1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_generic.c Generic packet scheduler routines. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 7 * - Ingress support 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/netdevice.h> 18 #include <linux/skbuff.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/init.h> 21 #include <linux/rcupdate.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 #include <linux/skb_array.h> 26 #include <linux/if_macvlan.h> 27 #include <net/sch_generic.h> 28 #include <net/pkt_sched.h> 29 #include <net/dst.h> 30 #include <trace/events/qdisc.h> 31 #include <trace/events/net.h> 32 #include <net/xfrm.h> 33 34 /* Qdisc to use by default */ 35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 36 EXPORT_SYMBOL(default_qdisc_ops); 37 38 static void qdisc_maybe_clear_missed(struct Qdisc *q, 39 const struct netdev_queue *txq) 40 { 41 clear_bit(__QDISC_STATE_MISSED, &q->state); 42 43 /* Make sure the below netif_xmit_frozen_or_stopped() 44 * checking happens after clearing STATE_MISSED. 45 */ 46 smp_mb__after_atomic(); 47 48 /* Checking netif_xmit_frozen_or_stopped() again to 49 * make sure STATE_MISSED is set if the STATE_MISSED 50 * set by netif_tx_wake_queue()'s rescheduling of 51 * net_tx_action() is cleared by the above clear_bit(). 52 */ 53 if (!netif_xmit_frozen_or_stopped(txq)) 54 set_bit(__QDISC_STATE_MISSED, &q->state); 55 else 56 set_bit(__QDISC_STATE_DRAINING, &q->state); 57 } 58 59 /* Main transmission queue. */ 60 61 /* Modifications to data participating in scheduling must be protected with 62 * qdisc_lock(qdisc) spinlock. 63 * 64 * The idea is the following: 65 * - enqueue, dequeue are serialized via qdisc root lock 66 * - ingress filtering is also serialized via qdisc root lock 67 * - updates to tree and tree walking are only done under the rtnl mutex. 68 */ 69 70 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL) 71 72 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) 73 { 74 const struct netdev_queue *txq = q->dev_queue; 75 spinlock_t *lock = NULL; 76 struct sk_buff *skb; 77 78 if (q->flags & TCQ_F_NOLOCK) { 79 lock = qdisc_lock(q); 80 spin_lock(lock); 81 } 82 83 skb = skb_peek(&q->skb_bad_txq); 84 if (skb) { 85 /* check the reason of requeuing without tx lock first */ 86 txq = skb_get_tx_queue(txq->dev, skb); 87 if (!netif_xmit_frozen_or_stopped(txq)) { 88 skb = __skb_dequeue(&q->skb_bad_txq); 89 if (qdisc_is_percpu_stats(q)) { 90 qdisc_qstats_cpu_backlog_dec(q, skb); 91 qdisc_qstats_cpu_qlen_dec(q); 92 } else { 93 qdisc_qstats_backlog_dec(q, skb); 94 q->q.qlen--; 95 } 96 } else { 97 skb = SKB_XOFF_MAGIC; 98 qdisc_maybe_clear_missed(q, txq); 99 } 100 } 101 102 if (lock) 103 spin_unlock(lock); 104 105 return skb; 106 } 107 108 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) 109 { 110 struct sk_buff *skb = skb_peek(&q->skb_bad_txq); 111 112 if (unlikely(skb)) 113 skb = __skb_dequeue_bad_txq(q); 114 115 return skb; 116 } 117 118 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, 119 struct sk_buff *skb) 120 { 121 spinlock_t *lock = NULL; 122 123 if (q->flags & TCQ_F_NOLOCK) { 124 lock = qdisc_lock(q); 125 spin_lock(lock); 126 } 127 128 __skb_queue_tail(&q->skb_bad_txq, skb); 129 130 if (qdisc_is_percpu_stats(q)) { 131 qdisc_qstats_cpu_backlog_inc(q, skb); 132 qdisc_qstats_cpu_qlen_inc(q); 133 } else { 134 qdisc_qstats_backlog_inc(q, skb); 135 q->q.qlen++; 136 } 137 138 if (lock) 139 spin_unlock(lock); 140 } 141 142 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 143 { 144 spinlock_t *lock = NULL; 145 146 if (q->flags & TCQ_F_NOLOCK) { 147 lock = qdisc_lock(q); 148 spin_lock(lock); 149 } 150 151 while (skb) { 152 struct sk_buff *next = skb->next; 153 154 __skb_queue_tail(&q->gso_skb, skb); 155 156 /* it's still part of the queue */ 157 if (qdisc_is_percpu_stats(q)) { 158 qdisc_qstats_cpu_requeues_inc(q); 159 qdisc_qstats_cpu_backlog_inc(q, skb); 160 qdisc_qstats_cpu_qlen_inc(q); 161 } else { 162 q->qstats.requeues++; 163 qdisc_qstats_backlog_inc(q, skb); 164 q->q.qlen++; 165 } 166 167 skb = next; 168 } 169 170 if (lock) { 171 spin_unlock(lock); 172 set_bit(__QDISC_STATE_MISSED, &q->state); 173 } else { 174 __netif_schedule(q); 175 } 176 } 177 178 static void try_bulk_dequeue_skb(struct Qdisc *q, 179 struct sk_buff *skb, 180 const struct netdev_queue *txq, 181 int *packets) 182 { 183 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; 184 185 while (bytelimit > 0) { 186 struct sk_buff *nskb = q->dequeue(q); 187 188 if (!nskb) 189 break; 190 191 bytelimit -= nskb->len; /* covers GSO len */ 192 skb->next = nskb; 193 skb = nskb; 194 (*packets)++; /* GSO counts as one pkt */ 195 } 196 skb_mark_not_on_list(skb); 197 } 198 199 /* This variant of try_bulk_dequeue_skb() makes sure 200 * all skbs in the chain are for the same txq 201 */ 202 static void try_bulk_dequeue_skb_slow(struct Qdisc *q, 203 struct sk_buff *skb, 204 int *packets) 205 { 206 int mapping = skb_get_queue_mapping(skb); 207 struct sk_buff *nskb; 208 int cnt = 0; 209 210 do { 211 nskb = q->dequeue(q); 212 if (!nskb) 213 break; 214 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { 215 qdisc_enqueue_skb_bad_txq(q, nskb); 216 break; 217 } 218 skb->next = nskb; 219 skb = nskb; 220 } while (++cnt < 8); 221 (*packets) += cnt; 222 skb_mark_not_on_list(skb); 223 } 224 225 /* Note that dequeue_skb can possibly return a SKB list (via skb->next). 226 * A requeued skb (via q->gso_skb) can also be a SKB list. 227 */ 228 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, 229 int *packets) 230 { 231 const struct netdev_queue *txq = q->dev_queue; 232 struct sk_buff *skb = NULL; 233 234 *packets = 1; 235 if (unlikely(!skb_queue_empty(&q->gso_skb))) { 236 spinlock_t *lock = NULL; 237 238 if (q->flags & TCQ_F_NOLOCK) { 239 lock = qdisc_lock(q); 240 spin_lock(lock); 241 } 242 243 skb = skb_peek(&q->gso_skb); 244 245 /* skb may be null if another cpu pulls gso_skb off in between 246 * empty check and lock. 247 */ 248 if (!skb) { 249 if (lock) 250 spin_unlock(lock); 251 goto validate; 252 } 253 254 /* skb in gso_skb were already validated */ 255 *validate = false; 256 if (xfrm_offload(skb)) 257 *validate = true; 258 /* check the reason of requeuing without tx lock first */ 259 txq = skb_get_tx_queue(txq->dev, skb); 260 if (!netif_xmit_frozen_or_stopped(txq)) { 261 skb = __skb_dequeue(&q->gso_skb); 262 if (qdisc_is_percpu_stats(q)) { 263 qdisc_qstats_cpu_backlog_dec(q, skb); 264 qdisc_qstats_cpu_qlen_dec(q); 265 } else { 266 qdisc_qstats_backlog_dec(q, skb); 267 q->q.qlen--; 268 } 269 } else { 270 skb = NULL; 271 qdisc_maybe_clear_missed(q, txq); 272 } 273 if (lock) 274 spin_unlock(lock); 275 goto trace; 276 } 277 validate: 278 *validate = true; 279 280 if ((q->flags & TCQ_F_ONETXQUEUE) && 281 netif_xmit_frozen_or_stopped(txq)) { 282 qdisc_maybe_clear_missed(q, txq); 283 return skb; 284 } 285 286 skb = qdisc_dequeue_skb_bad_txq(q); 287 if (unlikely(skb)) { 288 if (skb == SKB_XOFF_MAGIC) 289 return NULL; 290 goto bulk; 291 } 292 skb = q->dequeue(q); 293 if (skb) { 294 bulk: 295 if (qdisc_may_bulk(q)) 296 try_bulk_dequeue_skb(q, skb, txq, packets); 297 else 298 try_bulk_dequeue_skb_slow(q, skb, packets); 299 } 300 trace: 301 trace_qdisc_dequeue(q, txq, *packets, skb); 302 return skb; 303 } 304 305 /* 306 * Transmit possibly several skbs, and handle the return status as 307 * required. Owning qdisc running bit guarantees that only one CPU 308 * can execute this function. 309 * 310 * Returns to the caller: 311 * false - hardware queue frozen backoff 312 * true - feel free to send more pkts 313 */ 314 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 315 struct net_device *dev, struct netdev_queue *txq, 316 spinlock_t *root_lock, bool validate) 317 { 318 int ret = NETDEV_TX_BUSY; 319 bool again = false; 320 321 /* And release qdisc */ 322 if (root_lock) 323 spin_unlock(root_lock); 324 325 /* Note that we validate skb (GSO, checksum, ...) outside of locks */ 326 if (validate) 327 skb = validate_xmit_skb_list(skb, dev, &again); 328 329 #ifdef CONFIG_XFRM_OFFLOAD 330 if (unlikely(again)) { 331 if (root_lock) 332 spin_lock(root_lock); 333 334 dev_requeue_skb(skb, q); 335 return false; 336 } 337 #endif 338 339 if (likely(skb)) { 340 HARD_TX_LOCK(dev, txq, smp_processor_id()); 341 if (!netif_xmit_frozen_or_stopped(txq)) 342 skb = dev_hard_start_xmit(skb, dev, txq, &ret); 343 else 344 qdisc_maybe_clear_missed(q, txq); 345 346 HARD_TX_UNLOCK(dev, txq); 347 } else { 348 if (root_lock) 349 spin_lock(root_lock); 350 return true; 351 } 352 353 if (root_lock) 354 spin_lock(root_lock); 355 356 if (!dev_xmit_complete(ret)) { 357 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 358 if (unlikely(ret != NETDEV_TX_BUSY)) 359 net_warn_ratelimited("BUG %s code %d qlen %d\n", 360 dev->name, ret, q->q.qlen); 361 362 dev_requeue_skb(skb, q); 363 return false; 364 } 365 366 return true; 367 } 368 369 /* 370 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 371 * 372 * running seqcount guarantees only one CPU can process 373 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 374 * this queue. 375 * 376 * netif_tx_lock serializes accesses to device driver. 377 * 378 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 379 * if one is grabbed, another must be free. 380 * 381 * Note, that this procedure can be called by a watchdog timer 382 * 383 * Returns to the caller: 384 * 0 - queue is empty or throttled. 385 * >0 - queue is not empty. 386 * 387 */ 388 static inline bool qdisc_restart(struct Qdisc *q, int *packets) 389 { 390 spinlock_t *root_lock = NULL; 391 struct netdev_queue *txq; 392 struct net_device *dev; 393 struct sk_buff *skb; 394 bool validate; 395 396 /* Dequeue packet */ 397 skb = dequeue_skb(q, &validate, packets); 398 if (unlikely(!skb)) 399 return false; 400 401 if (!(q->flags & TCQ_F_NOLOCK)) 402 root_lock = qdisc_lock(q); 403 404 dev = qdisc_dev(q); 405 txq = skb_get_tx_queue(dev, skb); 406 407 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); 408 } 409 410 void __qdisc_run(struct Qdisc *q) 411 { 412 int quota = READ_ONCE(dev_tx_weight); 413 int packets; 414 415 while (qdisc_restart(q, &packets)) { 416 quota -= packets; 417 if (quota <= 0) { 418 if (q->flags & TCQ_F_NOLOCK) 419 set_bit(__QDISC_STATE_MISSED, &q->state); 420 else 421 __netif_schedule(q); 422 423 break; 424 } 425 } 426 } 427 428 unsigned long dev_trans_start(struct net_device *dev) 429 { 430 unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start); 431 unsigned long val; 432 unsigned int i; 433 434 for (i = 1; i < dev->num_tx_queues; i++) { 435 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start); 436 if (val && time_after(val, res)) 437 res = val; 438 } 439 440 return res; 441 } 442 EXPORT_SYMBOL(dev_trans_start); 443 444 static void netif_freeze_queues(struct net_device *dev) 445 { 446 unsigned int i; 447 int cpu; 448 449 cpu = smp_processor_id(); 450 for (i = 0; i < dev->num_tx_queues; i++) { 451 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 452 453 /* We are the only thread of execution doing a 454 * freeze, but we have to grab the _xmit_lock in 455 * order to synchronize with threads which are in 456 * the ->hard_start_xmit() handler and already 457 * checked the frozen bit. 458 */ 459 __netif_tx_lock(txq, cpu); 460 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 461 __netif_tx_unlock(txq); 462 } 463 } 464 465 void netif_tx_lock(struct net_device *dev) 466 { 467 spin_lock(&dev->tx_global_lock); 468 netif_freeze_queues(dev); 469 } 470 EXPORT_SYMBOL(netif_tx_lock); 471 472 static void netif_unfreeze_queues(struct net_device *dev) 473 { 474 unsigned int i; 475 476 for (i = 0; i < dev->num_tx_queues; i++) { 477 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 478 479 /* No need to grab the _xmit_lock here. If the 480 * queue is not stopped for another reason, we 481 * force a schedule. 482 */ 483 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 484 netif_schedule_queue(txq); 485 } 486 } 487 488 void netif_tx_unlock(struct net_device *dev) 489 { 490 netif_unfreeze_queues(dev); 491 spin_unlock(&dev->tx_global_lock); 492 } 493 EXPORT_SYMBOL(netif_tx_unlock); 494 495 static void dev_watchdog(struct timer_list *t) 496 { 497 struct net_device *dev = from_timer(dev, t, watchdog_timer); 498 bool release = true; 499 500 spin_lock(&dev->tx_global_lock); 501 if (!qdisc_tx_is_noop(dev)) { 502 if (netif_device_present(dev) && 503 netif_running(dev) && 504 netif_carrier_ok(dev)) { 505 int some_queue_timedout = 0; 506 unsigned int i; 507 unsigned long trans_start; 508 509 for (i = 0; i < dev->num_tx_queues; i++) { 510 struct netdev_queue *txq; 511 512 txq = netdev_get_tx_queue(dev, i); 513 trans_start = READ_ONCE(txq->trans_start); 514 if (netif_xmit_stopped(txq) && 515 time_after(jiffies, (trans_start + 516 dev->watchdog_timeo))) { 517 some_queue_timedout = 1; 518 atomic_long_inc(&txq->trans_timeout); 519 break; 520 } 521 } 522 523 if (unlikely(some_queue_timedout)) { 524 trace_net_dev_xmit_timeout(dev, i); 525 WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n", 526 dev->name, netdev_drivername(dev), i); 527 netif_freeze_queues(dev); 528 dev->netdev_ops->ndo_tx_timeout(dev, i); 529 netif_unfreeze_queues(dev); 530 } 531 if (!mod_timer(&dev->watchdog_timer, 532 round_jiffies(jiffies + 533 dev->watchdog_timeo))) 534 release = false; 535 } 536 } 537 spin_unlock(&dev->tx_global_lock); 538 539 if (release) 540 netdev_put(dev, &dev->watchdog_dev_tracker); 541 } 542 543 void __netdev_watchdog_up(struct net_device *dev) 544 { 545 if (dev->netdev_ops->ndo_tx_timeout) { 546 if (dev->watchdog_timeo <= 0) 547 dev->watchdog_timeo = 5*HZ; 548 if (!mod_timer(&dev->watchdog_timer, 549 round_jiffies(jiffies + dev->watchdog_timeo))) 550 netdev_hold(dev, &dev->watchdog_dev_tracker, 551 GFP_ATOMIC); 552 } 553 } 554 EXPORT_SYMBOL_GPL(__netdev_watchdog_up); 555 556 static void dev_watchdog_up(struct net_device *dev) 557 { 558 __netdev_watchdog_up(dev); 559 } 560 561 static void dev_watchdog_down(struct net_device *dev) 562 { 563 netif_tx_lock_bh(dev); 564 if (del_timer(&dev->watchdog_timer)) 565 netdev_put(dev, &dev->watchdog_dev_tracker); 566 netif_tx_unlock_bh(dev); 567 } 568 569 /** 570 * netif_carrier_on - set carrier 571 * @dev: network device 572 * 573 * Device has detected acquisition of carrier. 574 */ 575 void netif_carrier_on(struct net_device *dev) 576 { 577 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 578 if (dev->reg_state == NETREG_UNINITIALIZED) 579 return; 580 atomic_inc(&dev->carrier_up_count); 581 linkwatch_fire_event(dev); 582 if (netif_running(dev)) 583 __netdev_watchdog_up(dev); 584 } 585 } 586 EXPORT_SYMBOL(netif_carrier_on); 587 588 /** 589 * netif_carrier_off - clear carrier 590 * @dev: network device 591 * 592 * Device has detected loss of carrier. 593 */ 594 void netif_carrier_off(struct net_device *dev) 595 { 596 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 597 if (dev->reg_state == NETREG_UNINITIALIZED) 598 return; 599 atomic_inc(&dev->carrier_down_count); 600 linkwatch_fire_event(dev); 601 } 602 } 603 EXPORT_SYMBOL(netif_carrier_off); 604 605 /** 606 * netif_carrier_event - report carrier state event 607 * @dev: network device 608 * 609 * Device has detected a carrier event but the carrier state wasn't changed. 610 * Use in drivers when querying carrier state asynchronously, to avoid missing 611 * events (link flaps) if link recovers before it's queried. 612 */ 613 void netif_carrier_event(struct net_device *dev) 614 { 615 if (dev->reg_state == NETREG_UNINITIALIZED) 616 return; 617 atomic_inc(&dev->carrier_up_count); 618 atomic_inc(&dev->carrier_down_count); 619 linkwatch_fire_event(dev); 620 } 621 EXPORT_SYMBOL_GPL(netif_carrier_event); 622 623 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 624 under all circumstances. It is difficult to invent anything faster or 625 cheaper. 626 */ 627 628 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 629 struct sk_buff **to_free) 630 { 631 __qdisc_drop(skb, to_free); 632 return NET_XMIT_CN; 633 } 634 635 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 636 { 637 return NULL; 638 } 639 640 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 641 .id = "noop", 642 .priv_size = 0, 643 .enqueue = noop_enqueue, 644 .dequeue = noop_dequeue, 645 .peek = noop_dequeue, 646 .owner = THIS_MODULE, 647 }; 648 649 static struct netdev_queue noop_netdev_queue = { 650 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc), 651 .qdisc_sleeping = &noop_qdisc, 652 }; 653 654 struct Qdisc noop_qdisc = { 655 .enqueue = noop_enqueue, 656 .dequeue = noop_dequeue, 657 .flags = TCQ_F_BUILTIN, 658 .ops = &noop_qdisc_ops, 659 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 660 .dev_queue = &noop_netdev_queue, 661 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 662 .gso_skb = { 663 .next = (struct sk_buff *)&noop_qdisc.gso_skb, 664 .prev = (struct sk_buff *)&noop_qdisc.gso_skb, 665 .qlen = 0, 666 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock), 667 }, 668 .skb_bad_txq = { 669 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 670 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 671 .qlen = 0, 672 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock), 673 }, 674 }; 675 EXPORT_SYMBOL(noop_qdisc); 676 677 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, 678 struct netlink_ext_ack *extack) 679 { 680 /* register_qdisc() assigns a default of noop_enqueue if unset, 681 * but __dev_queue_xmit() treats noqueue only as such 682 * if this is NULL - so clear it here. */ 683 qdisc->enqueue = NULL; 684 return 0; 685 } 686 687 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 688 .id = "noqueue", 689 .priv_size = 0, 690 .init = noqueue_init, 691 .enqueue = noop_enqueue, 692 .dequeue = noop_dequeue, 693 .peek = noop_dequeue, 694 .owner = THIS_MODULE, 695 }; 696 697 static const u8 prio2band[TC_PRIO_MAX + 1] = { 698 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1 699 }; 700 701 /* 3-band FIFO queue: old style, but should be a bit faster than 702 generic prio+fifo combination. 703 */ 704 705 #define PFIFO_FAST_BANDS 3 706 707 /* 708 * Private data for a pfifo_fast scheduler containing: 709 * - rings for priority bands 710 */ 711 struct pfifo_fast_priv { 712 struct skb_array q[PFIFO_FAST_BANDS]; 713 }; 714 715 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, 716 int band) 717 { 718 return &priv->q[band]; 719 } 720 721 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 722 struct sk_buff **to_free) 723 { 724 int band = prio2band[skb->priority & TC_PRIO_MAX]; 725 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 726 struct skb_array *q = band2list(priv, band); 727 unsigned int pkt_len = qdisc_pkt_len(skb); 728 int err; 729 730 err = skb_array_produce(q, skb); 731 732 if (unlikely(err)) { 733 if (qdisc_is_percpu_stats(qdisc)) 734 return qdisc_drop_cpu(skb, qdisc, to_free); 735 else 736 return qdisc_drop(skb, qdisc, to_free); 737 } 738 739 qdisc_update_stats_at_enqueue(qdisc, pkt_len); 740 return NET_XMIT_SUCCESS; 741 } 742 743 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 744 { 745 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 746 struct sk_buff *skb = NULL; 747 bool need_retry = true; 748 int band; 749 750 retry: 751 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 752 struct skb_array *q = band2list(priv, band); 753 754 if (__skb_array_empty(q)) 755 continue; 756 757 skb = __skb_array_consume(q); 758 } 759 if (likely(skb)) { 760 qdisc_update_stats_at_dequeue(qdisc, skb); 761 } else if (need_retry && 762 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) { 763 /* Delay clearing the STATE_MISSED here to reduce 764 * the overhead of the second spin_trylock() in 765 * qdisc_run_begin() and __netif_schedule() calling 766 * in qdisc_run_end(). 767 */ 768 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 769 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 770 771 /* Make sure dequeuing happens after clearing 772 * STATE_MISSED. 773 */ 774 smp_mb__after_atomic(); 775 776 need_retry = false; 777 778 goto retry; 779 } 780 781 return skb; 782 } 783 784 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 785 { 786 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 787 struct sk_buff *skb = NULL; 788 int band; 789 790 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 791 struct skb_array *q = band2list(priv, band); 792 793 skb = __skb_array_peek(q); 794 } 795 796 return skb; 797 } 798 799 static void pfifo_fast_reset(struct Qdisc *qdisc) 800 { 801 int i, band; 802 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 803 804 for (band = 0; band < PFIFO_FAST_BANDS; band++) { 805 struct skb_array *q = band2list(priv, band); 806 struct sk_buff *skb; 807 808 /* NULL ring is possible if destroy path is due to a failed 809 * skb_array_init() in pfifo_fast_init() case. 810 */ 811 if (!q->ring.queue) 812 continue; 813 814 while ((skb = __skb_array_consume(q)) != NULL) 815 kfree_skb(skb); 816 } 817 818 if (qdisc_is_percpu_stats(qdisc)) { 819 for_each_possible_cpu(i) { 820 struct gnet_stats_queue *q; 821 822 q = per_cpu_ptr(qdisc->cpu_qstats, i); 823 q->backlog = 0; 824 q->qlen = 0; 825 } 826 } 827 } 828 829 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 830 { 831 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 832 833 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1); 834 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 835 goto nla_put_failure; 836 return skb->len; 837 838 nla_put_failure: 839 return -1; 840 } 841 842 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, 843 struct netlink_ext_ack *extack) 844 { 845 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; 846 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 847 int prio; 848 849 /* guard against zero length rings */ 850 if (!qlen) 851 return -EINVAL; 852 853 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 854 struct skb_array *q = band2list(priv, prio); 855 int err; 856 857 err = skb_array_init(q, qlen, GFP_KERNEL); 858 if (err) 859 return -ENOMEM; 860 } 861 862 /* Can by-pass the queue discipline */ 863 qdisc->flags |= TCQ_F_CAN_BYPASS; 864 return 0; 865 } 866 867 static void pfifo_fast_destroy(struct Qdisc *sch) 868 { 869 struct pfifo_fast_priv *priv = qdisc_priv(sch); 870 int prio; 871 872 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 873 struct skb_array *q = band2list(priv, prio); 874 875 /* NULL ring is possible if destroy path is due to a failed 876 * skb_array_init() in pfifo_fast_init() case. 877 */ 878 if (!q->ring.queue) 879 continue; 880 /* Destroy ring but no need to kfree_skb because a call to 881 * pfifo_fast_reset() has already done that work. 882 */ 883 ptr_ring_cleanup(&q->ring, NULL); 884 } 885 } 886 887 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, 888 unsigned int new_len) 889 { 890 struct pfifo_fast_priv *priv = qdisc_priv(sch); 891 struct skb_array *bands[PFIFO_FAST_BANDS]; 892 int prio; 893 894 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 895 struct skb_array *q = band2list(priv, prio); 896 897 bands[prio] = q; 898 } 899 900 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len, 901 GFP_KERNEL); 902 } 903 904 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 905 .id = "pfifo_fast", 906 .priv_size = sizeof(struct pfifo_fast_priv), 907 .enqueue = pfifo_fast_enqueue, 908 .dequeue = pfifo_fast_dequeue, 909 .peek = pfifo_fast_peek, 910 .init = pfifo_fast_init, 911 .destroy = pfifo_fast_destroy, 912 .reset = pfifo_fast_reset, 913 .dump = pfifo_fast_dump, 914 .change_tx_queue_len = pfifo_fast_change_tx_queue_len, 915 .owner = THIS_MODULE, 916 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, 917 }; 918 EXPORT_SYMBOL(pfifo_fast_ops); 919 920 static struct lock_class_key qdisc_tx_busylock; 921 922 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 923 const struct Qdisc_ops *ops, 924 struct netlink_ext_ack *extack) 925 { 926 struct Qdisc *sch; 927 unsigned int size = sizeof(*sch) + ops->priv_size; 928 int err = -ENOBUFS; 929 struct net_device *dev; 930 931 if (!dev_queue) { 932 NL_SET_ERR_MSG(extack, "No device queue given"); 933 err = -EINVAL; 934 goto errout; 935 } 936 937 dev = dev_queue->dev; 938 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); 939 940 if (!sch) 941 goto errout; 942 __skb_queue_head_init(&sch->gso_skb); 943 __skb_queue_head_init(&sch->skb_bad_txq); 944 qdisc_skb_head_init(&sch->q); 945 gnet_stats_basic_sync_init(&sch->bstats); 946 spin_lock_init(&sch->q.lock); 947 948 if (ops->static_flags & TCQ_F_CPUSTATS) { 949 sch->cpu_bstats = 950 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync); 951 if (!sch->cpu_bstats) 952 goto errout1; 953 954 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); 955 if (!sch->cpu_qstats) { 956 free_percpu(sch->cpu_bstats); 957 goto errout1; 958 } 959 } 960 961 spin_lock_init(&sch->busylock); 962 lockdep_set_class(&sch->busylock, 963 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 964 965 /* seqlock has the same scope of busylock, for NOLOCK qdisc */ 966 spin_lock_init(&sch->seqlock); 967 lockdep_set_class(&sch->seqlock, 968 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 969 970 sch->ops = ops; 971 sch->flags = ops->static_flags; 972 sch->enqueue = ops->enqueue; 973 sch->dequeue = ops->dequeue; 974 sch->dev_queue = dev_queue; 975 netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL); 976 refcount_set(&sch->refcnt, 1); 977 978 return sch; 979 errout1: 980 kfree(sch); 981 errout: 982 return ERR_PTR(err); 983 } 984 985 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 986 const struct Qdisc_ops *ops, 987 unsigned int parentid, 988 struct netlink_ext_ack *extack) 989 { 990 struct Qdisc *sch; 991 992 if (!try_module_get(ops->owner)) { 993 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); 994 return NULL; 995 } 996 997 sch = qdisc_alloc(dev_queue, ops, extack); 998 if (IS_ERR(sch)) { 999 module_put(ops->owner); 1000 return NULL; 1001 } 1002 sch->parent = parentid; 1003 1004 if (!ops->init || ops->init(sch, NULL, extack) == 0) { 1005 trace_qdisc_create(ops, dev_queue->dev, parentid); 1006 return sch; 1007 } 1008 1009 qdisc_put(sch); 1010 return NULL; 1011 } 1012 EXPORT_SYMBOL(qdisc_create_dflt); 1013 1014 /* Under qdisc_lock(qdisc) and BH! */ 1015 1016 void qdisc_reset(struct Qdisc *qdisc) 1017 { 1018 const struct Qdisc_ops *ops = qdisc->ops; 1019 1020 trace_qdisc_reset(qdisc); 1021 1022 if (ops->reset) 1023 ops->reset(qdisc); 1024 1025 __skb_queue_purge(&qdisc->gso_skb); 1026 __skb_queue_purge(&qdisc->skb_bad_txq); 1027 1028 qdisc->q.qlen = 0; 1029 qdisc->qstats.backlog = 0; 1030 } 1031 EXPORT_SYMBOL(qdisc_reset); 1032 1033 void qdisc_free(struct Qdisc *qdisc) 1034 { 1035 if (qdisc_is_percpu_stats(qdisc)) { 1036 free_percpu(qdisc->cpu_bstats); 1037 free_percpu(qdisc->cpu_qstats); 1038 } 1039 1040 kfree(qdisc); 1041 } 1042 1043 static void qdisc_free_cb(struct rcu_head *head) 1044 { 1045 struct Qdisc *q = container_of(head, struct Qdisc, rcu); 1046 1047 qdisc_free(q); 1048 } 1049 1050 static void qdisc_destroy(struct Qdisc *qdisc) 1051 { 1052 const struct Qdisc_ops *ops = qdisc->ops; 1053 1054 #ifdef CONFIG_NET_SCHED 1055 qdisc_hash_del(qdisc); 1056 1057 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 1058 #endif 1059 gen_kill_estimator(&qdisc->rate_est); 1060 1061 qdisc_reset(qdisc); 1062 1063 if (ops->destroy) 1064 ops->destroy(qdisc); 1065 1066 module_put(ops->owner); 1067 netdev_put(qdisc_dev(qdisc), &qdisc->dev_tracker); 1068 1069 trace_qdisc_destroy(qdisc); 1070 1071 call_rcu(&qdisc->rcu, qdisc_free_cb); 1072 } 1073 1074 void qdisc_put(struct Qdisc *qdisc) 1075 { 1076 if (!qdisc) 1077 return; 1078 1079 if (qdisc->flags & TCQ_F_BUILTIN || 1080 !refcount_dec_and_test(&qdisc->refcnt)) 1081 return; 1082 1083 qdisc_destroy(qdisc); 1084 } 1085 EXPORT_SYMBOL(qdisc_put); 1086 1087 /* Version of qdisc_put() that is called with rtnl mutex unlocked. 1088 * Intended to be used as optimization, this function only takes rtnl lock if 1089 * qdisc reference counter reached zero. 1090 */ 1091 1092 void qdisc_put_unlocked(struct Qdisc *qdisc) 1093 { 1094 if (qdisc->flags & TCQ_F_BUILTIN || 1095 !refcount_dec_and_rtnl_lock(&qdisc->refcnt)) 1096 return; 1097 1098 qdisc_destroy(qdisc); 1099 rtnl_unlock(); 1100 } 1101 EXPORT_SYMBOL(qdisc_put_unlocked); 1102 1103 /* Attach toplevel qdisc to device queue. */ 1104 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 1105 struct Qdisc *qdisc) 1106 { 1107 struct Qdisc *oqdisc = dev_queue->qdisc_sleeping; 1108 spinlock_t *root_lock; 1109 1110 root_lock = qdisc_lock(oqdisc); 1111 spin_lock_bh(root_lock); 1112 1113 /* ... and graft new one */ 1114 if (qdisc == NULL) 1115 qdisc = &noop_qdisc; 1116 dev_queue->qdisc_sleeping = qdisc; 1117 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1118 1119 spin_unlock_bh(root_lock); 1120 1121 return oqdisc; 1122 } 1123 EXPORT_SYMBOL(dev_graft_qdisc); 1124 1125 static void shutdown_scheduler_queue(struct net_device *dev, 1126 struct netdev_queue *dev_queue, 1127 void *_qdisc_default) 1128 { 1129 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1130 struct Qdisc *qdisc_default = _qdisc_default; 1131 1132 if (qdisc) { 1133 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1134 dev_queue->qdisc_sleeping = qdisc_default; 1135 1136 qdisc_put(qdisc); 1137 } 1138 } 1139 1140 static void attach_one_default_qdisc(struct net_device *dev, 1141 struct netdev_queue *dev_queue, 1142 void *_unused) 1143 { 1144 struct Qdisc *qdisc; 1145 const struct Qdisc_ops *ops = default_qdisc_ops; 1146 1147 if (dev->priv_flags & IFF_NO_QUEUE) 1148 ops = &noqueue_qdisc_ops; 1149 else if(dev->type == ARPHRD_CAN) 1150 ops = &pfifo_fast_ops; 1151 1152 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); 1153 if (!qdisc) 1154 return; 1155 1156 if (!netif_is_multiqueue(dev)) 1157 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1158 dev_queue->qdisc_sleeping = qdisc; 1159 } 1160 1161 static void attach_default_qdiscs(struct net_device *dev) 1162 { 1163 struct netdev_queue *txq; 1164 struct Qdisc *qdisc; 1165 1166 txq = netdev_get_tx_queue(dev, 0); 1167 1168 if (!netif_is_multiqueue(dev) || 1169 dev->priv_flags & IFF_NO_QUEUE) { 1170 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1171 qdisc = txq->qdisc_sleeping; 1172 rcu_assign_pointer(dev->qdisc, qdisc); 1173 qdisc_refcount_inc(qdisc); 1174 } else { 1175 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); 1176 if (qdisc) { 1177 rcu_assign_pointer(dev->qdisc, qdisc); 1178 qdisc->ops->attach(qdisc); 1179 } 1180 } 1181 qdisc = rtnl_dereference(dev->qdisc); 1182 1183 /* Detect default qdisc setup/init failed and fallback to "noqueue" */ 1184 if (qdisc == &noop_qdisc) { 1185 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n", 1186 default_qdisc_ops->id, noqueue_qdisc_ops.id); 1187 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1188 dev->priv_flags |= IFF_NO_QUEUE; 1189 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1190 qdisc = txq->qdisc_sleeping; 1191 rcu_assign_pointer(dev->qdisc, qdisc); 1192 qdisc_refcount_inc(qdisc); 1193 dev->priv_flags ^= IFF_NO_QUEUE; 1194 } 1195 1196 #ifdef CONFIG_NET_SCHED 1197 if (qdisc != &noop_qdisc) 1198 qdisc_hash_add(qdisc, false); 1199 #endif 1200 } 1201 1202 static void transition_one_qdisc(struct net_device *dev, 1203 struct netdev_queue *dev_queue, 1204 void *_need_watchdog) 1205 { 1206 struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping; 1207 int *need_watchdog_p = _need_watchdog; 1208 1209 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 1210 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 1211 1212 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 1213 if (need_watchdog_p) { 1214 WRITE_ONCE(dev_queue->trans_start, 0); 1215 *need_watchdog_p = 1; 1216 } 1217 } 1218 1219 void dev_activate(struct net_device *dev) 1220 { 1221 int need_watchdog; 1222 1223 /* No queueing discipline is attached to device; 1224 * create default one for devices, which need queueing 1225 * and noqueue_qdisc for virtual interfaces 1226 */ 1227 1228 if (rtnl_dereference(dev->qdisc) == &noop_qdisc) 1229 attach_default_qdiscs(dev); 1230 1231 if (!netif_carrier_ok(dev)) 1232 /* Delay activation until next carrier-on event */ 1233 return; 1234 1235 need_watchdog = 0; 1236 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 1237 if (dev_ingress_queue(dev)) 1238 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 1239 1240 if (need_watchdog) { 1241 netif_trans_update(dev); 1242 dev_watchdog_up(dev); 1243 } 1244 } 1245 EXPORT_SYMBOL(dev_activate); 1246 1247 static void qdisc_deactivate(struct Qdisc *qdisc) 1248 { 1249 if (qdisc->flags & TCQ_F_BUILTIN) 1250 return; 1251 1252 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 1253 } 1254 1255 static void dev_deactivate_queue(struct net_device *dev, 1256 struct netdev_queue *dev_queue, 1257 void *_qdisc_default) 1258 { 1259 struct Qdisc *qdisc_default = _qdisc_default; 1260 struct Qdisc *qdisc; 1261 1262 qdisc = rtnl_dereference(dev_queue->qdisc); 1263 if (qdisc) { 1264 qdisc_deactivate(qdisc); 1265 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1266 } 1267 } 1268 1269 static void dev_reset_queue(struct net_device *dev, 1270 struct netdev_queue *dev_queue, 1271 void *_unused) 1272 { 1273 struct Qdisc *qdisc; 1274 bool nolock; 1275 1276 qdisc = dev_queue->qdisc_sleeping; 1277 if (!qdisc) 1278 return; 1279 1280 nolock = qdisc->flags & TCQ_F_NOLOCK; 1281 1282 if (nolock) 1283 spin_lock_bh(&qdisc->seqlock); 1284 spin_lock_bh(qdisc_lock(qdisc)); 1285 1286 qdisc_reset(qdisc); 1287 1288 spin_unlock_bh(qdisc_lock(qdisc)); 1289 if (nolock) { 1290 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 1291 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 1292 spin_unlock_bh(&qdisc->seqlock); 1293 } 1294 } 1295 1296 static bool some_qdisc_is_busy(struct net_device *dev) 1297 { 1298 unsigned int i; 1299 1300 for (i = 0; i < dev->num_tx_queues; i++) { 1301 struct netdev_queue *dev_queue; 1302 spinlock_t *root_lock; 1303 struct Qdisc *q; 1304 int val; 1305 1306 dev_queue = netdev_get_tx_queue(dev, i); 1307 q = dev_queue->qdisc_sleeping; 1308 1309 root_lock = qdisc_lock(q); 1310 spin_lock_bh(root_lock); 1311 1312 val = (qdisc_is_running(q) || 1313 test_bit(__QDISC_STATE_SCHED, &q->state)); 1314 1315 spin_unlock_bh(root_lock); 1316 1317 if (val) 1318 return true; 1319 } 1320 return false; 1321 } 1322 1323 /** 1324 * dev_deactivate_many - deactivate transmissions on several devices 1325 * @head: list of devices to deactivate 1326 * 1327 * This function returns only when all outstanding transmissions 1328 * have completed, unless all devices are in dismantle phase. 1329 */ 1330 void dev_deactivate_many(struct list_head *head) 1331 { 1332 struct net_device *dev; 1333 1334 list_for_each_entry(dev, head, close_list) { 1335 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 1336 &noop_qdisc); 1337 if (dev_ingress_queue(dev)) 1338 dev_deactivate_queue(dev, dev_ingress_queue(dev), 1339 &noop_qdisc); 1340 1341 dev_watchdog_down(dev); 1342 } 1343 1344 /* Wait for outstanding qdisc-less dev_queue_xmit calls or 1345 * outstanding qdisc enqueuing calls. 1346 * This is avoided if all devices are in dismantle phase : 1347 * Caller will call synchronize_net() for us 1348 */ 1349 synchronize_net(); 1350 1351 list_for_each_entry(dev, head, close_list) { 1352 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL); 1353 1354 if (dev_ingress_queue(dev)) 1355 dev_reset_queue(dev, dev_ingress_queue(dev), NULL); 1356 } 1357 1358 /* Wait for outstanding qdisc_run calls. */ 1359 list_for_each_entry(dev, head, close_list) { 1360 while (some_qdisc_is_busy(dev)) { 1361 /* wait_event() would avoid this sleep-loop but would 1362 * require expensive checks in the fast paths of packet 1363 * processing which isn't worth it. 1364 */ 1365 schedule_timeout_uninterruptible(1); 1366 } 1367 } 1368 } 1369 1370 void dev_deactivate(struct net_device *dev) 1371 { 1372 LIST_HEAD(single); 1373 1374 list_add(&dev->close_list, &single); 1375 dev_deactivate_many(&single); 1376 list_del(&single); 1377 } 1378 EXPORT_SYMBOL(dev_deactivate); 1379 1380 static int qdisc_change_tx_queue_len(struct net_device *dev, 1381 struct netdev_queue *dev_queue) 1382 { 1383 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1384 const struct Qdisc_ops *ops = qdisc->ops; 1385 1386 if (ops->change_tx_queue_len) 1387 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); 1388 return 0; 1389 } 1390 1391 void dev_qdisc_change_real_num_tx(struct net_device *dev, 1392 unsigned int new_real_tx) 1393 { 1394 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc); 1395 1396 if (qdisc->ops->change_real_num_tx) 1397 qdisc->ops->change_real_num_tx(qdisc, new_real_tx); 1398 } 1399 1400 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx) 1401 { 1402 #ifdef CONFIG_NET_SCHED 1403 struct net_device *dev = qdisc_dev(sch); 1404 struct Qdisc *qdisc; 1405 unsigned int i; 1406 1407 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) { 1408 qdisc = netdev_get_tx_queue(dev, i)->qdisc_sleeping; 1409 /* Only update the default qdiscs we created, 1410 * qdiscs with handles are always hashed. 1411 */ 1412 if (qdisc != &noop_qdisc && !qdisc->handle) 1413 qdisc_hash_del(qdisc); 1414 } 1415 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) { 1416 qdisc = netdev_get_tx_queue(dev, i)->qdisc_sleeping; 1417 if (qdisc != &noop_qdisc && !qdisc->handle) 1418 qdisc_hash_add(qdisc, false); 1419 } 1420 #endif 1421 } 1422 EXPORT_SYMBOL(mq_change_real_num_tx); 1423 1424 int dev_qdisc_change_tx_queue_len(struct net_device *dev) 1425 { 1426 bool up = dev->flags & IFF_UP; 1427 unsigned int i; 1428 int ret = 0; 1429 1430 if (up) 1431 dev_deactivate(dev); 1432 1433 for (i = 0; i < dev->num_tx_queues; i++) { 1434 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); 1435 1436 /* TODO: revert changes on a partial failure */ 1437 if (ret) 1438 break; 1439 } 1440 1441 if (up) 1442 dev_activate(dev); 1443 return ret; 1444 } 1445 1446 static void dev_init_scheduler_queue(struct net_device *dev, 1447 struct netdev_queue *dev_queue, 1448 void *_qdisc) 1449 { 1450 struct Qdisc *qdisc = _qdisc; 1451 1452 rcu_assign_pointer(dev_queue->qdisc, qdisc); 1453 dev_queue->qdisc_sleeping = qdisc; 1454 } 1455 1456 void dev_init_scheduler(struct net_device *dev) 1457 { 1458 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1459 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 1460 if (dev_ingress_queue(dev)) 1461 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1462 1463 timer_setup(&dev->watchdog_timer, dev_watchdog, 0); 1464 } 1465 1466 void dev_shutdown(struct net_device *dev) 1467 { 1468 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1469 if (dev_ingress_queue(dev)) 1470 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1471 qdisc_put(rtnl_dereference(dev->qdisc)); 1472 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1473 1474 WARN_ON(timer_pending(&dev->watchdog_timer)); 1475 } 1476 1477 /** 1478 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division 1479 * @rate: Rate to compute reciprocal division values of 1480 * @mult: Multiplier for reciprocal division 1481 * @shift: Shift for reciprocal division 1482 * 1483 * The multiplier and shift for reciprocal division by rate are stored 1484 * in mult and shift. 1485 * 1486 * The deal here is to replace a divide by a reciprocal one 1487 * in fast path (a reciprocal divide is a multiply and a shift) 1488 * 1489 * Normal formula would be : 1490 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 1491 * 1492 * We compute mult/shift to use instead : 1493 * time_in_ns = (len * mult) >> shift; 1494 * 1495 * We try to get the highest possible mult value for accuracy, 1496 * but have to make sure no overflows will ever happen. 1497 * 1498 * reciprocal_value() is not used here it doesn't handle 64-bit values. 1499 */ 1500 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift) 1501 { 1502 u64 factor = NSEC_PER_SEC; 1503 1504 *mult = 1; 1505 *shift = 0; 1506 1507 if (rate <= 0) 1508 return; 1509 1510 for (;;) { 1511 *mult = div64_u64(factor, rate); 1512 if (*mult & (1U << 31) || factor & (1ULL << 63)) 1513 break; 1514 factor <<= 1; 1515 (*shift)++; 1516 } 1517 } 1518 1519 void psched_ratecfg_precompute(struct psched_ratecfg *r, 1520 const struct tc_ratespec *conf, 1521 u64 rate64) 1522 { 1523 memset(r, 0, sizeof(*r)); 1524 r->overhead = conf->overhead; 1525 r->mpu = conf->mpu; 1526 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 1527 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 1528 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift); 1529 } 1530 EXPORT_SYMBOL(psched_ratecfg_precompute); 1531 1532 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64) 1533 { 1534 r->rate_pkts_ps = pktrate64; 1535 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift); 1536 } 1537 EXPORT_SYMBOL(psched_ppscfg_precompute); 1538 1539 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, 1540 struct tcf_proto *tp_head) 1541 { 1542 /* Protected with chain0->filter_chain_lock. 1543 * Can't access chain directly because tp_head can be NULL. 1544 */ 1545 struct mini_Qdisc *miniq_old = 1546 rcu_dereference_protected(*miniqp->p_miniq, 1); 1547 struct mini_Qdisc *miniq; 1548 1549 if (!tp_head) { 1550 RCU_INIT_POINTER(*miniqp->p_miniq, NULL); 1551 } else { 1552 miniq = miniq_old != &miniqp->miniq1 ? 1553 &miniqp->miniq1 : &miniqp->miniq2; 1554 1555 /* We need to make sure that readers won't see the miniq 1556 * we are about to modify. So ensure that at least one RCU 1557 * grace period has elapsed since the miniq was made 1558 * inactive. 1559 */ 1560 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1561 cond_synchronize_rcu(miniq->rcu_state); 1562 else if (!poll_state_synchronize_rcu(miniq->rcu_state)) 1563 synchronize_rcu_expedited(); 1564 1565 miniq->filter_list = tp_head; 1566 rcu_assign_pointer(*miniqp->p_miniq, miniq); 1567 } 1568 1569 if (miniq_old) 1570 /* This is counterpart of the rcu sync above. We need to 1571 * block potential new user of miniq_old until all readers 1572 * are not seeing it. 1573 */ 1574 miniq_old->rcu_state = start_poll_synchronize_rcu(); 1575 } 1576 EXPORT_SYMBOL(mini_qdisc_pair_swap); 1577 1578 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, 1579 struct tcf_block *block) 1580 { 1581 miniqp->miniq1.block = block; 1582 miniqp->miniq2.block = block; 1583 } 1584 EXPORT_SYMBOL(mini_qdisc_pair_block_init); 1585 1586 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, 1587 struct mini_Qdisc __rcu **p_miniq) 1588 { 1589 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; 1590 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; 1591 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; 1592 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; 1593 miniqp->miniq1.rcu_state = get_state_synchronize_rcu(); 1594 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state; 1595 miniqp->p_miniq = p_miniq; 1596 } 1597 EXPORT_SYMBOL(mini_qdisc_pair_init); 1598