1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_generic.c Generic packet scheduler routines. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 7 * - Ingress support 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/netdevice.h> 18 #include <linux/skbuff.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/init.h> 21 #include <linux/rcupdate.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 #include <linux/skb_array.h> 26 #include <linux/if_macvlan.h> 27 #include <net/sch_generic.h> 28 #include <net/pkt_sched.h> 29 #include <net/dst.h> 30 #include <trace/events/qdisc.h> 31 #include <trace/events/net.h> 32 #include <net/xfrm.h> 33 34 /* Qdisc to use by default */ 35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 36 EXPORT_SYMBOL(default_qdisc_ops); 37 38 /* Main transmission queue. */ 39 40 /* Modifications to data participating in scheduling must be protected with 41 * qdisc_lock(qdisc) spinlock. 42 * 43 * The idea is the following: 44 * - enqueue, dequeue are serialized via qdisc root lock 45 * - ingress filtering is also serialized via qdisc root lock 46 * - updates to tree and tree walking are only done under the rtnl mutex. 47 */ 48 49 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) 50 { 51 const struct netdev_queue *txq = q->dev_queue; 52 spinlock_t *lock = NULL; 53 struct sk_buff *skb; 54 55 if (q->flags & TCQ_F_NOLOCK) { 56 lock = qdisc_lock(q); 57 spin_lock(lock); 58 } 59 60 skb = skb_peek(&q->skb_bad_txq); 61 if (skb) { 62 /* check the reason of requeuing without tx lock first */ 63 txq = skb_get_tx_queue(txq->dev, skb); 64 if (!netif_xmit_frozen_or_stopped(txq)) { 65 skb = __skb_dequeue(&q->skb_bad_txq); 66 if (qdisc_is_percpu_stats(q)) { 67 qdisc_qstats_cpu_backlog_dec(q, skb); 68 qdisc_qstats_cpu_qlen_dec(q); 69 } else { 70 qdisc_qstats_backlog_dec(q, skb); 71 q->q.qlen--; 72 } 73 } else { 74 skb = NULL; 75 } 76 } 77 78 if (lock) 79 spin_unlock(lock); 80 81 return skb; 82 } 83 84 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) 85 { 86 struct sk_buff *skb = skb_peek(&q->skb_bad_txq); 87 88 if (unlikely(skb)) 89 skb = __skb_dequeue_bad_txq(q); 90 91 return skb; 92 } 93 94 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, 95 struct sk_buff *skb) 96 { 97 spinlock_t *lock = NULL; 98 99 if (q->flags & TCQ_F_NOLOCK) { 100 lock = qdisc_lock(q); 101 spin_lock(lock); 102 } 103 104 __skb_queue_tail(&q->skb_bad_txq, skb); 105 106 if (qdisc_is_percpu_stats(q)) { 107 qdisc_qstats_cpu_backlog_inc(q, skb); 108 qdisc_qstats_cpu_qlen_inc(q); 109 } else { 110 qdisc_qstats_backlog_inc(q, skb); 111 q->q.qlen++; 112 } 113 114 if (lock) 115 spin_unlock(lock); 116 } 117 118 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 119 { 120 spinlock_t *lock = NULL; 121 122 if (q->flags & TCQ_F_NOLOCK) { 123 lock = qdisc_lock(q); 124 spin_lock(lock); 125 } 126 127 while (skb) { 128 struct sk_buff *next = skb->next; 129 130 __skb_queue_tail(&q->gso_skb, skb); 131 132 /* it's still part of the queue */ 133 if (qdisc_is_percpu_stats(q)) { 134 qdisc_qstats_cpu_requeues_inc(q); 135 qdisc_qstats_cpu_backlog_inc(q, skb); 136 qdisc_qstats_cpu_qlen_inc(q); 137 } else { 138 q->qstats.requeues++; 139 qdisc_qstats_backlog_inc(q, skb); 140 q->q.qlen++; 141 } 142 143 skb = next; 144 } 145 if (lock) 146 spin_unlock(lock); 147 __netif_schedule(q); 148 } 149 150 static void try_bulk_dequeue_skb(struct Qdisc *q, 151 struct sk_buff *skb, 152 const struct netdev_queue *txq, 153 int *packets) 154 { 155 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; 156 157 while (bytelimit > 0) { 158 struct sk_buff *nskb = q->dequeue(q); 159 160 if (!nskb) 161 break; 162 163 bytelimit -= nskb->len; /* covers GSO len */ 164 skb->next = nskb; 165 skb = nskb; 166 (*packets)++; /* GSO counts as one pkt */ 167 } 168 skb_mark_not_on_list(skb); 169 } 170 171 /* This variant of try_bulk_dequeue_skb() makes sure 172 * all skbs in the chain are for the same txq 173 */ 174 static void try_bulk_dequeue_skb_slow(struct Qdisc *q, 175 struct sk_buff *skb, 176 int *packets) 177 { 178 int mapping = skb_get_queue_mapping(skb); 179 struct sk_buff *nskb; 180 int cnt = 0; 181 182 do { 183 nskb = q->dequeue(q); 184 if (!nskb) 185 break; 186 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { 187 qdisc_enqueue_skb_bad_txq(q, nskb); 188 break; 189 } 190 skb->next = nskb; 191 skb = nskb; 192 } while (++cnt < 8); 193 (*packets) += cnt; 194 skb_mark_not_on_list(skb); 195 } 196 197 /* Note that dequeue_skb can possibly return a SKB list (via skb->next). 198 * A requeued skb (via q->gso_skb) can also be a SKB list. 199 */ 200 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, 201 int *packets) 202 { 203 const struct netdev_queue *txq = q->dev_queue; 204 struct sk_buff *skb = NULL; 205 206 *packets = 1; 207 if (unlikely(!skb_queue_empty(&q->gso_skb))) { 208 spinlock_t *lock = NULL; 209 210 if (q->flags & TCQ_F_NOLOCK) { 211 lock = qdisc_lock(q); 212 spin_lock(lock); 213 } 214 215 skb = skb_peek(&q->gso_skb); 216 217 /* skb may be null if another cpu pulls gso_skb off in between 218 * empty check and lock. 219 */ 220 if (!skb) { 221 if (lock) 222 spin_unlock(lock); 223 goto validate; 224 } 225 226 /* skb in gso_skb were already validated */ 227 *validate = false; 228 if (xfrm_offload(skb)) 229 *validate = true; 230 /* check the reason of requeuing without tx lock first */ 231 txq = skb_get_tx_queue(txq->dev, skb); 232 if (!netif_xmit_frozen_or_stopped(txq)) { 233 skb = __skb_dequeue(&q->gso_skb); 234 if (qdisc_is_percpu_stats(q)) { 235 qdisc_qstats_cpu_backlog_dec(q, skb); 236 qdisc_qstats_cpu_qlen_dec(q); 237 } else { 238 qdisc_qstats_backlog_dec(q, skb); 239 q->q.qlen--; 240 } 241 } else { 242 skb = NULL; 243 } 244 if (lock) 245 spin_unlock(lock); 246 goto trace; 247 } 248 validate: 249 *validate = true; 250 251 if ((q->flags & TCQ_F_ONETXQUEUE) && 252 netif_xmit_frozen_or_stopped(txq)) 253 return skb; 254 255 skb = qdisc_dequeue_skb_bad_txq(q); 256 if (unlikely(skb)) 257 goto bulk; 258 skb = q->dequeue(q); 259 if (skb) { 260 bulk: 261 if (qdisc_may_bulk(q)) 262 try_bulk_dequeue_skb(q, skb, txq, packets); 263 else 264 try_bulk_dequeue_skb_slow(q, skb, packets); 265 } 266 trace: 267 trace_qdisc_dequeue(q, txq, *packets, skb); 268 return skb; 269 } 270 271 /* 272 * Transmit possibly several skbs, and handle the return status as 273 * required. Owning running seqcount bit guarantees that 274 * only one CPU can execute this function. 275 * 276 * Returns to the caller: 277 * false - hardware queue frozen backoff 278 * true - feel free to send more pkts 279 */ 280 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 281 struct net_device *dev, struct netdev_queue *txq, 282 spinlock_t *root_lock, bool validate) 283 { 284 int ret = NETDEV_TX_BUSY; 285 bool again = false; 286 287 /* And release qdisc */ 288 if (root_lock) 289 spin_unlock(root_lock); 290 291 /* Note that we validate skb (GSO, checksum, ...) outside of locks */ 292 if (validate) 293 skb = validate_xmit_skb_list(skb, dev, &again); 294 295 #ifdef CONFIG_XFRM_OFFLOAD 296 if (unlikely(again)) { 297 if (root_lock) 298 spin_lock(root_lock); 299 300 dev_requeue_skb(skb, q); 301 return false; 302 } 303 #endif 304 305 if (likely(skb)) { 306 HARD_TX_LOCK(dev, txq, smp_processor_id()); 307 if (!netif_xmit_frozen_or_stopped(txq)) 308 skb = dev_hard_start_xmit(skb, dev, txq, &ret); 309 310 HARD_TX_UNLOCK(dev, txq); 311 } else { 312 if (root_lock) 313 spin_lock(root_lock); 314 return true; 315 } 316 317 if (root_lock) 318 spin_lock(root_lock); 319 320 if (!dev_xmit_complete(ret)) { 321 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 322 if (unlikely(ret != NETDEV_TX_BUSY)) 323 net_warn_ratelimited("BUG %s code %d qlen %d\n", 324 dev->name, ret, q->q.qlen); 325 326 dev_requeue_skb(skb, q); 327 return false; 328 } 329 330 return true; 331 } 332 333 /* 334 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 335 * 336 * running seqcount guarantees only one CPU can process 337 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 338 * this queue. 339 * 340 * netif_tx_lock serializes accesses to device driver. 341 * 342 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 343 * if one is grabbed, another must be free. 344 * 345 * Note, that this procedure can be called by a watchdog timer 346 * 347 * Returns to the caller: 348 * 0 - queue is empty or throttled. 349 * >0 - queue is not empty. 350 * 351 */ 352 static inline bool qdisc_restart(struct Qdisc *q, int *packets) 353 { 354 spinlock_t *root_lock = NULL; 355 struct netdev_queue *txq; 356 struct net_device *dev; 357 struct sk_buff *skb; 358 bool validate; 359 360 /* Dequeue packet */ 361 skb = dequeue_skb(q, &validate, packets); 362 if (unlikely(!skb)) 363 return false; 364 365 if (!(q->flags & TCQ_F_NOLOCK)) 366 root_lock = qdisc_lock(q); 367 368 dev = qdisc_dev(q); 369 txq = skb_get_tx_queue(dev, skb); 370 371 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); 372 } 373 374 void __qdisc_run(struct Qdisc *q) 375 { 376 int quota = dev_tx_weight; 377 int packets; 378 379 while (qdisc_restart(q, &packets)) { 380 /* 381 * Ordered by possible occurrence: Postpone processing if 382 * 1. we've exceeded packet quota 383 * 2. another process needs the CPU; 384 */ 385 quota -= packets; 386 if (quota <= 0 || need_resched()) { 387 __netif_schedule(q); 388 break; 389 } 390 } 391 } 392 393 unsigned long dev_trans_start(struct net_device *dev) 394 { 395 unsigned long val, res; 396 unsigned int i; 397 398 if (is_vlan_dev(dev)) 399 dev = vlan_dev_real_dev(dev); 400 else if (netif_is_macvlan(dev)) 401 dev = macvlan_dev_real_dev(dev); 402 res = netdev_get_tx_queue(dev, 0)->trans_start; 403 for (i = 1; i < dev->num_tx_queues; i++) { 404 val = netdev_get_tx_queue(dev, i)->trans_start; 405 if (val && time_after(val, res)) 406 res = val; 407 } 408 409 return res; 410 } 411 EXPORT_SYMBOL(dev_trans_start); 412 413 static void dev_watchdog(struct timer_list *t) 414 { 415 struct net_device *dev = from_timer(dev, t, watchdog_timer); 416 417 netif_tx_lock(dev); 418 if (!qdisc_tx_is_noop(dev)) { 419 if (netif_device_present(dev) && 420 netif_running(dev) && 421 netif_carrier_ok(dev)) { 422 int some_queue_timedout = 0; 423 unsigned int i; 424 unsigned long trans_start; 425 426 for (i = 0; i < dev->num_tx_queues; i++) { 427 struct netdev_queue *txq; 428 429 txq = netdev_get_tx_queue(dev, i); 430 trans_start = txq->trans_start; 431 if (netif_xmit_stopped(txq) && 432 time_after(jiffies, (trans_start + 433 dev->watchdog_timeo))) { 434 some_queue_timedout = 1; 435 txq->trans_timeout++; 436 break; 437 } 438 } 439 440 if (some_queue_timedout) { 441 trace_net_dev_xmit_timeout(dev, i); 442 WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n", 443 dev->name, netdev_drivername(dev), i); 444 dev->netdev_ops->ndo_tx_timeout(dev); 445 } 446 if (!mod_timer(&dev->watchdog_timer, 447 round_jiffies(jiffies + 448 dev->watchdog_timeo))) 449 dev_hold(dev); 450 } 451 } 452 netif_tx_unlock(dev); 453 454 dev_put(dev); 455 } 456 457 void __netdev_watchdog_up(struct net_device *dev) 458 { 459 if (dev->netdev_ops->ndo_tx_timeout) { 460 if (dev->watchdog_timeo <= 0) 461 dev->watchdog_timeo = 5*HZ; 462 if (!mod_timer(&dev->watchdog_timer, 463 round_jiffies(jiffies + dev->watchdog_timeo))) 464 dev_hold(dev); 465 } 466 } 467 468 static void dev_watchdog_up(struct net_device *dev) 469 { 470 __netdev_watchdog_up(dev); 471 } 472 473 static void dev_watchdog_down(struct net_device *dev) 474 { 475 netif_tx_lock_bh(dev); 476 if (del_timer(&dev->watchdog_timer)) 477 dev_put(dev); 478 netif_tx_unlock_bh(dev); 479 } 480 481 /** 482 * netif_carrier_on - set carrier 483 * @dev: network device 484 * 485 * Device has detected acquisition of carrier. 486 */ 487 void netif_carrier_on(struct net_device *dev) 488 { 489 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 490 if (dev->reg_state == NETREG_UNINITIALIZED) 491 return; 492 atomic_inc(&dev->carrier_up_count); 493 linkwatch_fire_event(dev); 494 if (netif_running(dev)) 495 __netdev_watchdog_up(dev); 496 } 497 } 498 EXPORT_SYMBOL(netif_carrier_on); 499 500 /** 501 * netif_carrier_off - clear carrier 502 * @dev: network device 503 * 504 * Device has detected loss of carrier. 505 */ 506 void netif_carrier_off(struct net_device *dev) 507 { 508 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 509 if (dev->reg_state == NETREG_UNINITIALIZED) 510 return; 511 atomic_inc(&dev->carrier_down_count); 512 linkwatch_fire_event(dev); 513 } 514 } 515 EXPORT_SYMBOL(netif_carrier_off); 516 517 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 518 under all circumstances. It is difficult to invent anything faster or 519 cheaper. 520 */ 521 522 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 523 struct sk_buff **to_free) 524 { 525 __qdisc_drop(skb, to_free); 526 return NET_XMIT_CN; 527 } 528 529 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 530 { 531 return NULL; 532 } 533 534 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 535 .id = "noop", 536 .priv_size = 0, 537 .enqueue = noop_enqueue, 538 .dequeue = noop_dequeue, 539 .peek = noop_dequeue, 540 .owner = THIS_MODULE, 541 }; 542 543 static struct netdev_queue noop_netdev_queue = { 544 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc), 545 .qdisc_sleeping = &noop_qdisc, 546 }; 547 548 struct Qdisc noop_qdisc = { 549 .enqueue = noop_enqueue, 550 .dequeue = noop_dequeue, 551 .flags = TCQ_F_BUILTIN, 552 .ops = &noop_qdisc_ops, 553 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 554 .dev_queue = &noop_netdev_queue, 555 .running = SEQCNT_ZERO(noop_qdisc.running), 556 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 557 .gso_skb = { 558 .next = (struct sk_buff *)&noop_qdisc.gso_skb, 559 .prev = (struct sk_buff *)&noop_qdisc.gso_skb, 560 .qlen = 0, 561 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock), 562 }, 563 .skb_bad_txq = { 564 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 565 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 566 .qlen = 0, 567 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock), 568 }, 569 }; 570 EXPORT_SYMBOL(noop_qdisc); 571 572 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, 573 struct netlink_ext_ack *extack) 574 { 575 /* register_qdisc() assigns a default of noop_enqueue if unset, 576 * but __dev_queue_xmit() treats noqueue only as such 577 * if this is NULL - so clear it here. */ 578 qdisc->enqueue = NULL; 579 return 0; 580 } 581 582 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 583 .id = "noqueue", 584 .priv_size = 0, 585 .init = noqueue_init, 586 .enqueue = noop_enqueue, 587 .dequeue = noop_dequeue, 588 .peek = noop_dequeue, 589 .owner = THIS_MODULE, 590 }; 591 592 static const u8 prio2band[TC_PRIO_MAX + 1] = { 593 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1 594 }; 595 596 /* 3-band FIFO queue: old style, but should be a bit faster than 597 generic prio+fifo combination. 598 */ 599 600 #define PFIFO_FAST_BANDS 3 601 602 /* 603 * Private data for a pfifo_fast scheduler containing: 604 * - rings for priority bands 605 */ 606 struct pfifo_fast_priv { 607 struct skb_array q[PFIFO_FAST_BANDS]; 608 }; 609 610 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, 611 int band) 612 { 613 return &priv->q[band]; 614 } 615 616 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 617 struct sk_buff **to_free) 618 { 619 int band = prio2band[skb->priority & TC_PRIO_MAX]; 620 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 621 struct skb_array *q = band2list(priv, band); 622 unsigned int pkt_len = qdisc_pkt_len(skb); 623 int err; 624 625 err = skb_array_produce(q, skb); 626 627 if (unlikely(err)) 628 return qdisc_drop_cpu(skb, qdisc, to_free); 629 630 qdisc_update_stats_at_enqueue(qdisc, pkt_len); 631 return NET_XMIT_SUCCESS; 632 } 633 634 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 635 { 636 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 637 struct sk_buff *skb = NULL; 638 int band; 639 640 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 641 struct skb_array *q = band2list(priv, band); 642 643 if (__skb_array_empty(q)) 644 continue; 645 646 skb = __skb_array_consume(q); 647 } 648 if (likely(skb)) { 649 qdisc_update_stats_at_dequeue(qdisc, skb); 650 } else { 651 qdisc->empty = true; 652 } 653 654 return skb; 655 } 656 657 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 658 { 659 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 660 struct sk_buff *skb = NULL; 661 int band; 662 663 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 664 struct skb_array *q = band2list(priv, band); 665 666 skb = __skb_array_peek(q); 667 } 668 669 return skb; 670 } 671 672 static void pfifo_fast_reset(struct Qdisc *qdisc) 673 { 674 int i, band; 675 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 676 677 for (band = 0; band < PFIFO_FAST_BANDS; band++) { 678 struct skb_array *q = band2list(priv, band); 679 struct sk_buff *skb; 680 681 /* NULL ring is possible if destroy path is due to a failed 682 * skb_array_init() in pfifo_fast_init() case. 683 */ 684 if (!q->ring.queue) 685 continue; 686 687 while ((skb = __skb_array_consume(q)) != NULL) 688 kfree_skb(skb); 689 } 690 691 for_each_possible_cpu(i) { 692 struct gnet_stats_queue *q = per_cpu_ptr(qdisc->cpu_qstats, i); 693 694 q->backlog = 0; 695 q->qlen = 0; 696 } 697 } 698 699 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 700 { 701 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 702 703 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1); 704 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 705 goto nla_put_failure; 706 return skb->len; 707 708 nla_put_failure: 709 return -1; 710 } 711 712 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, 713 struct netlink_ext_ack *extack) 714 { 715 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; 716 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 717 int prio; 718 719 /* guard against zero length rings */ 720 if (!qlen) 721 return -EINVAL; 722 723 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 724 struct skb_array *q = band2list(priv, prio); 725 int err; 726 727 err = skb_array_init(q, qlen, GFP_KERNEL); 728 if (err) 729 return -ENOMEM; 730 } 731 732 /* Can by-pass the queue discipline */ 733 qdisc->flags |= TCQ_F_CAN_BYPASS; 734 return 0; 735 } 736 737 static void pfifo_fast_destroy(struct Qdisc *sch) 738 { 739 struct pfifo_fast_priv *priv = qdisc_priv(sch); 740 int prio; 741 742 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 743 struct skb_array *q = band2list(priv, prio); 744 745 /* NULL ring is possible if destroy path is due to a failed 746 * skb_array_init() in pfifo_fast_init() case. 747 */ 748 if (!q->ring.queue) 749 continue; 750 /* Destroy ring but no need to kfree_skb because a call to 751 * pfifo_fast_reset() has already done that work. 752 */ 753 ptr_ring_cleanup(&q->ring, NULL); 754 } 755 } 756 757 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, 758 unsigned int new_len) 759 { 760 struct pfifo_fast_priv *priv = qdisc_priv(sch); 761 struct skb_array *bands[PFIFO_FAST_BANDS]; 762 int prio; 763 764 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 765 struct skb_array *q = band2list(priv, prio); 766 767 bands[prio] = q; 768 } 769 770 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len, 771 GFP_KERNEL); 772 } 773 774 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 775 .id = "pfifo_fast", 776 .priv_size = sizeof(struct pfifo_fast_priv), 777 .enqueue = pfifo_fast_enqueue, 778 .dequeue = pfifo_fast_dequeue, 779 .peek = pfifo_fast_peek, 780 .init = pfifo_fast_init, 781 .destroy = pfifo_fast_destroy, 782 .reset = pfifo_fast_reset, 783 .dump = pfifo_fast_dump, 784 .change_tx_queue_len = pfifo_fast_change_tx_queue_len, 785 .owner = THIS_MODULE, 786 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, 787 }; 788 EXPORT_SYMBOL(pfifo_fast_ops); 789 790 static struct lock_class_key qdisc_tx_busylock; 791 static struct lock_class_key qdisc_running_key; 792 793 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 794 const struct Qdisc_ops *ops, 795 struct netlink_ext_ack *extack) 796 { 797 void *p; 798 struct Qdisc *sch; 799 unsigned int size = QDISC_ALIGN(sizeof(*sch)) + ops->priv_size; 800 int err = -ENOBUFS; 801 struct net_device *dev; 802 803 if (!dev_queue) { 804 NL_SET_ERR_MSG(extack, "No device queue given"); 805 err = -EINVAL; 806 goto errout; 807 } 808 809 dev = dev_queue->dev; 810 p = kzalloc_node(size, GFP_KERNEL, 811 netdev_queue_numa_node_read(dev_queue)); 812 813 if (!p) 814 goto errout; 815 sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p); 816 /* if we got non aligned memory, ask more and do alignment ourself */ 817 if (sch != p) { 818 kfree(p); 819 p = kzalloc_node(size + QDISC_ALIGNTO - 1, GFP_KERNEL, 820 netdev_queue_numa_node_read(dev_queue)); 821 if (!p) 822 goto errout; 823 sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p); 824 sch->padded = (char *) sch - (char *) p; 825 } 826 __skb_queue_head_init(&sch->gso_skb); 827 __skb_queue_head_init(&sch->skb_bad_txq); 828 qdisc_skb_head_init(&sch->q); 829 spin_lock_init(&sch->q.lock); 830 831 if (ops->static_flags & TCQ_F_CPUSTATS) { 832 sch->cpu_bstats = 833 netdev_alloc_pcpu_stats(struct gnet_stats_basic_cpu); 834 if (!sch->cpu_bstats) 835 goto errout1; 836 837 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); 838 if (!sch->cpu_qstats) { 839 free_percpu(sch->cpu_bstats); 840 goto errout1; 841 } 842 } 843 844 spin_lock_init(&sch->busylock); 845 lockdep_set_class(&sch->busylock, 846 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 847 848 /* seqlock has the same scope of busylock, for NOLOCK qdisc */ 849 spin_lock_init(&sch->seqlock); 850 lockdep_set_class(&sch->busylock, 851 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 852 853 seqcount_init(&sch->running); 854 lockdep_set_class(&sch->running, 855 dev->qdisc_running_key ?: &qdisc_running_key); 856 857 sch->ops = ops; 858 sch->flags = ops->static_flags; 859 sch->enqueue = ops->enqueue; 860 sch->dequeue = ops->dequeue; 861 sch->dev_queue = dev_queue; 862 sch->empty = true; 863 dev_hold(dev); 864 refcount_set(&sch->refcnt, 1); 865 866 return sch; 867 errout1: 868 kfree(p); 869 errout: 870 return ERR_PTR(err); 871 } 872 873 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 874 const struct Qdisc_ops *ops, 875 unsigned int parentid, 876 struct netlink_ext_ack *extack) 877 { 878 struct Qdisc *sch; 879 880 if (!try_module_get(ops->owner)) { 881 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); 882 return NULL; 883 } 884 885 sch = qdisc_alloc(dev_queue, ops, extack); 886 if (IS_ERR(sch)) { 887 module_put(ops->owner); 888 return NULL; 889 } 890 sch->parent = parentid; 891 892 if (!ops->init || ops->init(sch, NULL, extack) == 0) 893 return sch; 894 895 qdisc_put(sch); 896 return NULL; 897 } 898 EXPORT_SYMBOL(qdisc_create_dflt); 899 900 /* Under qdisc_lock(qdisc) and BH! */ 901 902 void qdisc_reset(struct Qdisc *qdisc) 903 { 904 const struct Qdisc_ops *ops = qdisc->ops; 905 struct sk_buff *skb, *tmp; 906 907 if (ops->reset) 908 ops->reset(qdisc); 909 910 skb_queue_walk_safe(&qdisc->gso_skb, skb, tmp) { 911 __skb_unlink(skb, &qdisc->gso_skb); 912 kfree_skb_list(skb); 913 } 914 915 skb_queue_walk_safe(&qdisc->skb_bad_txq, skb, tmp) { 916 __skb_unlink(skb, &qdisc->skb_bad_txq); 917 kfree_skb_list(skb); 918 } 919 920 qdisc->q.qlen = 0; 921 qdisc->qstats.backlog = 0; 922 } 923 EXPORT_SYMBOL(qdisc_reset); 924 925 void qdisc_free(struct Qdisc *qdisc) 926 { 927 if (qdisc_is_percpu_stats(qdisc)) { 928 free_percpu(qdisc->cpu_bstats); 929 free_percpu(qdisc->cpu_qstats); 930 } 931 932 kfree((char *) qdisc - qdisc->padded); 933 } 934 935 static void qdisc_free_cb(struct rcu_head *head) 936 { 937 struct Qdisc *q = container_of(head, struct Qdisc, rcu); 938 939 qdisc_free(q); 940 } 941 942 static void qdisc_destroy(struct Qdisc *qdisc) 943 { 944 const struct Qdisc_ops *ops = qdisc->ops; 945 struct sk_buff *skb, *tmp; 946 947 #ifdef CONFIG_NET_SCHED 948 qdisc_hash_del(qdisc); 949 950 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 951 #endif 952 gen_kill_estimator(&qdisc->rate_est); 953 if (ops->reset) 954 ops->reset(qdisc); 955 if (ops->destroy) 956 ops->destroy(qdisc); 957 958 module_put(ops->owner); 959 dev_put(qdisc_dev(qdisc)); 960 961 skb_queue_walk_safe(&qdisc->gso_skb, skb, tmp) { 962 __skb_unlink(skb, &qdisc->gso_skb); 963 kfree_skb_list(skb); 964 } 965 966 skb_queue_walk_safe(&qdisc->skb_bad_txq, skb, tmp) { 967 __skb_unlink(skb, &qdisc->skb_bad_txq); 968 kfree_skb_list(skb); 969 } 970 971 call_rcu(&qdisc->rcu, qdisc_free_cb); 972 } 973 974 void qdisc_put(struct Qdisc *qdisc) 975 { 976 if (qdisc->flags & TCQ_F_BUILTIN || 977 !refcount_dec_and_test(&qdisc->refcnt)) 978 return; 979 980 qdisc_destroy(qdisc); 981 } 982 EXPORT_SYMBOL(qdisc_put); 983 984 /* Version of qdisc_put() that is called with rtnl mutex unlocked. 985 * Intended to be used as optimization, this function only takes rtnl lock if 986 * qdisc reference counter reached zero. 987 */ 988 989 void qdisc_put_unlocked(struct Qdisc *qdisc) 990 { 991 if (qdisc->flags & TCQ_F_BUILTIN || 992 !refcount_dec_and_rtnl_lock(&qdisc->refcnt)) 993 return; 994 995 qdisc_destroy(qdisc); 996 rtnl_unlock(); 997 } 998 EXPORT_SYMBOL(qdisc_put_unlocked); 999 1000 /* Attach toplevel qdisc to device queue. */ 1001 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 1002 struct Qdisc *qdisc) 1003 { 1004 struct Qdisc *oqdisc = dev_queue->qdisc_sleeping; 1005 spinlock_t *root_lock; 1006 1007 root_lock = qdisc_lock(oqdisc); 1008 spin_lock_bh(root_lock); 1009 1010 /* ... and graft new one */ 1011 if (qdisc == NULL) 1012 qdisc = &noop_qdisc; 1013 dev_queue->qdisc_sleeping = qdisc; 1014 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1015 1016 spin_unlock_bh(root_lock); 1017 1018 return oqdisc; 1019 } 1020 EXPORT_SYMBOL(dev_graft_qdisc); 1021 1022 static void attach_one_default_qdisc(struct net_device *dev, 1023 struct netdev_queue *dev_queue, 1024 void *_unused) 1025 { 1026 struct Qdisc *qdisc; 1027 const struct Qdisc_ops *ops = default_qdisc_ops; 1028 1029 if (dev->priv_flags & IFF_NO_QUEUE) 1030 ops = &noqueue_qdisc_ops; 1031 1032 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); 1033 if (!qdisc) { 1034 netdev_info(dev, "activation failed\n"); 1035 return; 1036 } 1037 if (!netif_is_multiqueue(dev)) 1038 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1039 dev_queue->qdisc_sleeping = qdisc; 1040 } 1041 1042 static void attach_default_qdiscs(struct net_device *dev) 1043 { 1044 struct netdev_queue *txq; 1045 struct Qdisc *qdisc; 1046 1047 txq = netdev_get_tx_queue(dev, 0); 1048 1049 if (!netif_is_multiqueue(dev) || 1050 dev->priv_flags & IFF_NO_QUEUE) { 1051 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1052 dev->qdisc = txq->qdisc_sleeping; 1053 qdisc_refcount_inc(dev->qdisc); 1054 } else { 1055 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); 1056 if (qdisc) { 1057 dev->qdisc = qdisc; 1058 qdisc->ops->attach(qdisc); 1059 } 1060 } 1061 #ifdef CONFIG_NET_SCHED 1062 if (dev->qdisc != &noop_qdisc) 1063 qdisc_hash_add(dev->qdisc, false); 1064 #endif 1065 } 1066 1067 static void transition_one_qdisc(struct net_device *dev, 1068 struct netdev_queue *dev_queue, 1069 void *_need_watchdog) 1070 { 1071 struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping; 1072 int *need_watchdog_p = _need_watchdog; 1073 1074 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 1075 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 1076 1077 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 1078 if (need_watchdog_p) { 1079 dev_queue->trans_start = 0; 1080 *need_watchdog_p = 1; 1081 } 1082 } 1083 1084 void dev_activate(struct net_device *dev) 1085 { 1086 int need_watchdog; 1087 1088 /* No queueing discipline is attached to device; 1089 * create default one for devices, which need queueing 1090 * and noqueue_qdisc for virtual interfaces 1091 */ 1092 1093 if (dev->qdisc == &noop_qdisc) 1094 attach_default_qdiscs(dev); 1095 1096 if (!netif_carrier_ok(dev)) 1097 /* Delay activation until next carrier-on event */ 1098 return; 1099 1100 need_watchdog = 0; 1101 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 1102 if (dev_ingress_queue(dev)) 1103 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 1104 1105 if (need_watchdog) { 1106 netif_trans_update(dev); 1107 dev_watchdog_up(dev); 1108 } 1109 } 1110 EXPORT_SYMBOL(dev_activate); 1111 1112 static void dev_deactivate_queue(struct net_device *dev, 1113 struct netdev_queue *dev_queue, 1114 void *_qdisc_default) 1115 { 1116 struct Qdisc *qdisc_default = _qdisc_default; 1117 struct Qdisc *qdisc; 1118 1119 qdisc = rtnl_dereference(dev_queue->qdisc); 1120 if (qdisc) { 1121 bool nolock = qdisc->flags & TCQ_F_NOLOCK; 1122 1123 if (nolock) 1124 spin_lock_bh(&qdisc->seqlock); 1125 spin_lock_bh(qdisc_lock(qdisc)); 1126 1127 if (!(qdisc->flags & TCQ_F_BUILTIN)) 1128 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 1129 1130 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1131 qdisc_reset(qdisc); 1132 1133 spin_unlock_bh(qdisc_lock(qdisc)); 1134 if (nolock) 1135 spin_unlock_bh(&qdisc->seqlock); 1136 } 1137 } 1138 1139 static bool some_qdisc_is_busy(struct net_device *dev) 1140 { 1141 unsigned int i; 1142 1143 for (i = 0; i < dev->num_tx_queues; i++) { 1144 struct netdev_queue *dev_queue; 1145 spinlock_t *root_lock; 1146 struct Qdisc *q; 1147 int val; 1148 1149 dev_queue = netdev_get_tx_queue(dev, i); 1150 q = dev_queue->qdisc_sleeping; 1151 1152 root_lock = qdisc_lock(q); 1153 spin_lock_bh(root_lock); 1154 1155 val = (qdisc_is_running(q) || 1156 test_bit(__QDISC_STATE_SCHED, &q->state)); 1157 1158 spin_unlock_bh(root_lock); 1159 1160 if (val) 1161 return true; 1162 } 1163 return false; 1164 } 1165 1166 static void dev_qdisc_reset(struct net_device *dev, 1167 struct netdev_queue *dev_queue, 1168 void *none) 1169 { 1170 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1171 1172 if (qdisc) 1173 qdisc_reset(qdisc); 1174 } 1175 1176 /** 1177 * dev_deactivate_many - deactivate transmissions on several devices 1178 * @head: list of devices to deactivate 1179 * 1180 * This function returns only when all outstanding transmissions 1181 * have completed, unless all devices are in dismantle phase. 1182 */ 1183 void dev_deactivate_many(struct list_head *head) 1184 { 1185 struct net_device *dev; 1186 1187 list_for_each_entry(dev, head, close_list) { 1188 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 1189 &noop_qdisc); 1190 if (dev_ingress_queue(dev)) 1191 dev_deactivate_queue(dev, dev_ingress_queue(dev), 1192 &noop_qdisc); 1193 1194 dev_watchdog_down(dev); 1195 } 1196 1197 /* Wait for outstanding qdisc-less dev_queue_xmit calls. 1198 * This is avoided if all devices are in dismantle phase : 1199 * Caller will call synchronize_net() for us 1200 */ 1201 synchronize_net(); 1202 1203 /* Wait for outstanding qdisc_run calls. */ 1204 list_for_each_entry(dev, head, close_list) { 1205 while (some_qdisc_is_busy(dev)) 1206 yield(); 1207 /* The new qdisc is assigned at this point so we can safely 1208 * unwind stale skb lists and qdisc statistics 1209 */ 1210 netdev_for_each_tx_queue(dev, dev_qdisc_reset, NULL); 1211 if (dev_ingress_queue(dev)) 1212 dev_qdisc_reset(dev, dev_ingress_queue(dev), NULL); 1213 } 1214 } 1215 1216 void dev_deactivate(struct net_device *dev) 1217 { 1218 LIST_HEAD(single); 1219 1220 list_add(&dev->close_list, &single); 1221 dev_deactivate_many(&single); 1222 list_del(&single); 1223 } 1224 EXPORT_SYMBOL(dev_deactivate); 1225 1226 static int qdisc_change_tx_queue_len(struct net_device *dev, 1227 struct netdev_queue *dev_queue) 1228 { 1229 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1230 const struct Qdisc_ops *ops = qdisc->ops; 1231 1232 if (ops->change_tx_queue_len) 1233 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); 1234 return 0; 1235 } 1236 1237 int dev_qdisc_change_tx_queue_len(struct net_device *dev) 1238 { 1239 bool up = dev->flags & IFF_UP; 1240 unsigned int i; 1241 int ret = 0; 1242 1243 if (up) 1244 dev_deactivate(dev); 1245 1246 for (i = 0; i < dev->num_tx_queues; i++) { 1247 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); 1248 1249 /* TODO: revert changes on a partial failure */ 1250 if (ret) 1251 break; 1252 } 1253 1254 if (up) 1255 dev_activate(dev); 1256 return ret; 1257 } 1258 1259 static void dev_init_scheduler_queue(struct net_device *dev, 1260 struct netdev_queue *dev_queue, 1261 void *_qdisc) 1262 { 1263 struct Qdisc *qdisc = _qdisc; 1264 1265 rcu_assign_pointer(dev_queue->qdisc, qdisc); 1266 dev_queue->qdisc_sleeping = qdisc; 1267 } 1268 1269 void dev_init_scheduler(struct net_device *dev) 1270 { 1271 dev->qdisc = &noop_qdisc; 1272 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 1273 if (dev_ingress_queue(dev)) 1274 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1275 1276 timer_setup(&dev->watchdog_timer, dev_watchdog, 0); 1277 } 1278 1279 static void shutdown_scheduler_queue(struct net_device *dev, 1280 struct netdev_queue *dev_queue, 1281 void *_qdisc_default) 1282 { 1283 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1284 struct Qdisc *qdisc_default = _qdisc_default; 1285 1286 if (qdisc) { 1287 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1288 dev_queue->qdisc_sleeping = qdisc_default; 1289 1290 qdisc_put(qdisc); 1291 } 1292 } 1293 1294 void dev_shutdown(struct net_device *dev) 1295 { 1296 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1297 if (dev_ingress_queue(dev)) 1298 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1299 qdisc_put(dev->qdisc); 1300 dev->qdisc = &noop_qdisc; 1301 1302 WARN_ON(timer_pending(&dev->watchdog_timer)); 1303 } 1304 1305 void psched_ratecfg_precompute(struct psched_ratecfg *r, 1306 const struct tc_ratespec *conf, 1307 u64 rate64) 1308 { 1309 memset(r, 0, sizeof(*r)); 1310 r->overhead = conf->overhead; 1311 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 1312 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 1313 r->mult = 1; 1314 /* 1315 * The deal here is to replace a divide by a reciprocal one 1316 * in fast path (a reciprocal divide is a multiply and a shift) 1317 * 1318 * Normal formula would be : 1319 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 1320 * 1321 * We compute mult/shift to use instead : 1322 * time_in_ns = (len * mult) >> shift; 1323 * 1324 * We try to get the highest possible mult value for accuracy, 1325 * but have to make sure no overflows will ever happen. 1326 */ 1327 if (r->rate_bytes_ps > 0) { 1328 u64 factor = NSEC_PER_SEC; 1329 1330 for (;;) { 1331 r->mult = div64_u64(factor, r->rate_bytes_ps); 1332 if (r->mult & (1U << 31) || factor & (1ULL << 63)) 1333 break; 1334 factor <<= 1; 1335 r->shift++; 1336 } 1337 } 1338 } 1339 EXPORT_SYMBOL(psched_ratecfg_precompute); 1340 1341 static void mini_qdisc_rcu_func(struct rcu_head *head) 1342 { 1343 } 1344 1345 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, 1346 struct tcf_proto *tp_head) 1347 { 1348 /* Protected with chain0->filter_chain_lock. 1349 * Can't access chain directly because tp_head can be NULL. 1350 */ 1351 struct mini_Qdisc *miniq_old = 1352 rcu_dereference_protected(*miniqp->p_miniq, 1); 1353 struct mini_Qdisc *miniq; 1354 1355 if (!tp_head) { 1356 RCU_INIT_POINTER(*miniqp->p_miniq, NULL); 1357 /* Wait for flying RCU callback before it is freed. */ 1358 rcu_barrier(); 1359 return; 1360 } 1361 1362 miniq = !miniq_old || miniq_old == &miniqp->miniq2 ? 1363 &miniqp->miniq1 : &miniqp->miniq2; 1364 1365 /* We need to make sure that readers won't see the miniq 1366 * we are about to modify. So wait until previous call_rcu callback 1367 * is done. 1368 */ 1369 rcu_barrier(); 1370 miniq->filter_list = tp_head; 1371 rcu_assign_pointer(*miniqp->p_miniq, miniq); 1372 1373 if (miniq_old) 1374 /* This is counterpart of the rcu barriers above. We need to 1375 * block potential new user of miniq_old until all readers 1376 * are not seeing it. 1377 */ 1378 call_rcu(&miniq_old->rcu, mini_qdisc_rcu_func); 1379 } 1380 EXPORT_SYMBOL(mini_qdisc_pair_swap); 1381 1382 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, 1383 struct mini_Qdisc __rcu **p_miniq) 1384 { 1385 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; 1386 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; 1387 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; 1388 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; 1389 miniqp->p_miniq = p_miniq; 1390 } 1391 EXPORT_SYMBOL(mini_qdisc_pair_init); 1392