370 next_time = q->root.cl_cfmin; 1371 } 1372 if (next_time) 1373 qdisc_watchdog_schedule(&q->watchdog, next_time); 1374 } 1375 1376 static int 1377 hfsc_init_qdisc(struct Qdisc *sch, struct nlattr *opt, 1378 struct netlink_ext_ack *extack) 1379 { 1380 struct hfsc_sched *q = qdisc_priv(sch); 1381 struct tc_hfsc_qopt *qopt; 1382 int err; 1383 1384 qdisc_watchdog_init(&q->watchdog, sch); 1385 1386 if (!opt || nla_len(opt) < sizeof(*qopt)) 1387 return -EINVAL; 1388 qopt = nla_data(opt); 1389 1390 q->defcls = qopt->defcls; 1391 err = qdisc_class_hash_init(&q->clhash); 1392 if (err < 0) 1393 return err; 1394 q->eligible = RB_ROOT; 1395 1396 err = tcf_block_get(&q->root.block, &q->root.filter_list, sch, extack); 1397 if (err) 1398 return err; 1399 1400 gnet_stats_basic_sync_init(&q->root.bstats); 1401 q->root.cl_common.classid = sch->handle; 1402 q->root.sched = q; 1403 q->root.qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops, 1404 sch->handle, NULL); 1405 if (q->root.qdisc == NULL) 1406 q->root.qdisc = &noop_qdisc; 1407 else 1408 qdisc_hash_add(q->root.qdisc, true); 1409 INIT_LIST_HEAD(&q->root.children); 1410 q->root.vt_tree = RB_ROOT; 1411 q->root.cf_tree = RB_ROOT; 1412 1413 qdisc_class_hash_insert(&q->clhash, &q->root.cl_common); 1414 qdisc_class_hash_grow(sch, &q->clhash); 1415 1416 return 0; 1417 } 1418 1419 static int 1420 hfsc_change_qdisc(struct Qdisc *sch, struct nlattr *opt, 1421 struct netlink_ext_ack *extack) 1422 { 1423 struct hfsc_sched *q = qdisc_priv(sch); 1424 struct tc_hfsc_qopt *qopt; 1425 1426 if (nla_len(opt) < sizeof(*qopt)) 1427 return -EINVAL; 1428 qopt = nla_data(opt); 1429 1430 sch_tree_lock(sch); 1431 q->defcls = qopt->defcls; 1432 sch_tree_unlock(sch); 1433 1434 return 0; 1435 } 1436 1437 static void 1438 hfsc_reset_class(struct hfsc_class *cl) 1439 { 1440 cl->cl_total = 0; 1441 cl->cl_cumul = 0; 1442 cl->cl_d = 0; 1443 cl->cl_e = 0; 1444 cl->cl_vt = 0; 1445 cl->cl_vtadj = 0; 1446 cl->cl_cvtmin = 0; 1447 cl->cl_cvtoff = 0; 1448 cl->cl_vtperiod = 0; 1449 cl->cl_parentperiod = 0; 1450 cl->cl_f = 0; 1451 cl->cl_myf = 0; 1452 cl->cl_cfmin = 0; 1453 cl->cl_nactive = 0; 1454 1455 cl->vt_tree = RB_ROOT; 1456 cl->cf_tree = RB_ROOT; 1457 qdisc_reset(cl->qdisc); 1458 1459 if (cl->cl_flags & HFSC_RSC) 1460 rtsc_init(&cl->cl_deadline, &cl->cl_rsc, 0, 0); 1461 if (cl->cl_flags & HFSC_FSC) 1462 rtsc_init(&cl->cl_virtual, &cl->cl_fsc, 0, 0); 1463 if (cl->cl_flags & HFSC_USC) 1464 rtsc_init(&cl->cl_ulimit, &cl->cl_usc, 0, 0); 1465 } 1466 1467 static void 1468 hfsc_reset_qdisc(struct Qdisc *sch) 1469 { 1470 struct hfsc_sched *q = qdisc_priv(sch); 1471 struct hfsc_class *cl; 1472 unsigned int i; 1473 1474 for (i = 0; i < q->clhash.hashsize; i++) { 1475 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode) 1476 hfsc_reset_class(cl); 1477 } 1478 q->eligible = RB_ROOT; 1479 qdisc_watchdog_cancel(&q->watchdog); 1480 } 1481 1482 static void 1483 hfsc_destroy_qdisc(struct Qdisc *sch) 1484 { 1485 struct hfsc_sched *q = qdisc_priv(sch); 1486 struct hlist_node *next; 1487 struct hfsc_class *cl; 1488 unsigned int i; 1489 1490 for (i = 0; i < q->clhash.hashsize; i++) { 1491 hlist_for_each_entry(cl, &q->clhash.hash[i], cl_common.hnode) { 1492 tcf_block_put(cl->block); 1493 cl->block = NULL; 1494 } 1495 } 1496 for (i = 0; i < q->clhash.hashsize; i++) { 1497 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i], 1498 cl_common.hnode) 1499 hfsc_destroy_class(sch, cl); 1500 } 1501 qdisc_class_hash_destroy(&q->clhash); 1502 qdisc_watchdog_cancel(&q->watchdog); 1503 } 1504 1505 static int 1506 hfsc_dump_qdisc(struct Qdisc *sch, struct sk_buff *skb) 1507 { 1508 struct hfsc_sched *q = qdisc_priv(sch); 1509 unsigned char *b = skb_tail_pointer(skb); 1510 struct tc_hfsc_qopt qopt; 1511 1512 qopt.defcls = q->defcls; 1513 if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt)) 1514 goto nla_put_failure; 1515 return skb->len; 1516 1517 nla_put_failure: 1518 nlmsg_trim(skb, b); 1519 return -1; 1520 } 1521 1522 static int 1523 hfsc_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free) 1524 { 1525 unsigned int len = qdisc_pkt_len(skb); 1526 struct hfsc_class *cl; 1527 int err; 1528 bool first; 1529 1530 cl = hfsc_classify(skb, sch, &err); 1531 if (cl == NULL) { 1532 if (err & __NET_XMIT_BYPASS) 1533 qdisc_qstats_drop(sch); 1534 __qdisc_drop(skb, to_free); 1535 return err; 1536 } 1537 1538 first = !cl->qdisc->q.qlen; 1539 err = qdisc_enqueue(skb, cl->qdisc, to_free); 1540 if (unlikely(err != NET_XMIT_SUCCESS)) { 1541 if (net_xmit_drop_count(err)) { 1542 cl->qstats.drops++; 1543 qdisc_qstats_drop(sch); 1544 } 1545 return err; 1546 } 1547 1548 if (first) { 1549 if (cl->cl_flags & HFSC_RSC) 1550 init_ed(cl, len); 1551 if (cl->cl_flags & HFSC_FSC) 1552 init_vf(cl, len); 1553 /* 1554 * If this is the first packet, isolate the head so an eventual 1555 * head drop before the first dequeue operation has no chance 1556 * to invalidate the deadline. 1557 */ 1558 if (cl->cl_flags & HFSC_RSC) 1559 cl->qdisc->ops->peek(cl->qdisc); 1560 1561 } 1562 1563 sch->qstats.backlog += len; 1564 sch->q.qlen++; 1565 1566 return NET_XMIT_SUCCESS; 1567 } 1568 1569 static struct sk_buff * 1570 hfsc_dequeue(struct Qdisc *sch) 1571 { 1572 struct hfsc_sched *q = qdisc_priv(sch); 1573 struct hfsc_class *cl; 1574 struct sk_buff *skb; 1575 u64 cur_time; 1576 unsigned int next_len; 1577 int realtime = 0; 1578 1579 if (sch->q.qlen == 0) 1580 return NULL; 1581 1582 cur_time = psched_get_time(); 1583 1584 /* 1585 * if there are eligible classes, use real-time criteria. 1586 * find the class with the minimum deadline among 1587 * the eligible classes. 1588 */ 1589 cl = eltree_get_mindl(q, cur_time); 1590 if (cl) { 1591 realtime = 1; 1592 } else { 1593 /* 1594 * use link-sharing criteria 1595 * get the class with the minimum vt in the hierarchy 1596 */ 1597 cl = vttree_get_minvt(&q->root, cur_time); 1598 if (cl == NULL) { 1599 qdisc_qstats_overlimit(sch); 1600 hfsc_schedule_watchdog(sch); 1601 return NULL; 1602 } 1603 } 1604 1605 skb = qdisc_dequeue_peeked(cl->qdisc); 1606 if (skb == NULL) { 1607 qdisc_warn_nonwc("HFSC", cl->qdisc); 1608 return NULL; 1609 } 1610 1611 bstats_update(&cl->bstats, skb); 1612 update_vf(cl, qdisc_pkt_len(skb), cur_time); 1613 if (realtime) 1614 cl->cl_cumul += qdisc_pkt_len(skb); 1615 1616 if (cl->cl_flags & HFSC_RSC) { 1617 if (cl->qdisc->q.qlen != 0) { 1618 /* update ed */ 1619 next_len = qdisc_peek_len(cl->qdisc); 1620 if (realtime) 1621 update_ed(cl, next_len); 1622 else 1623 update_d(cl, next_len); 1624 } else { 1625 /* the class becomes passive */ 1626 eltree_remove(cl); 1627 } 1628 } 1629 1630 qdisc_bstats_update(sch, skb); 1631 qdisc_qstats_backlog_dec(sch, skb); 1632 sch->q.qlen--; 1633 1634 return skb; 1635 } 1636 1637 static const struct Qdisc_class_ops hfsc_class_ops = { 1638 .change = hfsc_change_class, 1639 .delete = hfsc_delete_class, 1640 .graft = hfsc_graft_class, 1641 .leaf = hfsc_class_leaf, 1642 .qlen_notify = hfsc_qlen_notify, 1643 .find = hfsc_search_class, 1644 .bind_tcf = hfsc_bind_tcf, 1645 .unbind_tcf = hfsc_unbind_tcf, 1646 .tcf_block = hfsc_tcf_block, 1647 .dump = hfsc_dump_class, 1648 .dump_stats = hfsc_dump_class_stats, 1649 .walk = hfsc_walk 1650 }; 1651 1652 static struct Qdisc_ops hfsc_qdisc_ops __read_mostly = { 1653 .id = "hfsc", 1654 .init = hfsc_init_qdisc, 1655 .change = hfsc_change_qdisc, 1656 .reset = hfsc_reset_qdisc, 1657 .destroy = hfsc_destroy_qdisc, 1658 .dump = hfsc_dump_qdisc, 1659 .enqueue = hfsc_enqueue, 1660 .dequeue = hfsc_dequeue, 1661 .peek = qdisc_peek_dequeued, 1662 .cl_ops = &hfsc_class_ops, 1663 .priv_size = sizeof(struct hfsc_sched), 1664 .owner = THIS_MODULE 1665 }; 1666 1667 static int __init 1668 hfsc_init(void) 1669 { 1670 return register_qdisc(&hfsc_qdisc_ops); 1671 } 1672 1673 static void __exit 1674 hfsc_cleanup(void) 1675 { 1676 unregister_qdisc(&hfsc_qdisc_ops); 1677 } 1678 1679 MODULE_LICENSE("GPL"); 1680 module_init(hfsc_init); 1681 module_exit(hfsc_cleanup); 1682