1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_generic.c Generic packet scheduler routines. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 7 * - Ingress support 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/netdevice.h> 18 #include <linux/skbuff.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/init.h> 21 #include <linux/rcupdate.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 #include <linux/skb_array.h> 26 #include <linux/if_macvlan.h> 27 #include <net/sch_generic.h> 28 #include <net/pkt_sched.h> 29 #include <net/dst.h> 30 #include <trace/events/qdisc.h> 31 #include <trace/events/net.h> 32 #include <net/xfrm.h> 33 34 /* Qdisc to use by default */ 35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 36 EXPORT_SYMBOL(default_qdisc_ops); 37 38 static void qdisc_maybe_clear_missed(struct Qdisc *q, 39 const struct netdev_queue *txq) 40 { 41 clear_bit(__QDISC_STATE_MISSED, &q->state); 42 43 /* Make sure the below netif_xmit_frozen_or_stopped() 44 * checking happens after clearing STATE_MISSED. 45 */ 46 smp_mb__after_atomic(); 47 48 /* Checking netif_xmit_frozen_or_stopped() again to 49 * make sure STATE_MISSED is set if the STATE_MISSED 50 * set by netif_tx_wake_queue()'s rescheduling of 51 * net_tx_action() is cleared by the above clear_bit(). 52 */ 53 if (!netif_xmit_frozen_or_stopped(txq)) 54 set_bit(__QDISC_STATE_MISSED, &q->state); 55 else 56 set_bit(__QDISC_STATE_DRAINING, &q->state); 57 } 58 59 /* Main transmission queue. */ 60 61 /* Modifications to data participating in scheduling must be protected with 62 * qdisc_lock(qdisc) spinlock. 63 * 64 * The idea is the following: 65 * - enqueue, dequeue are serialized via qdisc root lock 66 * - ingress filtering is also serialized via qdisc root lock 67 * - updates to tree and tree walking are only done under the rtnl mutex. 68 */ 69 70 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL) 71 72 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) 73 { 74 const struct netdev_queue *txq = q->dev_queue; 75 spinlock_t *lock = NULL; 76 struct sk_buff *skb; 77 78 if (q->flags & TCQ_F_NOLOCK) { 79 lock = qdisc_lock(q); 80 spin_lock(lock); 81 } 82 83 skb = skb_peek(&q->skb_bad_txq); 84 if (skb) { 85 /* check the reason of requeuing without tx lock first */ 86 txq = skb_get_tx_queue(txq->dev, skb); 87 if (!netif_xmit_frozen_or_stopped(txq)) { 88 skb = __skb_dequeue(&q->skb_bad_txq); 89 if (qdisc_is_percpu_stats(q)) { 90 qdisc_qstats_cpu_backlog_dec(q, skb); 91 qdisc_qstats_cpu_qlen_dec(q); 92 } else { 93 qdisc_qstats_backlog_dec(q, skb); 94 q->q.qlen--; 95 } 96 } else { 97 skb = SKB_XOFF_MAGIC; 98 qdisc_maybe_clear_missed(q, txq); 99 } 100 } 101 102 if (lock) 103 spin_unlock(lock); 104 105 return skb; 106 } 107 108 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) 109 { 110 struct sk_buff *skb = skb_peek(&q->skb_bad_txq); 111 112 if (unlikely(skb)) 113 skb = __skb_dequeue_bad_txq(q); 114 115 return skb; 116 } 117 118 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, 119 struct sk_buff *skb) 120 { 121 spinlock_t *lock = NULL; 122 123 if (q->flags & TCQ_F_NOLOCK) { 124 lock = qdisc_lock(q); 125 spin_lock(lock); 126 } 127 128 __skb_queue_tail(&q->skb_bad_txq, skb); 129 130 if (qdisc_is_percpu_stats(q)) { 131 qdisc_qstats_cpu_backlog_inc(q, skb); 132 qdisc_qstats_cpu_qlen_inc(q); 133 } else { 134 qdisc_qstats_backlog_inc(q, skb); 135 q->q.qlen++; 136 } 137 138 if (lock) 139 spin_unlock(lock); 140 } 141 142 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 143 { 144 spinlock_t *lock = NULL; 145 146 if (q->flags & TCQ_F_NOLOCK) { 147 lock = qdisc_lock(q); 148 spin_lock(lock); 149 } 150 151 while (skb) { 152 struct sk_buff *next = skb->next; 153 154 __skb_queue_tail(&q->gso_skb, skb); 155 156 /* it's still part of the queue */ 157 if (qdisc_is_percpu_stats(q)) { 158 qdisc_qstats_cpu_requeues_inc(q); 159 qdisc_qstats_cpu_backlog_inc(q, skb); 160 qdisc_qstats_cpu_qlen_inc(q); 161 } else { 162 q->qstats.requeues++; 163 qdisc_qstats_backlog_inc(q, skb); 164 q->q.qlen++; 165 } 166 167 skb = next; 168 } 169 170 if (lock) { 171 spin_unlock(lock); 172 set_bit(__QDISC_STATE_MISSED, &q->state); 173 } else { 174 __netif_schedule(q); 175 } 176 } 177 178 static void try_bulk_dequeue_skb(struct Qdisc *q, 179 struct sk_buff *skb, 180 const struct netdev_queue *txq, 181 int *packets) 182 { 183 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; 184 185 while (bytelimit > 0) { 186 struct sk_buff *nskb = q->dequeue(q); 187 188 if (!nskb) 189 break; 190 191 bytelimit -= nskb->len; /* covers GSO len */ 192 skb->next = nskb; 193 skb = nskb; 194 (*packets)++; /* GSO counts as one pkt */ 195 } 196 skb_mark_not_on_list(skb); 197 } 198 199 /* This variant of try_bulk_dequeue_skb() makes sure 200 * all skbs in the chain are for the same txq 201 */ 202 static void try_bulk_dequeue_skb_slow(struct Qdisc *q, 203 struct sk_buff *skb, 204 int *packets) 205 { 206 int mapping = skb_get_queue_mapping(skb); 207 struct sk_buff *nskb; 208 int cnt = 0; 209 210 do { 211 nskb = q->dequeue(q); 212 if (!nskb) 213 break; 214 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { 215 qdisc_enqueue_skb_bad_txq(q, nskb); 216 break; 217 } 218 skb->next = nskb; 219 skb = nskb; 220 } while (++cnt < 8); 221 (*packets) += cnt; 222 skb_mark_not_on_list(skb); 223 } 224 225 /* Note that dequeue_skb can possibly return a SKB list (via skb->next). 226 * A requeued skb (via q->gso_skb) can also be a SKB list. 227 */ 228 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, 229 int *packets) 230 { 231 const struct netdev_queue *txq = q->dev_queue; 232 struct sk_buff *skb = NULL; 233 234 *packets = 1; 235 if (unlikely(!skb_queue_empty(&q->gso_skb))) { 236 spinlock_t *lock = NULL; 237 238 if (q->flags & TCQ_F_NOLOCK) { 239 lock = qdisc_lock(q); 240 spin_lock(lock); 241 } 242 243 skb = skb_peek(&q->gso_skb); 244 245 /* skb may be null if another cpu pulls gso_skb off in between 246 * empty check and lock. 247 */ 248 if (!skb) { 249 if (lock) 250 spin_unlock(lock); 251 goto validate; 252 } 253 254 /* skb in gso_skb were already validated */ 255 *validate = false; 256 if (xfrm_offload(skb)) 257 *validate = true; 258 /* check the reason of requeuing without tx lock first */ 259 txq = skb_get_tx_queue(txq->dev, skb); 260 if (!netif_xmit_frozen_or_stopped(txq)) { 261 skb = __skb_dequeue(&q->gso_skb); 262 if (qdisc_is_percpu_stats(q)) { 263 qdisc_qstats_cpu_backlog_dec(q, skb); 264 qdisc_qstats_cpu_qlen_dec(q); 265 } else { 266 qdisc_qstats_backlog_dec(q, skb); 267 q->q.qlen--; 268 } 269 } else { 270 skb = NULL; 271 qdisc_maybe_clear_missed(q, txq); 272 } 273 if (lock) 274 spin_unlock(lock); 275 goto trace; 276 } 277 validate: 278 *validate = true; 279 280 if ((q->flags & TCQ_F_ONETXQUEUE) && 281 netif_xmit_frozen_or_stopped(txq)) { 282 qdisc_maybe_clear_missed(q, txq); 283 return skb; 284 } 285 286 skb = qdisc_dequeue_skb_bad_txq(q); 287 if (unlikely(skb)) { 288 if (skb == SKB_XOFF_MAGIC) 289 return NULL; 290 goto bulk; 291 } 292 skb = q->dequeue(q); 293 if (skb) { 294 bulk: 295 if (qdisc_may_bulk(q)) 296 try_bulk_dequeue_skb(q, skb, txq, packets); 297 else 298 try_bulk_dequeue_skb_slow(q, skb, packets); 299 } 300 trace: 301 trace_qdisc_dequeue(q, txq, *packets, skb); 302 return skb; 303 } 304 305 /* 306 * Transmit possibly several skbs, and handle the return status as 307 * required. Owning qdisc running bit guarantees that only one CPU 308 * can execute this function. 309 * 310 * Returns to the caller: 311 * false - hardware queue frozen backoff 312 * true - feel free to send more pkts 313 */ 314 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 315 struct net_device *dev, struct netdev_queue *txq, 316 spinlock_t *root_lock, bool validate) 317 { 318 int ret = NETDEV_TX_BUSY; 319 bool again = false; 320 321 /* And release qdisc */ 322 if (root_lock) 323 spin_unlock(root_lock); 324 325 /* Note that we validate skb (GSO, checksum, ...) outside of locks */ 326 if (validate) 327 skb = validate_xmit_skb_list(skb, dev, &again); 328 329 #ifdef CONFIG_XFRM_OFFLOAD 330 if (unlikely(again)) { 331 if (root_lock) 332 spin_lock(root_lock); 333 334 dev_requeue_skb(skb, q); 335 return false; 336 } 337 #endif 338 339 if (likely(skb)) { 340 HARD_TX_LOCK(dev, txq, smp_processor_id()); 341 if (!netif_xmit_frozen_or_stopped(txq)) 342 skb = dev_hard_start_xmit(skb, dev, txq, &ret); 343 else 344 qdisc_maybe_clear_missed(q, txq); 345 346 HARD_TX_UNLOCK(dev, txq); 347 } else { 348 if (root_lock) 349 spin_lock(root_lock); 350 return true; 351 } 352 353 if (root_lock) 354 spin_lock(root_lock); 355 356 if (!dev_xmit_complete(ret)) { 357 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 358 if (unlikely(ret != NETDEV_TX_BUSY)) 359 net_warn_ratelimited("BUG %s code %d qlen %d\n", 360 dev->name, ret, q->q.qlen); 361 362 dev_requeue_skb(skb, q); 363 return false; 364 } 365 366 return true; 367 } 368 369 /* 370 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 371 * 372 * running seqcount guarantees only one CPU can process 373 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 374 * this queue. 375 * 376 * netif_tx_lock serializes accesses to device driver. 377 * 378 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 379 * if one is grabbed, another must be free. 380 * 381 * Note, that this procedure can be called by a watchdog timer 382 * 383 * Returns to the caller: 384 * 0 - queue is empty or throttled. 385 * >0 - queue is not empty. 386 * 387 */ 388 static inline bool qdisc_restart(struct Qdisc *q, int *packets) 389 { 390 spinlock_t *root_lock = NULL; 391 struct netdev_queue *txq; 392 struct net_device *dev; 393 struct sk_buff *skb; 394 bool validate; 395 396 /* Dequeue packet */ 397 skb = dequeue_skb(q, &validate, packets); 398 if (unlikely(!skb)) 399 return false; 400 401 if (!(q->flags & TCQ_F_NOLOCK)) 402 root_lock = qdisc_lock(q); 403 404 dev = qdisc_dev(q); 405 txq = skb_get_tx_queue(dev, skb); 406 407 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); 408 } 409 410 void __qdisc_run(struct Qdisc *q) 411 { 412 int quota = dev_tx_weight; 413 int packets; 414 415 while (qdisc_restart(q, &packets)) { 416 quota -= packets; 417 if (quota <= 0) { 418 if (q->flags & TCQ_F_NOLOCK) 419 set_bit(__QDISC_STATE_MISSED, &q->state); 420 else 421 __netif_schedule(q); 422 423 break; 424 } 425 } 426 } 427 428 unsigned long dev_trans_start(struct net_device *dev) 429 { 430 unsigned long val, res; 431 unsigned int i; 432 433 if (is_vlan_dev(dev)) 434 dev = vlan_dev_real_dev(dev); 435 else if (netif_is_macvlan(dev)) 436 dev = macvlan_dev_real_dev(dev); 437 res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start); 438 for (i = 1; i < dev->num_tx_queues; i++) { 439 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start); 440 if (val && time_after(val, res)) 441 res = val; 442 } 443 444 return res; 445 } 446 EXPORT_SYMBOL(dev_trans_start); 447 448 static void netif_freeze_queues(struct net_device *dev) 449 { 450 unsigned int i; 451 int cpu; 452 453 cpu = smp_processor_id(); 454 for (i = 0; i < dev->num_tx_queues; i++) { 455 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 456 457 /* We are the only thread of execution doing a 458 * freeze, but we have to grab the _xmit_lock in 459 * order to synchronize with threads which are in 460 * the ->hard_start_xmit() handler and already 461 * checked the frozen bit. 462 */ 463 __netif_tx_lock(txq, cpu); 464 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 465 __netif_tx_unlock(txq); 466 } 467 } 468 469 void netif_tx_lock(struct net_device *dev) 470 { 471 spin_lock(&dev->tx_global_lock); 472 netif_freeze_queues(dev); 473 } 474 EXPORT_SYMBOL(netif_tx_lock); 475 476 static void netif_unfreeze_queues(struct net_device *dev) 477 { 478 unsigned int i; 479 480 for (i = 0; i < dev->num_tx_queues; i++) { 481 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 482 483 /* No need to grab the _xmit_lock here. If the 484 * queue is not stopped for another reason, we 485 * force a schedule. 486 */ 487 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 488 netif_schedule_queue(txq); 489 } 490 } 491 492 void netif_tx_unlock(struct net_device *dev) 493 { 494 netif_unfreeze_queues(dev); 495 spin_unlock(&dev->tx_global_lock); 496 } 497 EXPORT_SYMBOL(netif_tx_unlock); 498 499 static void dev_watchdog(struct timer_list *t) 500 { 501 struct net_device *dev = from_timer(dev, t, watchdog_timer); 502 bool release = true; 503 504 spin_lock(&dev->tx_global_lock); 505 if (!qdisc_tx_is_noop(dev)) { 506 if (netif_device_present(dev) && 507 netif_running(dev) && 508 netif_carrier_ok(dev)) { 509 int some_queue_timedout = 0; 510 unsigned int i; 511 unsigned long trans_start; 512 513 for (i = 0; i < dev->num_tx_queues; i++) { 514 struct netdev_queue *txq; 515 516 txq = netdev_get_tx_queue(dev, i); 517 trans_start = READ_ONCE(txq->trans_start); 518 if (netif_xmit_stopped(txq) && 519 time_after(jiffies, (trans_start + 520 dev->watchdog_timeo))) { 521 some_queue_timedout = 1; 522 atomic_long_inc(&txq->trans_timeout); 523 break; 524 } 525 } 526 527 if (unlikely(some_queue_timedout)) { 528 trace_net_dev_xmit_timeout(dev, i); 529 WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n", 530 dev->name, netdev_drivername(dev), i); 531 netif_freeze_queues(dev); 532 dev->netdev_ops->ndo_tx_timeout(dev, i); 533 netif_unfreeze_queues(dev); 534 } 535 if (!mod_timer(&dev->watchdog_timer, 536 round_jiffies(jiffies + 537 dev->watchdog_timeo))) 538 release = false; 539 } 540 } 541 spin_unlock(&dev->tx_global_lock); 542 543 if (release) 544 netdev_put(dev, &dev->watchdog_dev_tracker); 545 } 546 547 void __netdev_watchdog_up(struct net_device *dev) 548 { 549 if (dev->netdev_ops->ndo_tx_timeout) { 550 if (dev->watchdog_timeo <= 0) 551 dev->watchdog_timeo = 5*HZ; 552 if (!mod_timer(&dev->watchdog_timer, 553 round_jiffies(jiffies + dev->watchdog_timeo))) 554 netdev_hold(dev, &dev->watchdog_dev_tracker, 555 GFP_ATOMIC); 556 } 557 } 558 EXPORT_SYMBOL_GPL(__netdev_watchdog_up); 559 560 static void dev_watchdog_up(struct net_device *dev) 561 { 562 __netdev_watchdog_up(dev); 563 } 564 565 static void dev_watchdog_down(struct net_device *dev) 566 { 567 netif_tx_lock_bh(dev); 568 if (del_timer(&dev->watchdog_timer)) 569 netdev_put(dev, &dev->watchdog_dev_tracker); 570 netif_tx_unlock_bh(dev); 571 } 572 573 /** 574 * netif_carrier_on - set carrier 575 * @dev: network device 576 * 577 * Device has detected acquisition of carrier. 578 */ 579 void netif_carrier_on(struct net_device *dev) 580 { 581 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 582 if (dev->reg_state == NETREG_UNINITIALIZED) 583 return; 584 atomic_inc(&dev->carrier_up_count); 585 linkwatch_fire_event(dev); 586 if (netif_running(dev)) 587 __netdev_watchdog_up(dev); 588 } 589 } 590 EXPORT_SYMBOL(netif_carrier_on); 591 592 /** 593 * netif_carrier_off - clear carrier 594 * @dev: network device 595 * 596 * Device has detected loss of carrier. 597 */ 598 void netif_carrier_off(struct net_device *dev) 599 { 600 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 601 if (dev->reg_state == NETREG_UNINITIALIZED) 602 return; 603 atomic_inc(&dev->carrier_down_count); 604 linkwatch_fire_event(dev); 605 } 606 } 607 EXPORT_SYMBOL(netif_carrier_off); 608 609 /** 610 * netif_carrier_event - report carrier state event 611 * @dev: network device 612 * 613 * Device has detected a carrier event but the carrier state wasn't changed. 614 * Use in drivers when querying carrier state asynchronously, to avoid missing 615 * events (link flaps) if link recovers before it's queried. 616 */ 617 void netif_carrier_event(struct net_device *dev) 618 { 619 if (dev->reg_state == NETREG_UNINITIALIZED) 620 return; 621 atomic_inc(&dev->carrier_up_count); 622 atomic_inc(&dev->carrier_down_count); 623 linkwatch_fire_event(dev); 624 } 625 EXPORT_SYMBOL_GPL(netif_carrier_event); 626 627 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 628 under all circumstances. It is difficult to invent anything faster or 629 cheaper. 630 */ 631 632 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 633 struct sk_buff **to_free) 634 { 635 __qdisc_drop(skb, to_free); 636 return NET_XMIT_CN; 637 } 638 639 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 640 { 641 return NULL; 642 } 643 644 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 645 .id = "noop", 646 .priv_size = 0, 647 .enqueue = noop_enqueue, 648 .dequeue = noop_dequeue, 649 .peek = noop_dequeue, 650 .owner = THIS_MODULE, 651 }; 652 653 static struct netdev_queue noop_netdev_queue = { 654 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc), 655 .qdisc_sleeping = &noop_qdisc, 656 }; 657 658 struct Qdisc noop_qdisc = { 659 .enqueue = noop_enqueue, 660 .dequeue = noop_dequeue, 661 .flags = TCQ_F_BUILTIN, 662 .ops = &noop_qdisc_ops, 663 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 664 .dev_queue = &noop_netdev_queue, 665 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 666 .gso_skb = { 667 .next = (struct sk_buff *)&noop_qdisc.gso_skb, 668 .prev = (struct sk_buff *)&noop_qdisc.gso_skb, 669 .qlen = 0, 670 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock), 671 }, 672 .skb_bad_txq = { 673 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 674 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 675 .qlen = 0, 676 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock), 677 }, 678 }; 679 EXPORT_SYMBOL(noop_qdisc); 680 681 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, 682 struct netlink_ext_ack *extack) 683 { 684 /* register_qdisc() assigns a default of noop_enqueue if unset, 685 * but __dev_queue_xmit() treats noqueue only as such 686 * if this is NULL - so clear it here. */ 687 qdisc->enqueue = NULL; 688 return 0; 689 } 690 691 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 692 .id = "noqueue", 693 .priv_size = 0, 694 .init = noqueue_init, 695 .enqueue = noop_enqueue, 696 .dequeue = noop_dequeue, 697 .peek = noop_dequeue, 698 .owner = THIS_MODULE, 699 }; 700 701 static const u8 prio2band[TC_PRIO_MAX + 1] = { 702 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1 703 }; 704 705 /* 3-band FIFO queue: old style, but should be a bit faster than 706 generic prio+fifo combination. 707 */ 708 709 #define PFIFO_FAST_BANDS 3 710 711 /* 712 * Private data for a pfifo_fast scheduler containing: 713 * - rings for priority bands 714 */ 715 struct pfifo_fast_priv { 716 struct skb_array q[PFIFO_FAST_BANDS]; 717 }; 718 719 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, 720 int band) 721 { 722 return &priv->q[band]; 723 } 724 725 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 726 struct sk_buff **to_free) 727 { 728 int band = prio2band[skb->priority & TC_PRIO_MAX]; 729 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 730 struct skb_array *q = band2list(priv, band); 731 unsigned int pkt_len = qdisc_pkt_len(skb); 732 int err; 733 734 err = skb_array_produce(q, skb); 735 736 if (unlikely(err)) { 737 if (qdisc_is_percpu_stats(qdisc)) 738 return qdisc_drop_cpu(skb, qdisc, to_free); 739 else 740 return qdisc_drop(skb, qdisc, to_free); 741 } 742 743 qdisc_update_stats_at_enqueue(qdisc, pkt_len); 744 return NET_XMIT_SUCCESS; 745 } 746 747 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 748 { 749 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 750 struct sk_buff *skb = NULL; 751 bool need_retry = true; 752 int band; 753 754 retry: 755 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 756 struct skb_array *q = band2list(priv, band); 757 758 if (__skb_array_empty(q)) 759 continue; 760 761 skb = __skb_array_consume(q); 762 } 763 if (likely(skb)) { 764 qdisc_update_stats_at_dequeue(qdisc, skb); 765 } else if (need_retry && 766 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) { 767 /* Delay clearing the STATE_MISSED here to reduce 768 * the overhead of the second spin_trylock() in 769 * qdisc_run_begin() and __netif_schedule() calling 770 * in qdisc_run_end(). 771 */ 772 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 773 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 774 775 /* Make sure dequeuing happens after clearing 776 * STATE_MISSED. 777 */ 778 smp_mb__after_atomic(); 779 780 need_retry = false; 781 782 goto retry; 783 } 784 785 return skb; 786 } 787 788 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 789 { 790 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 791 struct sk_buff *skb = NULL; 792 int band; 793 794 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 795 struct skb_array *q = band2list(priv, band); 796 797 skb = __skb_array_peek(q); 798 } 799 800 return skb; 801 } 802 803 static void pfifo_fast_reset(struct Qdisc *qdisc) 804 { 805 int i, band; 806 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 807 808 for (band = 0; band < PFIFO_FAST_BANDS; band++) { 809 struct skb_array *q = band2list(priv, band); 810 struct sk_buff *skb; 811 812 /* NULL ring is possible if destroy path is due to a failed 813 * skb_array_init() in pfifo_fast_init() case. 814 */ 815 if (!q->ring.queue) 816 continue; 817 818 while ((skb = __skb_array_consume(q)) != NULL) 819 kfree_skb(skb); 820 } 821 822 if (qdisc_is_percpu_stats(qdisc)) { 823 for_each_possible_cpu(i) { 824 struct gnet_stats_queue *q; 825 826 q = per_cpu_ptr(qdisc->cpu_qstats, i); 827 q->backlog = 0; 828 q->qlen = 0; 829 } 830 } 831 } 832 833 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 834 { 835 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 836 837 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1); 838 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 839 goto nla_put_failure; 840 return skb->len; 841 842 nla_put_failure: 843 return -1; 844 } 845 846 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, 847 struct netlink_ext_ack *extack) 848 { 849 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; 850 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 851 int prio; 852 853 /* guard against zero length rings */ 854 if (!qlen) 855 return -EINVAL; 856 857 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 858 struct skb_array *q = band2list(priv, prio); 859 int err; 860 861 err = skb_array_init(q, qlen, GFP_KERNEL); 862 if (err) 863 return -ENOMEM; 864 } 865 866 /* Can by-pass the queue discipline */ 867 qdisc->flags |= TCQ_F_CAN_BYPASS; 868 return 0; 869 } 870 871 static void pfifo_fast_destroy(struct Qdisc *sch) 872 { 873 struct pfifo_fast_priv *priv = qdisc_priv(sch); 874 int prio; 875 876 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 877 struct skb_array *q = band2list(priv, prio); 878 879 /* NULL ring is possible if destroy path is due to a failed 880 * skb_array_init() in pfifo_fast_init() case. 881 */ 882 if (!q->ring.queue) 883 continue; 884 /* Destroy ring but no need to kfree_skb because a call to 885 * pfifo_fast_reset() has already done that work. 886 */ 887 ptr_ring_cleanup(&q->ring, NULL); 888 } 889 } 890 891 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, 892 unsigned int new_len) 893 { 894 struct pfifo_fast_priv *priv = qdisc_priv(sch); 895 struct skb_array *bands[PFIFO_FAST_BANDS]; 896 int prio; 897 898 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 899 struct skb_array *q = band2list(priv, prio); 900 901 bands[prio] = q; 902 } 903 904 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len, 905 GFP_KERNEL); 906 } 907 908 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 909 .id = "pfifo_fast", 910 .priv_size = sizeof(struct pfifo_fast_priv), 911 .enqueue = pfifo_fast_enqueue, 912 .dequeue = pfifo_fast_dequeue, 913 .peek = pfifo_fast_peek, 914 .init = pfifo_fast_init, 915 .destroy = pfifo_fast_destroy, 916 .reset = pfifo_fast_reset, 917 .dump = pfifo_fast_dump, 918 .change_tx_queue_len = pfifo_fast_change_tx_queue_len, 919 .owner = THIS_MODULE, 920 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, 921 }; 922 EXPORT_SYMBOL(pfifo_fast_ops); 923 924 static struct lock_class_key qdisc_tx_busylock; 925 926 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 927 const struct Qdisc_ops *ops, 928 struct netlink_ext_ack *extack) 929 { 930 struct Qdisc *sch; 931 unsigned int size = sizeof(*sch) + ops->priv_size; 932 int err = -ENOBUFS; 933 struct net_device *dev; 934 935 if (!dev_queue) { 936 NL_SET_ERR_MSG(extack, "No device queue given"); 937 err = -EINVAL; 938 goto errout; 939 } 940 941 dev = dev_queue->dev; 942 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); 943 944 if (!sch) 945 goto errout; 946 __skb_queue_head_init(&sch->gso_skb); 947 __skb_queue_head_init(&sch->skb_bad_txq); 948 qdisc_skb_head_init(&sch->q); 949 gnet_stats_basic_sync_init(&sch->bstats); 950 spin_lock_init(&sch->q.lock); 951 952 if (ops->static_flags & TCQ_F_CPUSTATS) { 953 sch->cpu_bstats = 954 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync); 955 if (!sch->cpu_bstats) 956 goto errout1; 957 958 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); 959 if (!sch->cpu_qstats) { 960 free_percpu(sch->cpu_bstats); 961 goto errout1; 962 } 963 } 964 965 spin_lock_init(&sch->busylock); 966 lockdep_set_class(&sch->busylock, 967 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 968 969 /* seqlock has the same scope of busylock, for NOLOCK qdisc */ 970 spin_lock_init(&sch->seqlock); 971 lockdep_set_class(&sch->seqlock, 972 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 973 974 sch->ops = ops; 975 sch->flags = ops->static_flags; 976 sch->enqueue = ops->enqueue; 977 sch->dequeue = ops->dequeue; 978 sch->dev_queue = dev_queue; 979 netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL); 980 refcount_set(&sch->refcnt, 1); 981 982 return sch; 983 errout1: 984 kfree(sch); 985 errout: 986 return ERR_PTR(err); 987 } 988 989 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 990 const struct Qdisc_ops *ops, 991 unsigned int parentid, 992 struct netlink_ext_ack *extack) 993 { 994 struct Qdisc *sch; 995 996 if (!try_module_get(ops->owner)) { 997 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); 998 return NULL; 999 } 1000 1001 sch = qdisc_alloc(dev_queue, ops, extack); 1002 if (IS_ERR(sch)) { 1003 module_put(ops->owner); 1004 return NULL; 1005 } 1006 sch->parent = parentid; 1007 1008 if (!ops->init || ops->init(sch, NULL, extack) == 0) { 1009 trace_qdisc_create(ops, dev_queue->dev, parentid); 1010 return sch; 1011 } 1012 1013 qdisc_put(sch); 1014 return NULL; 1015 } 1016 EXPORT_SYMBOL(qdisc_create_dflt); 1017 1018 /* Under qdisc_lock(qdisc) and BH! */ 1019 1020 void qdisc_reset(struct Qdisc *qdisc) 1021 { 1022 const struct Qdisc_ops *ops = qdisc->ops; 1023 1024 trace_qdisc_reset(qdisc); 1025 1026 if (ops->reset) 1027 ops->reset(qdisc); 1028 1029 __skb_queue_purge(&qdisc->gso_skb); 1030 __skb_queue_purge(&qdisc->skb_bad_txq); 1031 1032 qdisc->q.qlen = 0; 1033 qdisc->qstats.backlog = 0; 1034 } 1035 EXPORT_SYMBOL(qdisc_reset); 1036 1037 void qdisc_free(struct Qdisc *qdisc) 1038 { 1039 if (qdisc_is_percpu_stats(qdisc)) { 1040 free_percpu(qdisc->cpu_bstats); 1041 free_percpu(qdisc->cpu_qstats); 1042 } 1043 1044 kfree(qdisc); 1045 } 1046 1047 static void qdisc_free_cb(struct rcu_head *head) 1048 { 1049 struct Qdisc *q = container_of(head, struct Qdisc, rcu); 1050 1051 qdisc_free(q); 1052 } 1053 1054 static void qdisc_destroy(struct Qdisc *qdisc) 1055 { 1056 const struct Qdisc_ops *ops = qdisc->ops; 1057 1058 #ifdef CONFIG_NET_SCHED 1059 qdisc_hash_del(qdisc); 1060 1061 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 1062 #endif 1063 gen_kill_estimator(&qdisc->rate_est); 1064 1065 qdisc_reset(qdisc); 1066 1067 if (ops->destroy) 1068 ops->destroy(qdisc); 1069 1070 module_put(ops->owner); 1071 netdev_put(qdisc_dev(qdisc), &qdisc->dev_tracker); 1072 1073 trace_qdisc_destroy(qdisc); 1074 1075 call_rcu(&qdisc->rcu, qdisc_free_cb); 1076 } 1077 1078 void qdisc_put(struct Qdisc *qdisc) 1079 { 1080 if (!qdisc) 1081 return; 1082 1083 if (qdisc->flags & TCQ_F_BUILTIN || 1084 !refcount_dec_and_test(&qdisc->refcnt)) 1085 return; 1086 1087 qdisc_destroy(qdisc); 1088 } 1089 EXPORT_SYMBOL(qdisc_put); 1090 1091 /* Version of qdisc_put() that is called with rtnl mutex unlocked. 1092 * Intended to be used as optimization, this function only takes rtnl lock if 1093 * qdisc reference counter reached zero. 1094 */ 1095 1096 void qdisc_put_unlocked(struct Qdisc *qdisc) 1097 { 1098 if (qdisc->flags & TCQ_F_BUILTIN || 1099 !refcount_dec_and_rtnl_lock(&qdisc->refcnt)) 1100 return; 1101 1102 qdisc_destroy(qdisc); 1103 rtnl_unlock(); 1104 } 1105 EXPORT_SYMBOL(qdisc_put_unlocked); 1106 1107 /* Attach toplevel qdisc to device queue. */ 1108 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 1109 struct Qdisc *qdisc) 1110 { 1111 struct Qdisc *oqdisc = dev_queue->qdisc_sleeping; 1112 spinlock_t *root_lock; 1113 1114 root_lock = qdisc_lock(oqdisc); 1115 spin_lock_bh(root_lock); 1116 1117 /* ... and graft new one */ 1118 if (qdisc == NULL) 1119 qdisc = &noop_qdisc; 1120 dev_queue->qdisc_sleeping = qdisc; 1121 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1122 1123 spin_unlock_bh(root_lock); 1124 1125 return oqdisc; 1126 } 1127 EXPORT_SYMBOL(dev_graft_qdisc); 1128 1129 static void attach_one_default_qdisc(struct net_device *dev, 1130 struct netdev_queue *dev_queue, 1131 void *_unused) 1132 { 1133 struct Qdisc *qdisc; 1134 const struct Qdisc_ops *ops = default_qdisc_ops; 1135 1136 if (dev->priv_flags & IFF_NO_QUEUE) 1137 ops = &noqueue_qdisc_ops; 1138 else if(dev->type == ARPHRD_CAN) 1139 ops = &pfifo_fast_ops; 1140 1141 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); 1142 if (!qdisc) 1143 return; 1144 1145 if (!netif_is_multiqueue(dev)) 1146 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1147 dev_queue->qdisc_sleeping = qdisc; 1148 } 1149 1150 static void attach_default_qdiscs(struct net_device *dev) 1151 { 1152 struct netdev_queue *txq; 1153 struct Qdisc *qdisc; 1154 1155 txq = netdev_get_tx_queue(dev, 0); 1156 1157 if (!netif_is_multiqueue(dev) || 1158 dev->priv_flags & IFF_NO_QUEUE) { 1159 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1160 qdisc = txq->qdisc_sleeping; 1161 rcu_assign_pointer(dev->qdisc, qdisc); 1162 qdisc_refcount_inc(qdisc); 1163 } else { 1164 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); 1165 if (qdisc) { 1166 rcu_assign_pointer(dev->qdisc, qdisc); 1167 qdisc->ops->attach(qdisc); 1168 } 1169 } 1170 qdisc = rtnl_dereference(dev->qdisc); 1171 1172 /* Detect default qdisc setup/init failed and fallback to "noqueue" */ 1173 if (qdisc == &noop_qdisc) { 1174 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n", 1175 default_qdisc_ops->id, noqueue_qdisc_ops.id); 1176 dev->priv_flags |= IFF_NO_QUEUE; 1177 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1178 qdisc = txq->qdisc_sleeping; 1179 rcu_assign_pointer(dev->qdisc, qdisc); 1180 qdisc_refcount_inc(qdisc); 1181 dev->priv_flags ^= IFF_NO_QUEUE; 1182 } 1183 1184 #ifdef CONFIG_NET_SCHED 1185 if (qdisc != &noop_qdisc) 1186 qdisc_hash_add(qdisc, false); 1187 #endif 1188 } 1189 1190 static void transition_one_qdisc(struct net_device *dev, 1191 struct netdev_queue *dev_queue, 1192 void *_need_watchdog) 1193 { 1194 struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping; 1195 int *need_watchdog_p = _need_watchdog; 1196 1197 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 1198 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 1199 1200 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 1201 if (need_watchdog_p) { 1202 WRITE_ONCE(dev_queue->trans_start, 0); 1203 *need_watchdog_p = 1; 1204 } 1205 } 1206 1207 void dev_activate(struct net_device *dev) 1208 { 1209 int need_watchdog; 1210 1211 /* No queueing discipline is attached to device; 1212 * create default one for devices, which need queueing 1213 * and noqueue_qdisc for virtual interfaces 1214 */ 1215 1216 if (rtnl_dereference(dev->qdisc) == &noop_qdisc) 1217 attach_default_qdiscs(dev); 1218 1219 if (!netif_carrier_ok(dev)) 1220 /* Delay activation until next carrier-on event */ 1221 return; 1222 1223 need_watchdog = 0; 1224 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 1225 if (dev_ingress_queue(dev)) 1226 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 1227 1228 if (need_watchdog) { 1229 netif_trans_update(dev); 1230 dev_watchdog_up(dev); 1231 } 1232 } 1233 EXPORT_SYMBOL(dev_activate); 1234 1235 static void qdisc_deactivate(struct Qdisc *qdisc) 1236 { 1237 if (qdisc->flags & TCQ_F_BUILTIN) 1238 return; 1239 1240 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 1241 } 1242 1243 static void dev_deactivate_queue(struct net_device *dev, 1244 struct netdev_queue *dev_queue, 1245 void *_qdisc_default) 1246 { 1247 struct Qdisc *qdisc_default = _qdisc_default; 1248 struct Qdisc *qdisc; 1249 1250 qdisc = rtnl_dereference(dev_queue->qdisc); 1251 if (qdisc) { 1252 qdisc_deactivate(qdisc); 1253 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1254 } 1255 } 1256 1257 static void dev_reset_queue(struct net_device *dev, 1258 struct netdev_queue *dev_queue, 1259 void *_unused) 1260 { 1261 struct Qdisc *qdisc; 1262 bool nolock; 1263 1264 qdisc = dev_queue->qdisc_sleeping; 1265 if (!qdisc) 1266 return; 1267 1268 nolock = qdisc->flags & TCQ_F_NOLOCK; 1269 1270 if (nolock) 1271 spin_lock_bh(&qdisc->seqlock); 1272 spin_lock_bh(qdisc_lock(qdisc)); 1273 1274 qdisc_reset(qdisc); 1275 1276 spin_unlock_bh(qdisc_lock(qdisc)); 1277 if (nolock) { 1278 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 1279 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 1280 spin_unlock_bh(&qdisc->seqlock); 1281 } 1282 } 1283 1284 static bool some_qdisc_is_busy(struct net_device *dev) 1285 { 1286 unsigned int i; 1287 1288 for (i = 0; i < dev->num_tx_queues; i++) { 1289 struct netdev_queue *dev_queue; 1290 spinlock_t *root_lock; 1291 struct Qdisc *q; 1292 int val; 1293 1294 dev_queue = netdev_get_tx_queue(dev, i); 1295 q = dev_queue->qdisc_sleeping; 1296 1297 root_lock = qdisc_lock(q); 1298 spin_lock_bh(root_lock); 1299 1300 val = (qdisc_is_running(q) || 1301 test_bit(__QDISC_STATE_SCHED, &q->state)); 1302 1303 spin_unlock_bh(root_lock); 1304 1305 if (val) 1306 return true; 1307 } 1308 return false; 1309 } 1310 1311 /** 1312 * dev_deactivate_many - deactivate transmissions on several devices 1313 * @head: list of devices to deactivate 1314 * 1315 * This function returns only when all outstanding transmissions 1316 * have completed, unless all devices are in dismantle phase. 1317 */ 1318 void dev_deactivate_many(struct list_head *head) 1319 { 1320 struct net_device *dev; 1321 1322 list_for_each_entry(dev, head, close_list) { 1323 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 1324 &noop_qdisc); 1325 if (dev_ingress_queue(dev)) 1326 dev_deactivate_queue(dev, dev_ingress_queue(dev), 1327 &noop_qdisc); 1328 1329 dev_watchdog_down(dev); 1330 } 1331 1332 /* Wait for outstanding qdisc-less dev_queue_xmit calls or 1333 * outstanding qdisc enqueuing calls. 1334 * This is avoided if all devices are in dismantle phase : 1335 * Caller will call synchronize_net() for us 1336 */ 1337 synchronize_net(); 1338 1339 list_for_each_entry(dev, head, close_list) { 1340 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL); 1341 1342 if (dev_ingress_queue(dev)) 1343 dev_reset_queue(dev, dev_ingress_queue(dev), NULL); 1344 } 1345 1346 /* Wait for outstanding qdisc_run calls. */ 1347 list_for_each_entry(dev, head, close_list) { 1348 while (some_qdisc_is_busy(dev)) { 1349 /* wait_event() would avoid this sleep-loop but would 1350 * require expensive checks in the fast paths of packet 1351 * processing which isn't worth it. 1352 */ 1353 schedule_timeout_uninterruptible(1); 1354 } 1355 } 1356 } 1357 1358 void dev_deactivate(struct net_device *dev) 1359 { 1360 LIST_HEAD(single); 1361 1362 list_add(&dev->close_list, &single); 1363 dev_deactivate_many(&single); 1364 list_del(&single); 1365 } 1366 EXPORT_SYMBOL(dev_deactivate); 1367 1368 static int qdisc_change_tx_queue_len(struct net_device *dev, 1369 struct netdev_queue *dev_queue) 1370 { 1371 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1372 const struct Qdisc_ops *ops = qdisc->ops; 1373 1374 if (ops->change_tx_queue_len) 1375 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); 1376 return 0; 1377 } 1378 1379 void dev_qdisc_change_real_num_tx(struct net_device *dev, 1380 unsigned int new_real_tx) 1381 { 1382 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc); 1383 1384 if (qdisc->ops->change_real_num_tx) 1385 qdisc->ops->change_real_num_tx(qdisc, new_real_tx); 1386 } 1387 1388 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx) 1389 { 1390 #ifdef CONFIG_NET_SCHED 1391 struct net_device *dev = qdisc_dev(sch); 1392 struct Qdisc *qdisc; 1393 unsigned int i; 1394 1395 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) { 1396 qdisc = netdev_get_tx_queue(dev, i)->qdisc_sleeping; 1397 /* Only update the default qdiscs we created, 1398 * qdiscs with handles are always hashed. 1399 */ 1400 if (qdisc != &noop_qdisc && !qdisc->handle) 1401 qdisc_hash_del(qdisc); 1402 } 1403 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) { 1404 qdisc = netdev_get_tx_queue(dev, i)->qdisc_sleeping; 1405 if (qdisc != &noop_qdisc && !qdisc->handle) 1406 qdisc_hash_add(qdisc, false); 1407 } 1408 #endif 1409 } 1410 EXPORT_SYMBOL(mq_change_real_num_tx); 1411 1412 int dev_qdisc_change_tx_queue_len(struct net_device *dev) 1413 { 1414 bool up = dev->flags & IFF_UP; 1415 unsigned int i; 1416 int ret = 0; 1417 1418 if (up) 1419 dev_deactivate(dev); 1420 1421 for (i = 0; i < dev->num_tx_queues; i++) { 1422 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); 1423 1424 /* TODO: revert changes on a partial failure */ 1425 if (ret) 1426 break; 1427 } 1428 1429 if (up) 1430 dev_activate(dev); 1431 return ret; 1432 } 1433 1434 static void dev_init_scheduler_queue(struct net_device *dev, 1435 struct netdev_queue *dev_queue, 1436 void *_qdisc) 1437 { 1438 struct Qdisc *qdisc = _qdisc; 1439 1440 rcu_assign_pointer(dev_queue->qdisc, qdisc); 1441 dev_queue->qdisc_sleeping = qdisc; 1442 } 1443 1444 void dev_init_scheduler(struct net_device *dev) 1445 { 1446 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1447 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 1448 if (dev_ingress_queue(dev)) 1449 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1450 1451 timer_setup(&dev->watchdog_timer, dev_watchdog, 0); 1452 } 1453 1454 static void shutdown_scheduler_queue(struct net_device *dev, 1455 struct netdev_queue *dev_queue, 1456 void *_qdisc_default) 1457 { 1458 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1459 struct Qdisc *qdisc_default = _qdisc_default; 1460 1461 if (qdisc) { 1462 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1463 dev_queue->qdisc_sleeping = qdisc_default; 1464 1465 qdisc_put(qdisc); 1466 } 1467 } 1468 1469 void dev_shutdown(struct net_device *dev) 1470 { 1471 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1472 if (dev_ingress_queue(dev)) 1473 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1474 qdisc_put(rtnl_dereference(dev->qdisc)); 1475 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1476 1477 WARN_ON(timer_pending(&dev->watchdog_timer)); 1478 } 1479 1480 /** 1481 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division 1482 * @rate: Rate to compute reciprocal division values of 1483 * @mult: Multiplier for reciprocal division 1484 * @shift: Shift for reciprocal division 1485 * 1486 * The multiplier and shift for reciprocal division by rate are stored 1487 * in mult and shift. 1488 * 1489 * The deal here is to replace a divide by a reciprocal one 1490 * in fast path (a reciprocal divide is a multiply and a shift) 1491 * 1492 * Normal formula would be : 1493 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 1494 * 1495 * We compute mult/shift to use instead : 1496 * time_in_ns = (len * mult) >> shift; 1497 * 1498 * We try to get the highest possible mult value for accuracy, 1499 * but have to make sure no overflows will ever happen. 1500 * 1501 * reciprocal_value() is not used here it doesn't handle 64-bit values. 1502 */ 1503 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift) 1504 { 1505 u64 factor = NSEC_PER_SEC; 1506 1507 *mult = 1; 1508 *shift = 0; 1509 1510 if (rate <= 0) 1511 return; 1512 1513 for (;;) { 1514 *mult = div64_u64(factor, rate); 1515 if (*mult & (1U << 31) || factor & (1ULL << 63)) 1516 break; 1517 factor <<= 1; 1518 (*shift)++; 1519 } 1520 } 1521 1522 void psched_ratecfg_precompute(struct psched_ratecfg *r, 1523 const struct tc_ratespec *conf, 1524 u64 rate64) 1525 { 1526 memset(r, 0, sizeof(*r)); 1527 r->overhead = conf->overhead; 1528 r->mpu = conf->mpu; 1529 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 1530 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 1531 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift); 1532 } 1533 EXPORT_SYMBOL(psched_ratecfg_precompute); 1534 1535 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64) 1536 { 1537 r->rate_pkts_ps = pktrate64; 1538 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift); 1539 } 1540 EXPORT_SYMBOL(psched_ppscfg_precompute); 1541 1542 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, 1543 struct tcf_proto *tp_head) 1544 { 1545 /* Protected with chain0->filter_chain_lock. 1546 * Can't access chain directly because tp_head can be NULL. 1547 */ 1548 struct mini_Qdisc *miniq_old = 1549 rcu_dereference_protected(*miniqp->p_miniq, 1); 1550 struct mini_Qdisc *miniq; 1551 1552 if (!tp_head) { 1553 RCU_INIT_POINTER(*miniqp->p_miniq, NULL); 1554 } else { 1555 miniq = miniq_old != &miniqp->miniq1 ? 1556 &miniqp->miniq1 : &miniqp->miniq2; 1557 1558 /* We need to make sure that readers won't see the miniq 1559 * we are about to modify. So ensure that at least one RCU 1560 * grace period has elapsed since the miniq was made 1561 * inactive. 1562 */ 1563 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1564 cond_synchronize_rcu(miniq->rcu_state); 1565 else if (!poll_state_synchronize_rcu(miniq->rcu_state)) 1566 synchronize_rcu_expedited(); 1567 1568 miniq->filter_list = tp_head; 1569 rcu_assign_pointer(*miniqp->p_miniq, miniq); 1570 } 1571 1572 if (miniq_old) 1573 /* This is counterpart of the rcu sync above. We need to 1574 * block potential new user of miniq_old until all readers 1575 * are not seeing it. 1576 */ 1577 miniq_old->rcu_state = start_poll_synchronize_rcu(); 1578 } 1579 EXPORT_SYMBOL(mini_qdisc_pair_swap); 1580 1581 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, 1582 struct tcf_block *block) 1583 { 1584 miniqp->miniq1.block = block; 1585 miniqp->miniq2.block = block; 1586 } 1587 EXPORT_SYMBOL(mini_qdisc_pair_block_init); 1588 1589 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, 1590 struct mini_Qdisc __rcu **p_miniq) 1591 { 1592 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; 1593 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; 1594 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; 1595 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; 1596 miniqp->miniq1.rcu_state = get_state_synchronize_rcu(); 1597 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state; 1598 miniqp->p_miniq = p_miniq; 1599 } 1600 EXPORT_SYMBOL(mini_qdisc_pair_init); 1601