1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_generic.c Generic packet scheduler routines. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 7 * - Ingress support 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/netdevice.h> 18 #include <linux/skbuff.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/init.h> 21 #include <linux/rcupdate.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 #include <linux/skb_array.h> 26 #include <linux/if_macvlan.h> 27 #include <net/sch_generic.h> 28 #include <net/pkt_sched.h> 29 #include <net/dst.h> 30 #include <trace/events/qdisc.h> 31 #include <trace/events/net.h> 32 #include <net/xfrm.h> 33 34 /* Qdisc to use by default */ 35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 36 EXPORT_SYMBOL(default_qdisc_ops); 37 38 static void qdisc_maybe_clear_missed(struct Qdisc *q, 39 const struct netdev_queue *txq) 40 { 41 clear_bit(__QDISC_STATE_MISSED, &q->state); 42 43 /* Make sure the below netif_xmit_frozen_or_stopped() 44 * checking happens after clearing STATE_MISSED. 45 */ 46 smp_mb__after_atomic(); 47 48 /* Checking netif_xmit_frozen_or_stopped() again to 49 * make sure STATE_MISSED is set if the STATE_MISSED 50 * set by netif_tx_wake_queue()'s rescheduling of 51 * net_tx_action() is cleared by the above clear_bit(). 52 */ 53 if (!netif_xmit_frozen_or_stopped(txq)) 54 set_bit(__QDISC_STATE_MISSED, &q->state); 55 } 56 57 /* Main transmission queue. */ 58 59 /* Modifications to data participating in scheduling must be protected with 60 * qdisc_lock(qdisc) spinlock. 61 * 62 * The idea is the following: 63 * - enqueue, dequeue are serialized via qdisc root lock 64 * - ingress filtering is also serialized via qdisc root lock 65 * - updates to tree and tree walking are only done under the rtnl mutex. 66 */ 67 68 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL) 69 70 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) 71 { 72 const struct netdev_queue *txq = q->dev_queue; 73 spinlock_t *lock = NULL; 74 struct sk_buff *skb; 75 76 if (q->flags & TCQ_F_NOLOCK) { 77 lock = qdisc_lock(q); 78 spin_lock(lock); 79 } 80 81 skb = skb_peek(&q->skb_bad_txq); 82 if (skb) { 83 /* check the reason of requeuing without tx lock first */ 84 txq = skb_get_tx_queue(txq->dev, skb); 85 if (!netif_xmit_frozen_or_stopped(txq)) { 86 skb = __skb_dequeue(&q->skb_bad_txq); 87 if (qdisc_is_percpu_stats(q)) { 88 qdisc_qstats_cpu_backlog_dec(q, skb); 89 qdisc_qstats_cpu_qlen_dec(q); 90 } else { 91 qdisc_qstats_backlog_dec(q, skb); 92 q->q.qlen--; 93 } 94 } else { 95 skb = SKB_XOFF_MAGIC; 96 qdisc_maybe_clear_missed(q, txq); 97 } 98 } 99 100 if (lock) 101 spin_unlock(lock); 102 103 return skb; 104 } 105 106 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) 107 { 108 struct sk_buff *skb = skb_peek(&q->skb_bad_txq); 109 110 if (unlikely(skb)) 111 skb = __skb_dequeue_bad_txq(q); 112 113 return skb; 114 } 115 116 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, 117 struct sk_buff *skb) 118 { 119 spinlock_t *lock = NULL; 120 121 if (q->flags & TCQ_F_NOLOCK) { 122 lock = qdisc_lock(q); 123 spin_lock(lock); 124 } 125 126 __skb_queue_tail(&q->skb_bad_txq, skb); 127 128 if (qdisc_is_percpu_stats(q)) { 129 qdisc_qstats_cpu_backlog_inc(q, skb); 130 qdisc_qstats_cpu_qlen_inc(q); 131 } else { 132 qdisc_qstats_backlog_inc(q, skb); 133 q->q.qlen++; 134 } 135 136 if (lock) 137 spin_unlock(lock); 138 } 139 140 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 141 { 142 spinlock_t *lock = NULL; 143 144 if (q->flags & TCQ_F_NOLOCK) { 145 lock = qdisc_lock(q); 146 spin_lock(lock); 147 } 148 149 while (skb) { 150 struct sk_buff *next = skb->next; 151 152 __skb_queue_tail(&q->gso_skb, skb); 153 154 /* it's still part of the queue */ 155 if (qdisc_is_percpu_stats(q)) { 156 qdisc_qstats_cpu_requeues_inc(q); 157 qdisc_qstats_cpu_backlog_inc(q, skb); 158 qdisc_qstats_cpu_qlen_inc(q); 159 } else { 160 q->qstats.requeues++; 161 qdisc_qstats_backlog_inc(q, skb); 162 q->q.qlen++; 163 } 164 165 skb = next; 166 } 167 if (lock) 168 spin_unlock(lock); 169 __netif_schedule(q); 170 } 171 172 static void try_bulk_dequeue_skb(struct Qdisc *q, 173 struct sk_buff *skb, 174 const struct netdev_queue *txq, 175 int *packets) 176 { 177 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; 178 179 while (bytelimit > 0) { 180 struct sk_buff *nskb = q->dequeue(q); 181 182 if (!nskb) 183 break; 184 185 bytelimit -= nskb->len; /* covers GSO len */ 186 skb->next = nskb; 187 skb = nskb; 188 (*packets)++; /* GSO counts as one pkt */ 189 } 190 skb_mark_not_on_list(skb); 191 } 192 193 /* This variant of try_bulk_dequeue_skb() makes sure 194 * all skbs in the chain are for the same txq 195 */ 196 static void try_bulk_dequeue_skb_slow(struct Qdisc *q, 197 struct sk_buff *skb, 198 int *packets) 199 { 200 int mapping = skb_get_queue_mapping(skb); 201 struct sk_buff *nskb; 202 int cnt = 0; 203 204 do { 205 nskb = q->dequeue(q); 206 if (!nskb) 207 break; 208 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { 209 qdisc_enqueue_skb_bad_txq(q, nskb); 210 break; 211 } 212 skb->next = nskb; 213 skb = nskb; 214 } while (++cnt < 8); 215 (*packets) += cnt; 216 skb_mark_not_on_list(skb); 217 } 218 219 /* Note that dequeue_skb can possibly return a SKB list (via skb->next). 220 * A requeued skb (via q->gso_skb) can also be a SKB list. 221 */ 222 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, 223 int *packets) 224 { 225 const struct netdev_queue *txq = q->dev_queue; 226 struct sk_buff *skb = NULL; 227 228 *packets = 1; 229 if (unlikely(!skb_queue_empty(&q->gso_skb))) { 230 spinlock_t *lock = NULL; 231 232 if (q->flags & TCQ_F_NOLOCK) { 233 lock = qdisc_lock(q); 234 spin_lock(lock); 235 } 236 237 skb = skb_peek(&q->gso_skb); 238 239 /* skb may be null if another cpu pulls gso_skb off in between 240 * empty check and lock. 241 */ 242 if (!skb) { 243 if (lock) 244 spin_unlock(lock); 245 goto validate; 246 } 247 248 /* skb in gso_skb were already validated */ 249 *validate = false; 250 if (xfrm_offload(skb)) 251 *validate = true; 252 /* check the reason of requeuing without tx lock first */ 253 txq = skb_get_tx_queue(txq->dev, skb); 254 if (!netif_xmit_frozen_or_stopped(txq)) { 255 skb = __skb_dequeue(&q->gso_skb); 256 if (qdisc_is_percpu_stats(q)) { 257 qdisc_qstats_cpu_backlog_dec(q, skb); 258 qdisc_qstats_cpu_qlen_dec(q); 259 } else { 260 qdisc_qstats_backlog_dec(q, skb); 261 q->q.qlen--; 262 } 263 } else { 264 skb = NULL; 265 qdisc_maybe_clear_missed(q, txq); 266 } 267 if (lock) 268 spin_unlock(lock); 269 goto trace; 270 } 271 validate: 272 *validate = true; 273 274 if ((q->flags & TCQ_F_ONETXQUEUE) && 275 netif_xmit_frozen_or_stopped(txq)) { 276 qdisc_maybe_clear_missed(q, txq); 277 return skb; 278 } 279 280 skb = qdisc_dequeue_skb_bad_txq(q); 281 if (unlikely(skb)) { 282 if (skb == SKB_XOFF_MAGIC) 283 return NULL; 284 goto bulk; 285 } 286 skb = q->dequeue(q); 287 if (skb) { 288 bulk: 289 if (qdisc_may_bulk(q)) 290 try_bulk_dequeue_skb(q, skb, txq, packets); 291 else 292 try_bulk_dequeue_skb_slow(q, skb, packets); 293 } 294 trace: 295 trace_qdisc_dequeue(q, txq, *packets, skb); 296 return skb; 297 } 298 299 /* 300 * Transmit possibly several skbs, and handle the return status as 301 * required. Owning running seqcount bit guarantees that 302 * only one CPU can execute this function. 303 * 304 * Returns to the caller: 305 * false - hardware queue frozen backoff 306 * true - feel free to send more pkts 307 */ 308 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 309 struct net_device *dev, struct netdev_queue *txq, 310 spinlock_t *root_lock, bool validate) 311 { 312 int ret = NETDEV_TX_BUSY; 313 bool again = false; 314 315 /* And release qdisc */ 316 if (root_lock) 317 spin_unlock(root_lock); 318 319 /* Note that we validate skb (GSO, checksum, ...) outside of locks */ 320 if (validate) 321 skb = validate_xmit_skb_list(skb, dev, &again); 322 323 #ifdef CONFIG_XFRM_OFFLOAD 324 if (unlikely(again)) { 325 if (root_lock) 326 spin_lock(root_lock); 327 328 dev_requeue_skb(skb, q); 329 return false; 330 } 331 #endif 332 333 if (likely(skb)) { 334 HARD_TX_LOCK(dev, txq, smp_processor_id()); 335 if (!netif_xmit_frozen_or_stopped(txq)) 336 skb = dev_hard_start_xmit(skb, dev, txq, &ret); 337 else 338 qdisc_maybe_clear_missed(q, txq); 339 340 HARD_TX_UNLOCK(dev, txq); 341 } else { 342 if (root_lock) 343 spin_lock(root_lock); 344 return true; 345 } 346 347 if (root_lock) 348 spin_lock(root_lock); 349 350 if (!dev_xmit_complete(ret)) { 351 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 352 if (unlikely(ret != NETDEV_TX_BUSY)) 353 net_warn_ratelimited("BUG %s code %d qlen %d\n", 354 dev->name, ret, q->q.qlen); 355 356 dev_requeue_skb(skb, q); 357 return false; 358 } 359 360 return true; 361 } 362 363 /* 364 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 365 * 366 * running seqcount guarantees only one CPU can process 367 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 368 * this queue. 369 * 370 * netif_tx_lock serializes accesses to device driver. 371 * 372 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 373 * if one is grabbed, another must be free. 374 * 375 * Note, that this procedure can be called by a watchdog timer 376 * 377 * Returns to the caller: 378 * 0 - queue is empty or throttled. 379 * >0 - queue is not empty. 380 * 381 */ 382 static inline bool qdisc_restart(struct Qdisc *q, int *packets) 383 { 384 spinlock_t *root_lock = NULL; 385 struct netdev_queue *txq; 386 struct net_device *dev; 387 struct sk_buff *skb; 388 bool validate; 389 390 /* Dequeue packet */ 391 skb = dequeue_skb(q, &validate, packets); 392 if (unlikely(!skb)) 393 return false; 394 395 if (!(q->flags & TCQ_F_NOLOCK)) 396 root_lock = qdisc_lock(q); 397 398 dev = qdisc_dev(q); 399 txq = skb_get_tx_queue(dev, skb); 400 401 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); 402 } 403 404 void __qdisc_run(struct Qdisc *q) 405 { 406 int quota = dev_tx_weight; 407 int packets; 408 409 while (qdisc_restart(q, &packets)) { 410 quota -= packets; 411 if (quota <= 0) { 412 __netif_schedule(q); 413 break; 414 } 415 } 416 } 417 418 unsigned long dev_trans_start(struct net_device *dev) 419 { 420 unsigned long val, res; 421 unsigned int i; 422 423 if (is_vlan_dev(dev)) 424 dev = vlan_dev_real_dev(dev); 425 else if (netif_is_macvlan(dev)) 426 dev = macvlan_dev_real_dev(dev); 427 res = netdev_get_tx_queue(dev, 0)->trans_start; 428 for (i = 1; i < dev->num_tx_queues; i++) { 429 val = netdev_get_tx_queue(dev, i)->trans_start; 430 if (val && time_after(val, res)) 431 res = val; 432 } 433 434 return res; 435 } 436 EXPORT_SYMBOL(dev_trans_start); 437 438 static void dev_watchdog(struct timer_list *t) 439 { 440 struct net_device *dev = from_timer(dev, t, watchdog_timer); 441 442 netif_tx_lock(dev); 443 if (!qdisc_tx_is_noop(dev)) { 444 if (netif_device_present(dev) && 445 netif_running(dev) && 446 netif_carrier_ok(dev)) { 447 int some_queue_timedout = 0; 448 unsigned int i; 449 unsigned long trans_start; 450 451 for (i = 0; i < dev->num_tx_queues; i++) { 452 struct netdev_queue *txq; 453 454 txq = netdev_get_tx_queue(dev, i); 455 trans_start = txq->trans_start; 456 if (netif_xmit_stopped(txq) && 457 time_after(jiffies, (trans_start + 458 dev->watchdog_timeo))) { 459 some_queue_timedout = 1; 460 txq->trans_timeout++; 461 break; 462 } 463 } 464 465 if (some_queue_timedout) { 466 trace_net_dev_xmit_timeout(dev, i); 467 WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n", 468 dev->name, netdev_drivername(dev), i); 469 dev->netdev_ops->ndo_tx_timeout(dev, i); 470 } 471 if (!mod_timer(&dev->watchdog_timer, 472 round_jiffies(jiffies + 473 dev->watchdog_timeo))) 474 dev_hold(dev); 475 } 476 } 477 netif_tx_unlock(dev); 478 479 dev_put(dev); 480 } 481 482 void __netdev_watchdog_up(struct net_device *dev) 483 { 484 if (dev->netdev_ops->ndo_tx_timeout) { 485 if (dev->watchdog_timeo <= 0) 486 dev->watchdog_timeo = 5*HZ; 487 if (!mod_timer(&dev->watchdog_timer, 488 round_jiffies(jiffies + dev->watchdog_timeo))) 489 dev_hold(dev); 490 } 491 } 492 EXPORT_SYMBOL_GPL(__netdev_watchdog_up); 493 494 static void dev_watchdog_up(struct net_device *dev) 495 { 496 __netdev_watchdog_up(dev); 497 } 498 499 static void dev_watchdog_down(struct net_device *dev) 500 { 501 netif_tx_lock_bh(dev); 502 if (del_timer(&dev->watchdog_timer)) 503 dev_put(dev); 504 netif_tx_unlock_bh(dev); 505 } 506 507 /** 508 * netif_carrier_on - set carrier 509 * @dev: network device 510 * 511 * Device has detected acquisition of carrier. 512 */ 513 void netif_carrier_on(struct net_device *dev) 514 { 515 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 516 if (dev->reg_state == NETREG_UNINITIALIZED) 517 return; 518 atomic_inc(&dev->carrier_up_count); 519 linkwatch_fire_event(dev); 520 if (netif_running(dev)) 521 __netdev_watchdog_up(dev); 522 } 523 } 524 EXPORT_SYMBOL(netif_carrier_on); 525 526 /** 527 * netif_carrier_off - clear carrier 528 * @dev: network device 529 * 530 * Device has detected loss of carrier. 531 */ 532 void netif_carrier_off(struct net_device *dev) 533 { 534 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 535 if (dev->reg_state == NETREG_UNINITIALIZED) 536 return; 537 atomic_inc(&dev->carrier_down_count); 538 linkwatch_fire_event(dev); 539 } 540 } 541 EXPORT_SYMBOL(netif_carrier_off); 542 543 /** 544 * netif_carrier_event - report carrier state event 545 * @dev: network device 546 * 547 * Device has detected a carrier event but the carrier state wasn't changed. 548 * Use in drivers when querying carrier state asynchronously, to avoid missing 549 * events (link flaps) if link recovers before it's queried. 550 */ 551 void netif_carrier_event(struct net_device *dev) 552 { 553 if (dev->reg_state == NETREG_UNINITIALIZED) 554 return; 555 atomic_inc(&dev->carrier_up_count); 556 atomic_inc(&dev->carrier_down_count); 557 linkwatch_fire_event(dev); 558 } 559 EXPORT_SYMBOL_GPL(netif_carrier_event); 560 561 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 562 under all circumstances. It is difficult to invent anything faster or 563 cheaper. 564 */ 565 566 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 567 struct sk_buff **to_free) 568 { 569 __qdisc_drop(skb, to_free); 570 return NET_XMIT_CN; 571 } 572 573 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 574 { 575 return NULL; 576 } 577 578 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 579 .id = "noop", 580 .priv_size = 0, 581 .enqueue = noop_enqueue, 582 .dequeue = noop_dequeue, 583 .peek = noop_dequeue, 584 .owner = THIS_MODULE, 585 }; 586 587 static struct netdev_queue noop_netdev_queue = { 588 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc), 589 .qdisc_sleeping = &noop_qdisc, 590 }; 591 592 struct Qdisc noop_qdisc = { 593 .enqueue = noop_enqueue, 594 .dequeue = noop_dequeue, 595 .flags = TCQ_F_BUILTIN, 596 .ops = &noop_qdisc_ops, 597 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 598 .dev_queue = &noop_netdev_queue, 599 .running = SEQCNT_ZERO(noop_qdisc.running), 600 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 601 .gso_skb = { 602 .next = (struct sk_buff *)&noop_qdisc.gso_skb, 603 .prev = (struct sk_buff *)&noop_qdisc.gso_skb, 604 .qlen = 0, 605 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock), 606 }, 607 .skb_bad_txq = { 608 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 609 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 610 .qlen = 0, 611 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock), 612 }, 613 }; 614 EXPORT_SYMBOL(noop_qdisc); 615 616 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, 617 struct netlink_ext_ack *extack) 618 { 619 /* register_qdisc() assigns a default of noop_enqueue if unset, 620 * but __dev_queue_xmit() treats noqueue only as such 621 * if this is NULL - so clear it here. */ 622 qdisc->enqueue = NULL; 623 return 0; 624 } 625 626 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 627 .id = "noqueue", 628 .priv_size = 0, 629 .init = noqueue_init, 630 .enqueue = noop_enqueue, 631 .dequeue = noop_dequeue, 632 .peek = noop_dequeue, 633 .owner = THIS_MODULE, 634 }; 635 636 static const u8 prio2band[TC_PRIO_MAX + 1] = { 637 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1 638 }; 639 640 /* 3-band FIFO queue: old style, but should be a bit faster than 641 generic prio+fifo combination. 642 */ 643 644 #define PFIFO_FAST_BANDS 3 645 646 /* 647 * Private data for a pfifo_fast scheduler containing: 648 * - rings for priority bands 649 */ 650 struct pfifo_fast_priv { 651 struct skb_array q[PFIFO_FAST_BANDS]; 652 }; 653 654 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, 655 int band) 656 { 657 return &priv->q[band]; 658 } 659 660 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 661 struct sk_buff **to_free) 662 { 663 int band = prio2band[skb->priority & TC_PRIO_MAX]; 664 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 665 struct skb_array *q = band2list(priv, band); 666 unsigned int pkt_len = qdisc_pkt_len(skb); 667 int err; 668 669 err = skb_array_produce(q, skb); 670 671 if (unlikely(err)) { 672 if (qdisc_is_percpu_stats(qdisc)) 673 return qdisc_drop_cpu(skb, qdisc, to_free); 674 else 675 return qdisc_drop(skb, qdisc, to_free); 676 } 677 678 qdisc_update_stats_at_enqueue(qdisc, pkt_len); 679 return NET_XMIT_SUCCESS; 680 } 681 682 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 683 { 684 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 685 struct sk_buff *skb = NULL; 686 bool need_retry = true; 687 int band; 688 689 retry: 690 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 691 struct skb_array *q = band2list(priv, band); 692 693 if (__skb_array_empty(q)) 694 continue; 695 696 skb = __skb_array_consume(q); 697 } 698 if (likely(skb)) { 699 qdisc_update_stats_at_dequeue(qdisc, skb); 700 } else if (need_retry && 701 test_bit(__QDISC_STATE_MISSED, &qdisc->state)) { 702 /* Delay clearing the STATE_MISSED here to reduce 703 * the overhead of the second spin_trylock() in 704 * qdisc_run_begin() and __netif_schedule() calling 705 * in qdisc_run_end(). 706 */ 707 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 708 709 /* Make sure dequeuing happens after clearing 710 * STATE_MISSED. 711 */ 712 smp_mb__after_atomic(); 713 714 need_retry = false; 715 716 goto retry; 717 } else { 718 WRITE_ONCE(qdisc->empty, true); 719 } 720 721 return skb; 722 } 723 724 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 725 { 726 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 727 struct sk_buff *skb = NULL; 728 int band; 729 730 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 731 struct skb_array *q = band2list(priv, band); 732 733 skb = __skb_array_peek(q); 734 } 735 736 return skb; 737 } 738 739 static void pfifo_fast_reset(struct Qdisc *qdisc) 740 { 741 int i, band; 742 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 743 744 for (band = 0; band < PFIFO_FAST_BANDS; band++) { 745 struct skb_array *q = band2list(priv, band); 746 struct sk_buff *skb; 747 748 /* NULL ring is possible if destroy path is due to a failed 749 * skb_array_init() in pfifo_fast_init() case. 750 */ 751 if (!q->ring.queue) 752 continue; 753 754 while ((skb = __skb_array_consume(q)) != NULL) 755 kfree_skb(skb); 756 } 757 758 if (qdisc_is_percpu_stats(qdisc)) { 759 for_each_possible_cpu(i) { 760 struct gnet_stats_queue *q; 761 762 q = per_cpu_ptr(qdisc->cpu_qstats, i); 763 q->backlog = 0; 764 q->qlen = 0; 765 } 766 } 767 } 768 769 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 770 { 771 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 772 773 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1); 774 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 775 goto nla_put_failure; 776 return skb->len; 777 778 nla_put_failure: 779 return -1; 780 } 781 782 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, 783 struct netlink_ext_ack *extack) 784 { 785 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; 786 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 787 int prio; 788 789 /* guard against zero length rings */ 790 if (!qlen) 791 return -EINVAL; 792 793 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 794 struct skb_array *q = band2list(priv, prio); 795 int err; 796 797 err = skb_array_init(q, qlen, GFP_KERNEL); 798 if (err) 799 return -ENOMEM; 800 } 801 802 /* Can by-pass the queue discipline */ 803 qdisc->flags |= TCQ_F_CAN_BYPASS; 804 return 0; 805 } 806 807 static void pfifo_fast_destroy(struct Qdisc *sch) 808 { 809 struct pfifo_fast_priv *priv = qdisc_priv(sch); 810 int prio; 811 812 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 813 struct skb_array *q = band2list(priv, prio); 814 815 /* NULL ring is possible if destroy path is due to a failed 816 * skb_array_init() in pfifo_fast_init() case. 817 */ 818 if (!q->ring.queue) 819 continue; 820 /* Destroy ring but no need to kfree_skb because a call to 821 * pfifo_fast_reset() has already done that work. 822 */ 823 ptr_ring_cleanup(&q->ring, NULL); 824 } 825 } 826 827 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, 828 unsigned int new_len) 829 { 830 struct pfifo_fast_priv *priv = qdisc_priv(sch); 831 struct skb_array *bands[PFIFO_FAST_BANDS]; 832 int prio; 833 834 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 835 struct skb_array *q = band2list(priv, prio); 836 837 bands[prio] = q; 838 } 839 840 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len, 841 GFP_KERNEL); 842 } 843 844 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 845 .id = "pfifo_fast", 846 .priv_size = sizeof(struct pfifo_fast_priv), 847 .enqueue = pfifo_fast_enqueue, 848 .dequeue = pfifo_fast_dequeue, 849 .peek = pfifo_fast_peek, 850 .init = pfifo_fast_init, 851 .destroy = pfifo_fast_destroy, 852 .reset = pfifo_fast_reset, 853 .dump = pfifo_fast_dump, 854 .change_tx_queue_len = pfifo_fast_change_tx_queue_len, 855 .owner = THIS_MODULE, 856 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, 857 }; 858 EXPORT_SYMBOL(pfifo_fast_ops); 859 860 static struct lock_class_key qdisc_tx_busylock; 861 static struct lock_class_key qdisc_running_key; 862 863 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 864 const struct Qdisc_ops *ops, 865 struct netlink_ext_ack *extack) 866 { 867 struct Qdisc *sch; 868 unsigned int size = sizeof(*sch) + ops->priv_size; 869 int err = -ENOBUFS; 870 struct net_device *dev; 871 872 if (!dev_queue) { 873 NL_SET_ERR_MSG(extack, "No device queue given"); 874 err = -EINVAL; 875 goto errout; 876 } 877 878 dev = dev_queue->dev; 879 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); 880 881 if (!sch) 882 goto errout; 883 __skb_queue_head_init(&sch->gso_skb); 884 __skb_queue_head_init(&sch->skb_bad_txq); 885 qdisc_skb_head_init(&sch->q); 886 spin_lock_init(&sch->q.lock); 887 888 if (ops->static_flags & TCQ_F_CPUSTATS) { 889 sch->cpu_bstats = 890 netdev_alloc_pcpu_stats(struct gnet_stats_basic_cpu); 891 if (!sch->cpu_bstats) 892 goto errout1; 893 894 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); 895 if (!sch->cpu_qstats) { 896 free_percpu(sch->cpu_bstats); 897 goto errout1; 898 } 899 } 900 901 spin_lock_init(&sch->busylock); 902 lockdep_set_class(&sch->busylock, 903 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 904 905 /* seqlock has the same scope of busylock, for NOLOCK qdisc */ 906 spin_lock_init(&sch->seqlock); 907 lockdep_set_class(&sch->busylock, 908 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 909 910 seqcount_init(&sch->running); 911 lockdep_set_class(&sch->running, 912 dev->qdisc_running_key ?: &qdisc_running_key); 913 914 sch->ops = ops; 915 sch->flags = ops->static_flags; 916 sch->enqueue = ops->enqueue; 917 sch->dequeue = ops->dequeue; 918 sch->dev_queue = dev_queue; 919 sch->empty = true; 920 dev_hold(dev); 921 refcount_set(&sch->refcnt, 1); 922 923 return sch; 924 errout1: 925 kfree(sch); 926 errout: 927 return ERR_PTR(err); 928 } 929 930 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 931 const struct Qdisc_ops *ops, 932 unsigned int parentid, 933 struct netlink_ext_ack *extack) 934 { 935 struct Qdisc *sch; 936 937 if (!try_module_get(ops->owner)) { 938 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); 939 return NULL; 940 } 941 942 sch = qdisc_alloc(dev_queue, ops, extack); 943 if (IS_ERR(sch)) { 944 module_put(ops->owner); 945 return NULL; 946 } 947 sch->parent = parentid; 948 949 if (!ops->init || ops->init(sch, NULL, extack) == 0) { 950 trace_qdisc_create(ops, dev_queue->dev, parentid); 951 return sch; 952 } 953 954 qdisc_put(sch); 955 return NULL; 956 } 957 EXPORT_SYMBOL(qdisc_create_dflt); 958 959 /* Under qdisc_lock(qdisc) and BH! */ 960 961 void qdisc_reset(struct Qdisc *qdisc) 962 { 963 const struct Qdisc_ops *ops = qdisc->ops; 964 struct sk_buff *skb, *tmp; 965 966 trace_qdisc_reset(qdisc); 967 968 if (ops->reset) 969 ops->reset(qdisc); 970 971 skb_queue_walk_safe(&qdisc->gso_skb, skb, tmp) { 972 __skb_unlink(skb, &qdisc->gso_skb); 973 kfree_skb_list(skb); 974 } 975 976 skb_queue_walk_safe(&qdisc->skb_bad_txq, skb, tmp) { 977 __skb_unlink(skb, &qdisc->skb_bad_txq); 978 kfree_skb_list(skb); 979 } 980 981 qdisc->q.qlen = 0; 982 qdisc->qstats.backlog = 0; 983 } 984 EXPORT_SYMBOL(qdisc_reset); 985 986 void qdisc_free(struct Qdisc *qdisc) 987 { 988 if (qdisc_is_percpu_stats(qdisc)) { 989 free_percpu(qdisc->cpu_bstats); 990 free_percpu(qdisc->cpu_qstats); 991 } 992 993 kfree(qdisc); 994 } 995 996 static void qdisc_free_cb(struct rcu_head *head) 997 { 998 struct Qdisc *q = container_of(head, struct Qdisc, rcu); 999 1000 qdisc_free(q); 1001 } 1002 1003 static void qdisc_destroy(struct Qdisc *qdisc) 1004 { 1005 const struct Qdisc_ops *ops = qdisc->ops; 1006 1007 #ifdef CONFIG_NET_SCHED 1008 qdisc_hash_del(qdisc); 1009 1010 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 1011 #endif 1012 gen_kill_estimator(&qdisc->rate_est); 1013 1014 qdisc_reset(qdisc); 1015 1016 if (ops->destroy) 1017 ops->destroy(qdisc); 1018 1019 module_put(ops->owner); 1020 dev_put(qdisc_dev(qdisc)); 1021 1022 trace_qdisc_destroy(qdisc); 1023 1024 call_rcu(&qdisc->rcu, qdisc_free_cb); 1025 } 1026 1027 void qdisc_put(struct Qdisc *qdisc) 1028 { 1029 if (!qdisc) 1030 return; 1031 1032 if (qdisc->flags & TCQ_F_BUILTIN || 1033 !refcount_dec_and_test(&qdisc->refcnt)) 1034 return; 1035 1036 qdisc_destroy(qdisc); 1037 } 1038 EXPORT_SYMBOL(qdisc_put); 1039 1040 /* Version of qdisc_put() that is called with rtnl mutex unlocked. 1041 * Intended to be used as optimization, this function only takes rtnl lock if 1042 * qdisc reference counter reached zero. 1043 */ 1044 1045 void qdisc_put_unlocked(struct Qdisc *qdisc) 1046 { 1047 if (qdisc->flags & TCQ_F_BUILTIN || 1048 !refcount_dec_and_rtnl_lock(&qdisc->refcnt)) 1049 return; 1050 1051 qdisc_destroy(qdisc); 1052 rtnl_unlock(); 1053 } 1054 EXPORT_SYMBOL(qdisc_put_unlocked); 1055 1056 /* Attach toplevel qdisc to device queue. */ 1057 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 1058 struct Qdisc *qdisc) 1059 { 1060 struct Qdisc *oqdisc = dev_queue->qdisc_sleeping; 1061 spinlock_t *root_lock; 1062 1063 root_lock = qdisc_lock(oqdisc); 1064 spin_lock_bh(root_lock); 1065 1066 /* ... and graft new one */ 1067 if (qdisc == NULL) 1068 qdisc = &noop_qdisc; 1069 dev_queue->qdisc_sleeping = qdisc; 1070 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1071 1072 spin_unlock_bh(root_lock); 1073 1074 return oqdisc; 1075 } 1076 EXPORT_SYMBOL(dev_graft_qdisc); 1077 1078 static void attach_one_default_qdisc(struct net_device *dev, 1079 struct netdev_queue *dev_queue, 1080 void *_unused) 1081 { 1082 struct Qdisc *qdisc; 1083 const struct Qdisc_ops *ops = default_qdisc_ops; 1084 1085 if (dev->priv_flags & IFF_NO_QUEUE) 1086 ops = &noqueue_qdisc_ops; 1087 else if(dev->type == ARPHRD_CAN) 1088 ops = &pfifo_fast_ops; 1089 1090 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); 1091 if (!qdisc) 1092 return; 1093 1094 if (!netif_is_multiqueue(dev)) 1095 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1096 dev_queue->qdisc_sleeping = qdisc; 1097 } 1098 1099 static void attach_default_qdiscs(struct net_device *dev) 1100 { 1101 struct netdev_queue *txq; 1102 struct Qdisc *qdisc; 1103 1104 txq = netdev_get_tx_queue(dev, 0); 1105 1106 if (!netif_is_multiqueue(dev) || 1107 dev->priv_flags & IFF_NO_QUEUE) { 1108 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1109 dev->qdisc = txq->qdisc_sleeping; 1110 qdisc_refcount_inc(dev->qdisc); 1111 } else { 1112 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); 1113 if (qdisc) { 1114 dev->qdisc = qdisc; 1115 qdisc->ops->attach(qdisc); 1116 } 1117 } 1118 1119 /* Detect default qdisc setup/init failed and fallback to "noqueue" */ 1120 if (dev->qdisc == &noop_qdisc) { 1121 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n", 1122 default_qdisc_ops->id, noqueue_qdisc_ops.id); 1123 dev->priv_flags |= IFF_NO_QUEUE; 1124 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1125 dev->qdisc = txq->qdisc_sleeping; 1126 qdisc_refcount_inc(dev->qdisc); 1127 dev->priv_flags ^= IFF_NO_QUEUE; 1128 } 1129 1130 #ifdef CONFIG_NET_SCHED 1131 if (dev->qdisc != &noop_qdisc) 1132 qdisc_hash_add(dev->qdisc, false); 1133 #endif 1134 } 1135 1136 static void transition_one_qdisc(struct net_device *dev, 1137 struct netdev_queue *dev_queue, 1138 void *_need_watchdog) 1139 { 1140 struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping; 1141 int *need_watchdog_p = _need_watchdog; 1142 1143 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 1144 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 1145 1146 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 1147 if (need_watchdog_p) { 1148 dev_queue->trans_start = 0; 1149 *need_watchdog_p = 1; 1150 } 1151 } 1152 1153 void dev_activate(struct net_device *dev) 1154 { 1155 int need_watchdog; 1156 1157 /* No queueing discipline is attached to device; 1158 * create default one for devices, which need queueing 1159 * and noqueue_qdisc for virtual interfaces 1160 */ 1161 1162 if (dev->qdisc == &noop_qdisc) 1163 attach_default_qdiscs(dev); 1164 1165 if (!netif_carrier_ok(dev)) 1166 /* Delay activation until next carrier-on event */ 1167 return; 1168 1169 need_watchdog = 0; 1170 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 1171 if (dev_ingress_queue(dev)) 1172 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 1173 1174 if (need_watchdog) { 1175 netif_trans_update(dev); 1176 dev_watchdog_up(dev); 1177 } 1178 } 1179 EXPORT_SYMBOL(dev_activate); 1180 1181 static void qdisc_deactivate(struct Qdisc *qdisc) 1182 { 1183 if (qdisc->flags & TCQ_F_BUILTIN) 1184 return; 1185 1186 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 1187 } 1188 1189 static void dev_deactivate_queue(struct net_device *dev, 1190 struct netdev_queue *dev_queue, 1191 void *_qdisc_default) 1192 { 1193 struct Qdisc *qdisc_default = _qdisc_default; 1194 struct Qdisc *qdisc; 1195 1196 qdisc = rtnl_dereference(dev_queue->qdisc); 1197 if (qdisc) { 1198 qdisc_deactivate(qdisc); 1199 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1200 } 1201 } 1202 1203 static void dev_reset_queue(struct net_device *dev, 1204 struct netdev_queue *dev_queue, 1205 void *_unused) 1206 { 1207 struct Qdisc *qdisc; 1208 bool nolock; 1209 1210 qdisc = dev_queue->qdisc_sleeping; 1211 if (!qdisc) 1212 return; 1213 1214 nolock = qdisc->flags & TCQ_F_NOLOCK; 1215 1216 if (nolock) 1217 spin_lock_bh(&qdisc->seqlock); 1218 spin_lock_bh(qdisc_lock(qdisc)); 1219 1220 qdisc_reset(qdisc); 1221 1222 spin_unlock_bh(qdisc_lock(qdisc)); 1223 if (nolock) { 1224 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 1225 spin_unlock_bh(&qdisc->seqlock); 1226 } 1227 } 1228 1229 static bool some_qdisc_is_busy(struct net_device *dev) 1230 { 1231 unsigned int i; 1232 1233 for (i = 0; i < dev->num_tx_queues; i++) { 1234 struct netdev_queue *dev_queue; 1235 spinlock_t *root_lock; 1236 struct Qdisc *q; 1237 int val; 1238 1239 dev_queue = netdev_get_tx_queue(dev, i); 1240 q = dev_queue->qdisc_sleeping; 1241 1242 root_lock = qdisc_lock(q); 1243 spin_lock_bh(root_lock); 1244 1245 val = (qdisc_is_running(q) || 1246 test_bit(__QDISC_STATE_SCHED, &q->state)); 1247 1248 spin_unlock_bh(root_lock); 1249 1250 if (val) 1251 return true; 1252 } 1253 return false; 1254 } 1255 1256 /** 1257 * dev_deactivate_many - deactivate transmissions on several devices 1258 * @head: list of devices to deactivate 1259 * 1260 * This function returns only when all outstanding transmissions 1261 * have completed, unless all devices are in dismantle phase. 1262 */ 1263 void dev_deactivate_many(struct list_head *head) 1264 { 1265 struct net_device *dev; 1266 1267 list_for_each_entry(dev, head, close_list) { 1268 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 1269 &noop_qdisc); 1270 if (dev_ingress_queue(dev)) 1271 dev_deactivate_queue(dev, dev_ingress_queue(dev), 1272 &noop_qdisc); 1273 1274 dev_watchdog_down(dev); 1275 } 1276 1277 /* Wait for outstanding qdisc-less dev_queue_xmit calls or 1278 * outstanding qdisc enqueuing calls. 1279 * This is avoided if all devices are in dismantle phase : 1280 * Caller will call synchronize_net() for us 1281 */ 1282 synchronize_net(); 1283 1284 list_for_each_entry(dev, head, close_list) { 1285 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL); 1286 1287 if (dev_ingress_queue(dev)) 1288 dev_reset_queue(dev, dev_ingress_queue(dev), NULL); 1289 } 1290 1291 /* Wait for outstanding qdisc_run calls. */ 1292 list_for_each_entry(dev, head, close_list) { 1293 while (some_qdisc_is_busy(dev)) { 1294 /* wait_event() would avoid this sleep-loop but would 1295 * require expensive checks in the fast paths of packet 1296 * processing which isn't worth it. 1297 */ 1298 schedule_timeout_uninterruptible(1); 1299 } 1300 } 1301 } 1302 1303 void dev_deactivate(struct net_device *dev) 1304 { 1305 LIST_HEAD(single); 1306 1307 list_add(&dev->close_list, &single); 1308 dev_deactivate_many(&single); 1309 list_del(&single); 1310 } 1311 EXPORT_SYMBOL(dev_deactivate); 1312 1313 static int qdisc_change_tx_queue_len(struct net_device *dev, 1314 struct netdev_queue *dev_queue) 1315 { 1316 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1317 const struct Qdisc_ops *ops = qdisc->ops; 1318 1319 if (ops->change_tx_queue_len) 1320 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); 1321 return 0; 1322 } 1323 1324 int dev_qdisc_change_tx_queue_len(struct net_device *dev) 1325 { 1326 bool up = dev->flags & IFF_UP; 1327 unsigned int i; 1328 int ret = 0; 1329 1330 if (up) 1331 dev_deactivate(dev); 1332 1333 for (i = 0; i < dev->num_tx_queues; i++) { 1334 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); 1335 1336 /* TODO: revert changes on a partial failure */ 1337 if (ret) 1338 break; 1339 } 1340 1341 if (up) 1342 dev_activate(dev); 1343 return ret; 1344 } 1345 1346 static void dev_init_scheduler_queue(struct net_device *dev, 1347 struct netdev_queue *dev_queue, 1348 void *_qdisc) 1349 { 1350 struct Qdisc *qdisc = _qdisc; 1351 1352 rcu_assign_pointer(dev_queue->qdisc, qdisc); 1353 dev_queue->qdisc_sleeping = qdisc; 1354 } 1355 1356 void dev_init_scheduler(struct net_device *dev) 1357 { 1358 dev->qdisc = &noop_qdisc; 1359 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 1360 if (dev_ingress_queue(dev)) 1361 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1362 1363 timer_setup(&dev->watchdog_timer, dev_watchdog, 0); 1364 } 1365 1366 static void shutdown_scheduler_queue(struct net_device *dev, 1367 struct netdev_queue *dev_queue, 1368 void *_qdisc_default) 1369 { 1370 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1371 struct Qdisc *qdisc_default = _qdisc_default; 1372 1373 if (qdisc) { 1374 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1375 dev_queue->qdisc_sleeping = qdisc_default; 1376 1377 qdisc_put(qdisc); 1378 } 1379 } 1380 1381 void dev_shutdown(struct net_device *dev) 1382 { 1383 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1384 if (dev_ingress_queue(dev)) 1385 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1386 qdisc_put(dev->qdisc); 1387 dev->qdisc = &noop_qdisc; 1388 1389 WARN_ON(timer_pending(&dev->watchdog_timer)); 1390 } 1391 1392 /** 1393 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division 1394 * @rate: Rate to compute reciprocal division values of 1395 * @mult: Multiplier for reciprocal division 1396 * @shift: Shift for reciprocal division 1397 * 1398 * The multiplier and shift for reciprocal division by rate are stored 1399 * in mult and shift. 1400 * 1401 * The deal here is to replace a divide by a reciprocal one 1402 * in fast path (a reciprocal divide is a multiply and a shift) 1403 * 1404 * Normal formula would be : 1405 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 1406 * 1407 * We compute mult/shift to use instead : 1408 * time_in_ns = (len * mult) >> shift; 1409 * 1410 * We try to get the highest possible mult value for accuracy, 1411 * but have to make sure no overflows will ever happen. 1412 * 1413 * reciprocal_value() is not used here it doesn't handle 64-bit values. 1414 */ 1415 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift) 1416 { 1417 u64 factor = NSEC_PER_SEC; 1418 1419 *mult = 1; 1420 *shift = 0; 1421 1422 if (rate <= 0) 1423 return; 1424 1425 for (;;) { 1426 *mult = div64_u64(factor, rate); 1427 if (*mult & (1U << 31) || factor & (1ULL << 63)) 1428 break; 1429 factor <<= 1; 1430 (*shift)++; 1431 } 1432 } 1433 1434 void psched_ratecfg_precompute(struct psched_ratecfg *r, 1435 const struct tc_ratespec *conf, 1436 u64 rate64) 1437 { 1438 memset(r, 0, sizeof(*r)); 1439 r->overhead = conf->overhead; 1440 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 1441 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 1442 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift); 1443 } 1444 EXPORT_SYMBOL(psched_ratecfg_precompute); 1445 1446 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64) 1447 { 1448 r->rate_pkts_ps = pktrate64; 1449 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift); 1450 } 1451 EXPORT_SYMBOL(psched_ppscfg_precompute); 1452 1453 static void mini_qdisc_rcu_func(struct rcu_head *head) 1454 { 1455 } 1456 1457 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, 1458 struct tcf_proto *tp_head) 1459 { 1460 /* Protected with chain0->filter_chain_lock. 1461 * Can't access chain directly because tp_head can be NULL. 1462 */ 1463 struct mini_Qdisc *miniq_old = 1464 rcu_dereference_protected(*miniqp->p_miniq, 1); 1465 struct mini_Qdisc *miniq; 1466 1467 if (!tp_head) { 1468 RCU_INIT_POINTER(*miniqp->p_miniq, NULL); 1469 /* Wait for flying RCU callback before it is freed. */ 1470 rcu_barrier(); 1471 return; 1472 } 1473 1474 miniq = !miniq_old || miniq_old == &miniqp->miniq2 ? 1475 &miniqp->miniq1 : &miniqp->miniq2; 1476 1477 /* We need to make sure that readers won't see the miniq 1478 * we are about to modify. So wait until previous call_rcu callback 1479 * is done. 1480 */ 1481 rcu_barrier(); 1482 miniq->filter_list = tp_head; 1483 rcu_assign_pointer(*miniqp->p_miniq, miniq); 1484 1485 if (miniq_old) 1486 /* This is counterpart of the rcu barriers above. We need to 1487 * block potential new user of miniq_old until all readers 1488 * are not seeing it. 1489 */ 1490 call_rcu(&miniq_old->rcu, mini_qdisc_rcu_func); 1491 } 1492 EXPORT_SYMBOL(mini_qdisc_pair_swap); 1493 1494 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, 1495 struct tcf_block *block) 1496 { 1497 miniqp->miniq1.block = block; 1498 miniqp->miniq2.block = block; 1499 } 1500 EXPORT_SYMBOL(mini_qdisc_pair_block_init); 1501 1502 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, 1503 struct mini_Qdisc __rcu **p_miniq) 1504 { 1505 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; 1506 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; 1507 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; 1508 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; 1509 miniqp->p_miniq = p_miniq; 1510 } 1511 EXPORT_SYMBOL(mini_qdisc_pair_init); 1512