1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_generic.c Generic packet scheduler routines. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 7 * - Ingress support 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/netdevice.h> 18 #include <linux/skbuff.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/init.h> 21 #include <linux/rcupdate.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 #include <linux/skb_array.h> 26 #include <linux/if_macvlan.h> 27 #include <net/sch_generic.h> 28 #include <net/pkt_sched.h> 29 #include <net/dst.h> 30 #include <trace/events/qdisc.h> 31 #include <trace/events/net.h> 32 #include <net/xfrm.h> 33 34 /* Qdisc to use by default */ 35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 36 EXPORT_SYMBOL(default_qdisc_ops); 37 38 static void qdisc_maybe_clear_missed(struct Qdisc *q, 39 const struct netdev_queue *txq) 40 { 41 clear_bit(__QDISC_STATE_MISSED, &q->state); 42 43 /* Make sure the below netif_xmit_frozen_or_stopped() 44 * checking happens after clearing STATE_MISSED. 45 */ 46 smp_mb__after_atomic(); 47 48 /* Checking netif_xmit_frozen_or_stopped() again to 49 * make sure STATE_MISSED is set if the STATE_MISSED 50 * set by netif_tx_wake_queue()'s rescheduling of 51 * net_tx_action() is cleared by the above clear_bit(). 52 */ 53 if (!netif_xmit_frozen_or_stopped(txq)) 54 set_bit(__QDISC_STATE_MISSED, &q->state); 55 else 56 set_bit(__QDISC_STATE_DRAINING, &q->state); 57 } 58 59 /* Main transmission queue. */ 60 61 /* Modifications to data participating in scheduling must be protected with 62 * qdisc_lock(qdisc) spinlock. 63 * 64 * The idea is the following: 65 * - enqueue, dequeue are serialized via qdisc root lock 66 * - ingress filtering is also serialized via qdisc root lock 67 * - updates to tree and tree walking are only done under the rtnl mutex. 68 */ 69 70 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL) 71 72 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) 73 { 74 const struct netdev_queue *txq = q->dev_queue; 75 spinlock_t *lock = NULL; 76 struct sk_buff *skb; 77 78 if (q->flags & TCQ_F_NOLOCK) { 79 lock = qdisc_lock(q); 80 spin_lock(lock); 81 } 82 83 skb = skb_peek(&q->skb_bad_txq); 84 if (skb) { 85 /* check the reason of requeuing without tx lock first */ 86 txq = skb_get_tx_queue(txq->dev, skb); 87 if (!netif_xmit_frozen_or_stopped(txq)) { 88 skb = __skb_dequeue(&q->skb_bad_txq); 89 if (qdisc_is_percpu_stats(q)) { 90 qdisc_qstats_cpu_backlog_dec(q, skb); 91 qdisc_qstats_cpu_qlen_dec(q); 92 } else { 93 qdisc_qstats_backlog_dec(q, skb); 94 q->q.qlen--; 95 } 96 } else { 97 skb = SKB_XOFF_MAGIC; 98 qdisc_maybe_clear_missed(q, txq); 99 } 100 } 101 102 if (lock) 103 spin_unlock(lock); 104 105 return skb; 106 } 107 108 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) 109 { 110 struct sk_buff *skb = skb_peek(&q->skb_bad_txq); 111 112 if (unlikely(skb)) 113 skb = __skb_dequeue_bad_txq(q); 114 115 return skb; 116 } 117 118 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, 119 struct sk_buff *skb) 120 { 121 spinlock_t *lock = NULL; 122 123 if (q->flags & TCQ_F_NOLOCK) { 124 lock = qdisc_lock(q); 125 spin_lock(lock); 126 } 127 128 __skb_queue_tail(&q->skb_bad_txq, skb); 129 130 if (qdisc_is_percpu_stats(q)) { 131 qdisc_qstats_cpu_backlog_inc(q, skb); 132 qdisc_qstats_cpu_qlen_inc(q); 133 } else { 134 qdisc_qstats_backlog_inc(q, skb); 135 q->q.qlen++; 136 } 137 138 if (lock) 139 spin_unlock(lock); 140 } 141 142 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 143 { 144 spinlock_t *lock = NULL; 145 146 if (q->flags & TCQ_F_NOLOCK) { 147 lock = qdisc_lock(q); 148 spin_lock(lock); 149 } 150 151 while (skb) { 152 struct sk_buff *next = skb->next; 153 154 __skb_queue_tail(&q->gso_skb, skb); 155 156 /* it's still part of the queue */ 157 if (qdisc_is_percpu_stats(q)) { 158 qdisc_qstats_cpu_requeues_inc(q); 159 qdisc_qstats_cpu_backlog_inc(q, skb); 160 qdisc_qstats_cpu_qlen_inc(q); 161 } else { 162 q->qstats.requeues++; 163 qdisc_qstats_backlog_inc(q, skb); 164 q->q.qlen++; 165 } 166 167 skb = next; 168 } 169 170 if (lock) { 171 spin_unlock(lock); 172 set_bit(__QDISC_STATE_MISSED, &q->state); 173 } else { 174 __netif_schedule(q); 175 } 176 } 177 178 static void try_bulk_dequeue_skb(struct Qdisc *q, 179 struct sk_buff *skb, 180 const struct netdev_queue *txq, 181 int *packets) 182 { 183 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; 184 185 while (bytelimit > 0) { 186 struct sk_buff *nskb = q->dequeue(q); 187 188 if (!nskb) 189 break; 190 191 bytelimit -= nskb->len; /* covers GSO len */ 192 skb->next = nskb; 193 skb = nskb; 194 (*packets)++; /* GSO counts as one pkt */ 195 } 196 skb_mark_not_on_list(skb); 197 } 198 199 /* This variant of try_bulk_dequeue_skb() makes sure 200 * all skbs in the chain are for the same txq 201 */ 202 static void try_bulk_dequeue_skb_slow(struct Qdisc *q, 203 struct sk_buff *skb, 204 int *packets) 205 { 206 int mapping = skb_get_queue_mapping(skb); 207 struct sk_buff *nskb; 208 int cnt = 0; 209 210 do { 211 nskb = q->dequeue(q); 212 if (!nskb) 213 break; 214 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { 215 qdisc_enqueue_skb_bad_txq(q, nskb); 216 break; 217 } 218 skb->next = nskb; 219 skb = nskb; 220 } while (++cnt < 8); 221 (*packets) += cnt; 222 skb_mark_not_on_list(skb); 223 } 224 225 /* Note that dequeue_skb can possibly return a SKB list (via skb->next). 226 * A requeued skb (via q->gso_skb) can also be a SKB list. 227 */ 228 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, 229 int *packets) 230 { 231 const struct netdev_queue *txq = q->dev_queue; 232 struct sk_buff *skb = NULL; 233 234 *packets = 1; 235 if (unlikely(!skb_queue_empty(&q->gso_skb))) { 236 spinlock_t *lock = NULL; 237 238 if (q->flags & TCQ_F_NOLOCK) { 239 lock = qdisc_lock(q); 240 spin_lock(lock); 241 } 242 243 skb = skb_peek(&q->gso_skb); 244 245 /* skb may be null if another cpu pulls gso_skb off in between 246 * empty check and lock. 247 */ 248 if (!skb) { 249 if (lock) 250 spin_unlock(lock); 251 goto validate; 252 } 253 254 /* skb in gso_skb were already validated */ 255 *validate = false; 256 if (xfrm_offload(skb)) 257 *validate = true; 258 /* check the reason of requeuing without tx lock first */ 259 txq = skb_get_tx_queue(txq->dev, skb); 260 if (!netif_xmit_frozen_or_stopped(txq)) { 261 skb = __skb_dequeue(&q->gso_skb); 262 if (qdisc_is_percpu_stats(q)) { 263 qdisc_qstats_cpu_backlog_dec(q, skb); 264 qdisc_qstats_cpu_qlen_dec(q); 265 } else { 266 qdisc_qstats_backlog_dec(q, skb); 267 q->q.qlen--; 268 } 269 } else { 270 skb = NULL; 271 qdisc_maybe_clear_missed(q, txq); 272 } 273 if (lock) 274 spin_unlock(lock); 275 goto trace; 276 } 277 validate: 278 *validate = true; 279 280 if ((q->flags & TCQ_F_ONETXQUEUE) && 281 netif_xmit_frozen_or_stopped(txq)) { 282 qdisc_maybe_clear_missed(q, txq); 283 return skb; 284 } 285 286 skb = qdisc_dequeue_skb_bad_txq(q); 287 if (unlikely(skb)) { 288 if (skb == SKB_XOFF_MAGIC) 289 return NULL; 290 goto bulk; 291 } 292 skb = q->dequeue(q); 293 if (skb) { 294 bulk: 295 if (qdisc_may_bulk(q)) 296 try_bulk_dequeue_skb(q, skb, txq, packets); 297 else 298 try_bulk_dequeue_skb_slow(q, skb, packets); 299 } 300 trace: 301 trace_qdisc_dequeue(q, txq, *packets, skb); 302 return skb; 303 } 304 305 /* 306 * Transmit possibly several skbs, and handle the return status as 307 * required. Owning qdisc running bit guarantees that only one CPU 308 * can execute this function. 309 * 310 * Returns to the caller: 311 * false - hardware queue frozen backoff 312 * true - feel free to send more pkts 313 */ 314 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 315 struct net_device *dev, struct netdev_queue *txq, 316 spinlock_t *root_lock, bool validate) 317 { 318 int ret = NETDEV_TX_BUSY; 319 bool again = false; 320 321 /* And release qdisc */ 322 if (root_lock) 323 spin_unlock(root_lock); 324 325 /* Note that we validate skb (GSO, checksum, ...) outside of locks */ 326 if (validate) 327 skb = validate_xmit_skb_list(skb, dev, &again); 328 329 #ifdef CONFIG_XFRM_OFFLOAD 330 if (unlikely(again)) { 331 if (root_lock) 332 spin_lock(root_lock); 333 334 dev_requeue_skb(skb, q); 335 return false; 336 } 337 #endif 338 339 if (likely(skb)) { 340 HARD_TX_LOCK(dev, txq, smp_processor_id()); 341 if (!netif_xmit_frozen_or_stopped(txq)) 342 skb = dev_hard_start_xmit(skb, dev, txq, &ret); 343 else 344 qdisc_maybe_clear_missed(q, txq); 345 346 HARD_TX_UNLOCK(dev, txq); 347 } else { 348 if (root_lock) 349 spin_lock(root_lock); 350 return true; 351 } 352 353 if (root_lock) 354 spin_lock(root_lock); 355 356 if (!dev_xmit_complete(ret)) { 357 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 358 if (unlikely(ret != NETDEV_TX_BUSY)) 359 net_warn_ratelimited("BUG %s code %d qlen %d\n", 360 dev->name, ret, q->q.qlen); 361 362 dev_requeue_skb(skb, q); 363 return false; 364 } 365 366 return true; 367 } 368 369 /* 370 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 371 * 372 * running seqcount guarantees only one CPU can process 373 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 374 * this queue. 375 * 376 * netif_tx_lock serializes accesses to device driver. 377 * 378 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 379 * if one is grabbed, another must be free. 380 * 381 * Note, that this procedure can be called by a watchdog timer 382 * 383 * Returns to the caller: 384 * 0 - queue is empty or throttled. 385 * >0 - queue is not empty. 386 * 387 */ 388 static inline bool qdisc_restart(struct Qdisc *q, int *packets) 389 { 390 spinlock_t *root_lock = NULL; 391 struct netdev_queue *txq; 392 struct net_device *dev; 393 struct sk_buff *skb; 394 bool validate; 395 396 /* Dequeue packet */ 397 skb = dequeue_skb(q, &validate, packets); 398 if (unlikely(!skb)) 399 return false; 400 401 if (!(q->flags & TCQ_F_NOLOCK)) 402 root_lock = qdisc_lock(q); 403 404 dev = qdisc_dev(q); 405 txq = skb_get_tx_queue(dev, skb); 406 407 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); 408 } 409 410 void __qdisc_run(struct Qdisc *q) 411 { 412 int quota = dev_tx_weight; 413 int packets; 414 415 while (qdisc_restart(q, &packets)) { 416 quota -= packets; 417 if (quota <= 0) { 418 if (q->flags & TCQ_F_NOLOCK) 419 set_bit(__QDISC_STATE_MISSED, &q->state); 420 else 421 __netif_schedule(q); 422 423 break; 424 } 425 } 426 } 427 428 unsigned long dev_trans_start(struct net_device *dev) 429 { 430 unsigned long val, res; 431 unsigned int i; 432 433 if (is_vlan_dev(dev)) 434 dev = vlan_dev_real_dev(dev); 435 else if (netif_is_macvlan(dev)) 436 dev = macvlan_dev_real_dev(dev); 437 res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start); 438 for (i = 1; i < dev->num_tx_queues; i++) { 439 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start); 440 if (val && time_after(val, res)) 441 res = val; 442 } 443 444 return res; 445 } 446 EXPORT_SYMBOL(dev_trans_start); 447 448 static void netif_freeze_queues(struct net_device *dev) 449 { 450 unsigned int i; 451 int cpu; 452 453 cpu = smp_processor_id(); 454 for (i = 0; i < dev->num_tx_queues; i++) { 455 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 456 457 /* We are the only thread of execution doing a 458 * freeze, but we have to grab the _xmit_lock in 459 * order to synchronize with threads which are in 460 * the ->hard_start_xmit() handler and already 461 * checked the frozen bit. 462 */ 463 __netif_tx_lock(txq, cpu); 464 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 465 __netif_tx_unlock(txq); 466 } 467 } 468 469 void netif_tx_lock(struct net_device *dev) 470 { 471 spin_lock(&dev->tx_global_lock); 472 netif_freeze_queues(dev); 473 } 474 EXPORT_SYMBOL(netif_tx_lock); 475 476 static void netif_unfreeze_queues(struct net_device *dev) 477 { 478 unsigned int i; 479 480 for (i = 0; i < dev->num_tx_queues; i++) { 481 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 482 483 /* No need to grab the _xmit_lock here. If the 484 * queue is not stopped for another reason, we 485 * force a schedule. 486 */ 487 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 488 netif_schedule_queue(txq); 489 } 490 } 491 492 void netif_tx_unlock(struct net_device *dev) 493 { 494 netif_unfreeze_queues(dev); 495 spin_unlock(&dev->tx_global_lock); 496 } 497 EXPORT_SYMBOL(netif_tx_unlock); 498 499 static void dev_watchdog(struct timer_list *t) 500 { 501 struct net_device *dev = from_timer(dev, t, watchdog_timer); 502 bool release = true; 503 504 spin_lock(&dev->tx_global_lock); 505 if (!qdisc_tx_is_noop(dev)) { 506 if (netif_device_present(dev) && 507 netif_running(dev) && 508 netif_carrier_ok(dev)) { 509 int some_queue_timedout = 0; 510 unsigned int i; 511 unsigned long trans_start; 512 513 for (i = 0; i < dev->num_tx_queues; i++) { 514 struct netdev_queue *txq; 515 516 txq = netdev_get_tx_queue(dev, i); 517 trans_start = READ_ONCE(txq->trans_start); 518 if (netif_xmit_stopped(txq) && 519 time_after(jiffies, (trans_start + 520 dev->watchdog_timeo))) { 521 some_queue_timedout = 1; 522 atomic_long_inc(&txq->trans_timeout); 523 break; 524 } 525 } 526 527 if (unlikely(some_queue_timedout)) { 528 trace_net_dev_xmit_timeout(dev, i); 529 WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n", 530 dev->name, netdev_drivername(dev), i); 531 netif_freeze_queues(dev); 532 dev->netdev_ops->ndo_tx_timeout(dev, i); 533 netif_unfreeze_queues(dev); 534 } 535 if (!mod_timer(&dev->watchdog_timer, 536 round_jiffies(jiffies + 537 dev->watchdog_timeo))) 538 release = false; 539 } 540 } 541 spin_unlock(&dev->tx_global_lock); 542 543 if (release) 544 dev_put_track(dev, &dev->watchdog_dev_tracker); 545 } 546 547 void __netdev_watchdog_up(struct net_device *dev) 548 { 549 if (dev->netdev_ops->ndo_tx_timeout) { 550 if (dev->watchdog_timeo <= 0) 551 dev->watchdog_timeo = 5*HZ; 552 if (!mod_timer(&dev->watchdog_timer, 553 round_jiffies(jiffies + dev->watchdog_timeo))) 554 dev_hold_track(dev, &dev->watchdog_dev_tracker, GFP_ATOMIC); 555 } 556 } 557 EXPORT_SYMBOL_GPL(__netdev_watchdog_up); 558 559 static void dev_watchdog_up(struct net_device *dev) 560 { 561 __netdev_watchdog_up(dev); 562 } 563 564 static void dev_watchdog_down(struct net_device *dev) 565 { 566 netif_tx_lock_bh(dev); 567 if (del_timer(&dev->watchdog_timer)) 568 dev_put_track(dev, &dev->watchdog_dev_tracker); 569 netif_tx_unlock_bh(dev); 570 } 571 572 /** 573 * netif_carrier_on - set carrier 574 * @dev: network device 575 * 576 * Device has detected acquisition of carrier. 577 */ 578 void netif_carrier_on(struct net_device *dev) 579 { 580 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 581 if (dev->reg_state == NETREG_UNINITIALIZED) 582 return; 583 atomic_inc(&dev->carrier_up_count); 584 linkwatch_fire_event(dev); 585 if (netif_running(dev)) 586 __netdev_watchdog_up(dev); 587 } 588 } 589 EXPORT_SYMBOL(netif_carrier_on); 590 591 /** 592 * netif_carrier_off - clear carrier 593 * @dev: network device 594 * 595 * Device has detected loss of carrier. 596 */ 597 void netif_carrier_off(struct net_device *dev) 598 { 599 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 600 if (dev->reg_state == NETREG_UNINITIALIZED) 601 return; 602 atomic_inc(&dev->carrier_down_count); 603 linkwatch_fire_event(dev); 604 } 605 } 606 EXPORT_SYMBOL(netif_carrier_off); 607 608 /** 609 * netif_carrier_event - report carrier state event 610 * @dev: network device 611 * 612 * Device has detected a carrier event but the carrier state wasn't changed. 613 * Use in drivers when querying carrier state asynchronously, to avoid missing 614 * events (link flaps) if link recovers before it's queried. 615 */ 616 void netif_carrier_event(struct net_device *dev) 617 { 618 if (dev->reg_state == NETREG_UNINITIALIZED) 619 return; 620 atomic_inc(&dev->carrier_up_count); 621 atomic_inc(&dev->carrier_down_count); 622 linkwatch_fire_event(dev); 623 } 624 EXPORT_SYMBOL_GPL(netif_carrier_event); 625 626 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 627 under all circumstances. It is difficult to invent anything faster or 628 cheaper. 629 */ 630 631 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 632 struct sk_buff **to_free) 633 { 634 __qdisc_drop(skb, to_free); 635 return NET_XMIT_CN; 636 } 637 638 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 639 { 640 return NULL; 641 } 642 643 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 644 .id = "noop", 645 .priv_size = 0, 646 .enqueue = noop_enqueue, 647 .dequeue = noop_dequeue, 648 .peek = noop_dequeue, 649 .owner = THIS_MODULE, 650 }; 651 652 static struct netdev_queue noop_netdev_queue = { 653 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc), 654 .qdisc_sleeping = &noop_qdisc, 655 }; 656 657 struct Qdisc noop_qdisc = { 658 .enqueue = noop_enqueue, 659 .dequeue = noop_dequeue, 660 .flags = TCQ_F_BUILTIN, 661 .ops = &noop_qdisc_ops, 662 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 663 .dev_queue = &noop_netdev_queue, 664 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 665 .gso_skb = { 666 .next = (struct sk_buff *)&noop_qdisc.gso_skb, 667 .prev = (struct sk_buff *)&noop_qdisc.gso_skb, 668 .qlen = 0, 669 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock), 670 }, 671 .skb_bad_txq = { 672 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 673 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 674 .qlen = 0, 675 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock), 676 }, 677 }; 678 EXPORT_SYMBOL(noop_qdisc); 679 680 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, 681 struct netlink_ext_ack *extack) 682 { 683 /* register_qdisc() assigns a default of noop_enqueue if unset, 684 * but __dev_queue_xmit() treats noqueue only as such 685 * if this is NULL - so clear it here. */ 686 qdisc->enqueue = NULL; 687 return 0; 688 } 689 690 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 691 .id = "noqueue", 692 .priv_size = 0, 693 .init = noqueue_init, 694 .enqueue = noop_enqueue, 695 .dequeue = noop_dequeue, 696 .peek = noop_dequeue, 697 .owner = THIS_MODULE, 698 }; 699 700 static const u8 prio2band[TC_PRIO_MAX + 1] = { 701 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1 702 }; 703 704 /* 3-band FIFO queue: old style, but should be a bit faster than 705 generic prio+fifo combination. 706 */ 707 708 #define PFIFO_FAST_BANDS 3 709 710 /* 711 * Private data for a pfifo_fast scheduler containing: 712 * - rings for priority bands 713 */ 714 struct pfifo_fast_priv { 715 struct skb_array q[PFIFO_FAST_BANDS]; 716 }; 717 718 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, 719 int band) 720 { 721 return &priv->q[band]; 722 } 723 724 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 725 struct sk_buff **to_free) 726 { 727 int band = prio2band[skb->priority & TC_PRIO_MAX]; 728 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 729 struct skb_array *q = band2list(priv, band); 730 unsigned int pkt_len = qdisc_pkt_len(skb); 731 int err; 732 733 err = skb_array_produce(q, skb); 734 735 if (unlikely(err)) { 736 if (qdisc_is_percpu_stats(qdisc)) 737 return qdisc_drop_cpu(skb, qdisc, to_free); 738 else 739 return qdisc_drop(skb, qdisc, to_free); 740 } 741 742 qdisc_update_stats_at_enqueue(qdisc, pkt_len); 743 return NET_XMIT_SUCCESS; 744 } 745 746 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 747 { 748 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 749 struct sk_buff *skb = NULL; 750 bool need_retry = true; 751 int band; 752 753 retry: 754 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 755 struct skb_array *q = band2list(priv, band); 756 757 if (__skb_array_empty(q)) 758 continue; 759 760 skb = __skb_array_consume(q); 761 } 762 if (likely(skb)) { 763 qdisc_update_stats_at_dequeue(qdisc, skb); 764 } else if (need_retry && 765 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) { 766 /* Delay clearing the STATE_MISSED here to reduce 767 * the overhead of the second spin_trylock() in 768 * qdisc_run_begin() and __netif_schedule() calling 769 * in qdisc_run_end(). 770 */ 771 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 772 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 773 774 /* Make sure dequeuing happens after clearing 775 * STATE_MISSED. 776 */ 777 smp_mb__after_atomic(); 778 779 need_retry = false; 780 781 goto retry; 782 } 783 784 return skb; 785 } 786 787 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 788 { 789 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 790 struct sk_buff *skb = NULL; 791 int band; 792 793 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 794 struct skb_array *q = band2list(priv, band); 795 796 skb = __skb_array_peek(q); 797 } 798 799 return skb; 800 } 801 802 static void pfifo_fast_reset(struct Qdisc *qdisc) 803 { 804 int i, band; 805 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 806 807 for (band = 0; band < PFIFO_FAST_BANDS; band++) { 808 struct skb_array *q = band2list(priv, band); 809 struct sk_buff *skb; 810 811 /* NULL ring is possible if destroy path is due to a failed 812 * skb_array_init() in pfifo_fast_init() case. 813 */ 814 if (!q->ring.queue) 815 continue; 816 817 while ((skb = __skb_array_consume(q)) != NULL) 818 kfree_skb(skb); 819 } 820 821 if (qdisc_is_percpu_stats(qdisc)) { 822 for_each_possible_cpu(i) { 823 struct gnet_stats_queue *q; 824 825 q = per_cpu_ptr(qdisc->cpu_qstats, i); 826 q->backlog = 0; 827 q->qlen = 0; 828 } 829 } 830 } 831 832 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 833 { 834 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 835 836 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1); 837 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 838 goto nla_put_failure; 839 return skb->len; 840 841 nla_put_failure: 842 return -1; 843 } 844 845 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, 846 struct netlink_ext_ack *extack) 847 { 848 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; 849 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 850 int prio; 851 852 /* guard against zero length rings */ 853 if (!qlen) 854 return -EINVAL; 855 856 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 857 struct skb_array *q = band2list(priv, prio); 858 int err; 859 860 err = skb_array_init(q, qlen, GFP_KERNEL); 861 if (err) 862 return -ENOMEM; 863 } 864 865 /* Can by-pass the queue discipline */ 866 qdisc->flags |= TCQ_F_CAN_BYPASS; 867 return 0; 868 } 869 870 static void pfifo_fast_destroy(struct Qdisc *sch) 871 { 872 struct pfifo_fast_priv *priv = qdisc_priv(sch); 873 int prio; 874 875 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 876 struct skb_array *q = band2list(priv, prio); 877 878 /* NULL ring is possible if destroy path is due to a failed 879 * skb_array_init() in pfifo_fast_init() case. 880 */ 881 if (!q->ring.queue) 882 continue; 883 /* Destroy ring but no need to kfree_skb because a call to 884 * pfifo_fast_reset() has already done that work. 885 */ 886 ptr_ring_cleanup(&q->ring, NULL); 887 } 888 } 889 890 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, 891 unsigned int new_len) 892 { 893 struct pfifo_fast_priv *priv = qdisc_priv(sch); 894 struct skb_array *bands[PFIFO_FAST_BANDS]; 895 int prio; 896 897 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 898 struct skb_array *q = band2list(priv, prio); 899 900 bands[prio] = q; 901 } 902 903 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len, 904 GFP_KERNEL); 905 } 906 907 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 908 .id = "pfifo_fast", 909 .priv_size = sizeof(struct pfifo_fast_priv), 910 .enqueue = pfifo_fast_enqueue, 911 .dequeue = pfifo_fast_dequeue, 912 .peek = pfifo_fast_peek, 913 .init = pfifo_fast_init, 914 .destroy = pfifo_fast_destroy, 915 .reset = pfifo_fast_reset, 916 .dump = pfifo_fast_dump, 917 .change_tx_queue_len = pfifo_fast_change_tx_queue_len, 918 .owner = THIS_MODULE, 919 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, 920 }; 921 EXPORT_SYMBOL(pfifo_fast_ops); 922 923 static struct lock_class_key qdisc_tx_busylock; 924 925 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 926 const struct Qdisc_ops *ops, 927 struct netlink_ext_ack *extack) 928 { 929 struct Qdisc *sch; 930 unsigned int size = sizeof(*sch) + ops->priv_size; 931 int err = -ENOBUFS; 932 struct net_device *dev; 933 934 if (!dev_queue) { 935 NL_SET_ERR_MSG(extack, "No device queue given"); 936 err = -EINVAL; 937 goto errout; 938 } 939 940 dev = dev_queue->dev; 941 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); 942 943 if (!sch) 944 goto errout; 945 __skb_queue_head_init(&sch->gso_skb); 946 __skb_queue_head_init(&sch->skb_bad_txq); 947 qdisc_skb_head_init(&sch->q); 948 gnet_stats_basic_sync_init(&sch->bstats); 949 spin_lock_init(&sch->q.lock); 950 951 if (ops->static_flags & TCQ_F_CPUSTATS) { 952 sch->cpu_bstats = 953 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync); 954 if (!sch->cpu_bstats) 955 goto errout1; 956 957 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); 958 if (!sch->cpu_qstats) { 959 free_percpu(sch->cpu_bstats); 960 goto errout1; 961 } 962 } 963 964 spin_lock_init(&sch->busylock); 965 lockdep_set_class(&sch->busylock, 966 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 967 968 /* seqlock has the same scope of busylock, for NOLOCK qdisc */ 969 spin_lock_init(&sch->seqlock); 970 lockdep_set_class(&sch->seqlock, 971 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 972 973 sch->ops = ops; 974 sch->flags = ops->static_flags; 975 sch->enqueue = ops->enqueue; 976 sch->dequeue = ops->dequeue; 977 sch->dev_queue = dev_queue; 978 dev_hold_track(dev, &sch->dev_tracker, GFP_KERNEL); 979 refcount_set(&sch->refcnt, 1); 980 981 return sch; 982 errout1: 983 kfree(sch); 984 errout: 985 return ERR_PTR(err); 986 } 987 988 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 989 const struct Qdisc_ops *ops, 990 unsigned int parentid, 991 struct netlink_ext_ack *extack) 992 { 993 struct Qdisc *sch; 994 995 if (!try_module_get(ops->owner)) { 996 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); 997 return NULL; 998 } 999 1000 sch = qdisc_alloc(dev_queue, ops, extack); 1001 if (IS_ERR(sch)) { 1002 module_put(ops->owner); 1003 return NULL; 1004 } 1005 sch->parent = parentid; 1006 1007 if (!ops->init || ops->init(sch, NULL, extack) == 0) { 1008 trace_qdisc_create(ops, dev_queue->dev, parentid); 1009 return sch; 1010 } 1011 1012 qdisc_put(sch); 1013 return NULL; 1014 } 1015 EXPORT_SYMBOL(qdisc_create_dflt); 1016 1017 /* Under qdisc_lock(qdisc) and BH! */ 1018 1019 void qdisc_reset(struct Qdisc *qdisc) 1020 { 1021 const struct Qdisc_ops *ops = qdisc->ops; 1022 struct sk_buff *skb, *tmp; 1023 1024 trace_qdisc_reset(qdisc); 1025 1026 if (ops->reset) 1027 ops->reset(qdisc); 1028 1029 skb_queue_walk_safe(&qdisc->gso_skb, skb, tmp) { 1030 __skb_unlink(skb, &qdisc->gso_skb); 1031 kfree_skb_list(skb); 1032 } 1033 1034 skb_queue_walk_safe(&qdisc->skb_bad_txq, skb, tmp) { 1035 __skb_unlink(skb, &qdisc->skb_bad_txq); 1036 kfree_skb_list(skb); 1037 } 1038 1039 qdisc->q.qlen = 0; 1040 qdisc->qstats.backlog = 0; 1041 } 1042 EXPORT_SYMBOL(qdisc_reset); 1043 1044 void qdisc_free(struct Qdisc *qdisc) 1045 { 1046 if (qdisc_is_percpu_stats(qdisc)) { 1047 free_percpu(qdisc->cpu_bstats); 1048 free_percpu(qdisc->cpu_qstats); 1049 } 1050 1051 kfree(qdisc); 1052 } 1053 1054 static void qdisc_free_cb(struct rcu_head *head) 1055 { 1056 struct Qdisc *q = container_of(head, struct Qdisc, rcu); 1057 1058 qdisc_free(q); 1059 } 1060 1061 static void qdisc_destroy(struct Qdisc *qdisc) 1062 { 1063 const struct Qdisc_ops *ops = qdisc->ops; 1064 1065 #ifdef CONFIG_NET_SCHED 1066 qdisc_hash_del(qdisc); 1067 1068 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 1069 #endif 1070 gen_kill_estimator(&qdisc->rate_est); 1071 1072 qdisc_reset(qdisc); 1073 1074 if (ops->destroy) 1075 ops->destroy(qdisc); 1076 1077 module_put(ops->owner); 1078 dev_put_track(qdisc_dev(qdisc), &qdisc->dev_tracker); 1079 1080 trace_qdisc_destroy(qdisc); 1081 1082 call_rcu(&qdisc->rcu, qdisc_free_cb); 1083 } 1084 1085 void qdisc_put(struct Qdisc *qdisc) 1086 { 1087 if (!qdisc) 1088 return; 1089 1090 if (qdisc->flags & TCQ_F_BUILTIN || 1091 !refcount_dec_and_test(&qdisc->refcnt)) 1092 return; 1093 1094 qdisc_destroy(qdisc); 1095 } 1096 EXPORT_SYMBOL(qdisc_put); 1097 1098 /* Version of qdisc_put() that is called with rtnl mutex unlocked. 1099 * Intended to be used as optimization, this function only takes rtnl lock if 1100 * qdisc reference counter reached zero. 1101 */ 1102 1103 void qdisc_put_unlocked(struct Qdisc *qdisc) 1104 { 1105 if (qdisc->flags & TCQ_F_BUILTIN || 1106 !refcount_dec_and_rtnl_lock(&qdisc->refcnt)) 1107 return; 1108 1109 qdisc_destroy(qdisc); 1110 rtnl_unlock(); 1111 } 1112 EXPORT_SYMBOL(qdisc_put_unlocked); 1113 1114 /* Attach toplevel qdisc to device queue. */ 1115 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 1116 struct Qdisc *qdisc) 1117 { 1118 struct Qdisc *oqdisc = dev_queue->qdisc_sleeping; 1119 spinlock_t *root_lock; 1120 1121 root_lock = qdisc_lock(oqdisc); 1122 spin_lock_bh(root_lock); 1123 1124 /* ... and graft new one */ 1125 if (qdisc == NULL) 1126 qdisc = &noop_qdisc; 1127 dev_queue->qdisc_sleeping = qdisc; 1128 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1129 1130 spin_unlock_bh(root_lock); 1131 1132 return oqdisc; 1133 } 1134 EXPORT_SYMBOL(dev_graft_qdisc); 1135 1136 static void attach_one_default_qdisc(struct net_device *dev, 1137 struct netdev_queue *dev_queue, 1138 void *_unused) 1139 { 1140 struct Qdisc *qdisc; 1141 const struct Qdisc_ops *ops = default_qdisc_ops; 1142 1143 if (dev->priv_flags & IFF_NO_QUEUE) 1144 ops = &noqueue_qdisc_ops; 1145 else if(dev->type == ARPHRD_CAN) 1146 ops = &pfifo_fast_ops; 1147 1148 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); 1149 if (!qdisc) 1150 return; 1151 1152 if (!netif_is_multiqueue(dev)) 1153 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1154 dev_queue->qdisc_sleeping = qdisc; 1155 } 1156 1157 static void attach_default_qdiscs(struct net_device *dev) 1158 { 1159 struct netdev_queue *txq; 1160 struct Qdisc *qdisc; 1161 1162 txq = netdev_get_tx_queue(dev, 0); 1163 1164 if (!netif_is_multiqueue(dev) || 1165 dev->priv_flags & IFF_NO_QUEUE) { 1166 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1167 qdisc = txq->qdisc_sleeping; 1168 rcu_assign_pointer(dev->qdisc, qdisc); 1169 qdisc_refcount_inc(qdisc); 1170 } else { 1171 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); 1172 if (qdisc) { 1173 rcu_assign_pointer(dev->qdisc, qdisc); 1174 qdisc->ops->attach(qdisc); 1175 } 1176 } 1177 qdisc = rtnl_dereference(dev->qdisc); 1178 1179 /* Detect default qdisc setup/init failed and fallback to "noqueue" */ 1180 if (qdisc == &noop_qdisc) { 1181 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n", 1182 default_qdisc_ops->id, noqueue_qdisc_ops.id); 1183 dev->priv_flags |= IFF_NO_QUEUE; 1184 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1185 qdisc = txq->qdisc_sleeping; 1186 rcu_assign_pointer(dev->qdisc, qdisc); 1187 qdisc_refcount_inc(qdisc); 1188 dev->priv_flags ^= IFF_NO_QUEUE; 1189 } 1190 1191 #ifdef CONFIG_NET_SCHED 1192 if (qdisc != &noop_qdisc) 1193 qdisc_hash_add(qdisc, false); 1194 #endif 1195 } 1196 1197 static void transition_one_qdisc(struct net_device *dev, 1198 struct netdev_queue *dev_queue, 1199 void *_need_watchdog) 1200 { 1201 struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping; 1202 int *need_watchdog_p = _need_watchdog; 1203 1204 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 1205 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 1206 1207 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 1208 if (need_watchdog_p) { 1209 WRITE_ONCE(dev_queue->trans_start, 0); 1210 *need_watchdog_p = 1; 1211 } 1212 } 1213 1214 void dev_activate(struct net_device *dev) 1215 { 1216 int need_watchdog; 1217 1218 /* No queueing discipline is attached to device; 1219 * create default one for devices, which need queueing 1220 * and noqueue_qdisc for virtual interfaces 1221 */ 1222 1223 if (rtnl_dereference(dev->qdisc) == &noop_qdisc) 1224 attach_default_qdiscs(dev); 1225 1226 if (!netif_carrier_ok(dev)) 1227 /* Delay activation until next carrier-on event */ 1228 return; 1229 1230 need_watchdog = 0; 1231 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 1232 if (dev_ingress_queue(dev)) 1233 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 1234 1235 if (need_watchdog) { 1236 netif_trans_update(dev); 1237 dev_watchdog_up(dev); 1238 } 1239 } 1240 EXPORT_SYMBOL(dev_activate); 1241 1242 static void qdisc_deactivate(struct Qdisc *qdisc) 1243 { 1244 if (qdisc->flags & TCQ_F_BUILTIN) 1245 return; 1246 1247 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 1248 } 1249 1250 static void dev_deactivate_queue(struct net_device *dev, 1251 struct netdev_queue *dev_queue, 1252 void *_qdisc_default) 1253 { 1254 struct Qdisc *qdisc_default = _qdisc_default; 1255 struct Qdisc *qdisc; 1256 1257 qdisc = rtnl_dereference(dev_queue->qdisc); 1258 if (qdisc) { 1259 qdisc_deactivate(qdisc); 1260 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1261 } 1262 } 1263 1264 static void dev_reset_queue(struct net_device *dev, 1265 struct netdev_queue *dev_queue, 1266 void *_unused) 1267 { 1268 struct Qdisc *qdisc; 1269 bool nolock; 1270 1271 qdisc = dev_queue->qdisc_sleeping; 1272 if (!qdisc) 1273 return; 1274 1275 nolock = qdisc->flags & TCQ_F_NOLOCK; 1276 1277 if (nolock) 1278 spin_lock_bh(&qdisc->seqlock); 1279 spin_lock_bh(qdisc_lock(qdisc)); 1280 1281 qdisc_reset(qdisc); 1282 1283 spin_unlock_bh(qdisc_lock(qdisc)); 1284 if (nolock) { 1285 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 1286 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 1287 spin_unlock_bh(&qdisc->seqlock); 1288 } 1289 } 1290 1291 static bool some_qdisc_is_busy(struct net_device *dev) 1292 { 1293 unsigned int i; 1294 1295 for (i = 0; i < dev->num_tx_queues; i++) { 1296 struct netdev_queue *dev_queue; 1297 spinlock_t *root_lock; 1298 struct Qdisc *q; 1299 int val; 1300 1301 dev_queue = netdev_get_tx_queue(dev, i); 1302 q = dev_queue->qdisc_sleeping; 1303 1304 root_lock = qdisc_lock(q); 1305 spin_lock_bh(root_lock); 1306 1307 val = (qdisc_is_running(q) || 1308 test_bit(__QDISC_STATE_SCHED, &q->state)); 1309 1310 spin_unlock_bh(root_lock); 1311 1312 if (val) 1313 return true; 1314 } 1315 return false; 1316 } 1317 1318 /** 1319 * dev_deactivate_many - deactivate transmissions on several devices 1320 * @head: list of devices to deactivate 1321 * 1322 * This function returns only when all outstanding transmissions 1323 * have completed, unless all devices are in dismantle phase. 1324 */ 1325 void dev_deactivate_many(struct list_head *head) 1326 { 1327 struct net_device *dev; 1328 1329 list_for_each_entry(dev, head, close_list) { 1330 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 1331 &noop_qdisc); 1332 if (dev_ingress_queue(dev)) 1333 dev_deactivate_queue(dev, dev_ingress_queue(dev), 1334 &noop_qdisc); 1335 1336 dev_watchdog_down(dev); 1337 } 1338 1339 /* Wait for outstanding qdisc-less dev_queue_xmit calls or 1340 * outstanding qdisc enqueuing calls. 1341 * This is avoided if all devices are in dismantle phase : 1342 * Caller will call synchronize_net() for us 1343 */ 1344 synchronize_net(); 1345 1346 list_for_each_entry(dev, head, close_list) { 1347 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL); 1348 1349 if (dev_ingress_queue(dev)) 1350 dev_reset_queue(dev, dev_ingress_queue(dev), NULL); 1351 } 1352 1353 /* Wait for outstanding qdisc_run calls. */ 1354 list_for_each_entry(dev, head, close_list) { 1355 while (some_qdisc_is_busy(dev)) { 1356 /* wait_event() would avoid this sleep-loop but would 1357 * require expensive checks in the fast paths of packet 1358 * processing which isn't worth it. 1359 */ 1360 schedule_timeout_uninterruptible(1); 1361 } 1362 } 1363 } 1364 1365 void dev_deactivate(struct net_device *dev) 1366 { 1367 LIST_HEAD(single); 1368 1369 list_add(&dev->close_list, &single); 1370 dev_deactivate_many(&single); 1371 list_del(&single); 1372 } 1373 EXPORT_SYMBOL(dev_deactivate); 1374 1375 static int qdisc_change_tx_queue_len(struct net_device *dev, 1376 struct netdev_queue *dev_queue) 1377 { 1378 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1379 const struct Qdisc_ops *ops = qdisc->ops; 1380 1381 if (ops->change_tx_queue_len) 1382 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); 1383 return 0; 1384 } 1385 1386 void dev_qdisc_change_real_num_tx(struct net_device *dev, 1387 unsigned int new_real_tx) 1388 { 1389 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc); 1390 1391 if (qdisc->ops->change_real_num_tx) 1392 qdisc->ops->change_real_num_tx(qdisc, new_real_tx); 1393 } 1394 1395 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx) 1396 { 1397 #ifdef CONFIG_NET_SCHED 1398 struct net_device *dev = qdisc_dev(sch); 1399 struct Qdisc *qdisc; 1400 unsigned int i; 1401 1402 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) { 1403 qdisc = netdev_get_tx_queue(dev, i)->qdisc_sleeping; 1404 /* Only update the default qdiscs we created, 1405 * qdiscs with handles are always hashed. 1406 */ 1407 if (qdisc != &noop_qdisc && !qdisc->handle) 1408 qdisc_hash_del(qdisc); 1409 } 1410 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) { 1411 qdisc = netdev_get_tx_queue(dev, i)->qdisc_sleeping; 1412 if (qdisc != &noop_qdisc && !qdisc->handle) 1413 qdisc_hash_add(qdisc, false); 1414 } 1415 #endif 1416 } 1417 EXPORT_SYMBOL(mq_change_real_num_tx); 1418 1419 int dev_qdisc_change_tx_queue_len(struct net_device *dev) 1420 { 1421 bool up = dev->flags & IFF_UP; 1422 unsigned int i; 1423 int ret = 0; 1424 1425 if (up) 1426 dev_deactivate(dev); 1427 1428 for (i = 0; i < dev->num_tx_queues; i++) { 1429 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); 1430 1431 /* TODO: revert changes on a partial failure */ 1432 if (ret) 1433 break; 1434 } 1435 1436 if (up) 1437 dev_activate(dev); 1438 return ret; 1439 } 1440 1441 static void dev_init_scheduler_queue(struct net_device *dev, 1442 struct netdev_queue *dev_queue, 1443 void *_qdisc) 1444 { 1445 struct Qdisc *qdisc = _qdisc; 1446 1447 rcu_assign_pointer(dev_queue->qdisc, qdisc); 1448 dev_queue->qdisc_sleeping = qdisc; 1449 } 1450 1451 void dev_init_scheduler(struct net_device *dev) 1452 { 1453 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1454 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 1455 if (dev_ingress_queue(dev)) 1456 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1457 1458 timer_setup(&dev->watchdog_timer, dev_watchdog, 0); 1459 } 1460 1461 static void shutdown_scheduler_queue(struct net_device *dev, 1462 struct netdev_queue *dev_queue, 1463 void *_qdisc_default) 1464 { 1465 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 1466 struct Qdisc *qdisc_default = _qdisc_default; 1467 1468 if (qdisc) { 1469 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1470 dev_queue->qdisc_sleeping = qdisc_default; 1471 1472 qdisc_put(qdisc); 1473 } 1474 } 1475 1476 void dev_shutdown(struct net_device *dev) 1477 { 1478 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1479 if (dev_ingress_queue(dev)) 1480 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1481 qdisc_put(rtnl_dereference(dev->qdisc)); 1482 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1483 1484 WARN_ON(timer_pending(&dev->watchdog_timer)); 1485 } 1486 1487 /** 1488 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division 1489 * @rate: Rate to compute reciprocal division values of 1490 * @mult: Multiplier for reciprocal division 1491 * @shift: Shift for reciprocal division 1492 * 1493 * The multiplier and shift for reciprocal division by rate are stored 1494 * in mult and shift. 1495 * 1496 * The deal here is to replace a divide by a reciprocal one 1497 * in fast path (a reciprocal divide is a multiply and a shift) 1498 * 1499 * Normal formula would be : 1500 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 1501 * 1502 * We compute mult/shift to use instead : 1503 * time_in_ns = (len * mult) >> shift; 1504 * 1505 * We try to get the highest possible mult value for accuracy, 1506 * but have to make sure no overflows will ever happen. 1507 * 1508 * reciprocal_value() is not used here it doesn't handle 64-bit values. 1509 */ 1510 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift) 1511 { 1512 u64 factor = NSEC_PER_SEC; 1513 1514 *mult = 1; 1515 *shift = 0; 1516 1517 if (rate <= 0) 1518 return; 1519 1520 for (;;) { 1521 *mult = div64_u64(factor, rate); 1522 if (*mult & (1U << 31) || factor & (1ULL << 63)) 1523 break; 1524 factor <<= 1; 1525 (*shift)++; 1526 } 1527 } 1528 1529 void psched_ratecfg_precompute(struct psched_ratecfg *r, 1530 const struct tc_ratespec *conf, 1531 u64 rate64) 1532 { 1533 memset(r, 0, sizeof(*r)); 1534 r->overhead = conf->overhead; 1535 r->mpu = conf->mpu; 1536 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 1537 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 1538 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift); 1539 } 1540 EXPORT_SYMBOL(psched_ratecfg_precompute); 1541 1542 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64) 1543 { 1544 r->rate_pkts_ps = pktrate64; 1545 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift); 1546 } 1547 EXPORT_SYMBOL(psched_ppscfg_precompute); 1548 1549 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, 1550 struct tcf_proto *tp_head) 1551 { 1552 /* Protected with chain0->filter_chain_lock. 1553 * Can't access chain directly because tp_head can be NULL. 1554 */ 1555 struct mini_Qdisc *miniq_old = 1556 rcu_dereference_protected(*miniqp->p_miniq, 1); 1557 struct mini_Qdisc *miniq; 1558 1559 if (!tp_head) { 1560 RCU_INIT_POINTER(*miniqp->p_miniq, NULL); 1561 } else { 1562 miniq = miniq_old != &miniqp->miniq1 ? 1563 &miniqp->miniq1 : &miniqp->miniq2; 1564 1565 /* We need to make sure that readers won't see the miniq 1566 * we are about to modify. So ensure that at least one RCU 1567 * grace period has elapsed since the miniq was made 1568 * inactive. 1569 */ 1570 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1571 cond_synchronize_rcu(miniq->rcu_state); 1572 else if (!poll_state_synchronize_rcu(miniq->rcu_state)) 1573 synchronize_rcu_expedited(); 1574 1575 miniq->filter_list = tp_head; 1576 rcu_assign_pointer(*miniqp->p_miniq, miniq); 1577 } 1578 1579 if (miniq_old) 1580 /* This is counterpart of the rcu sync above. We need to 1581 * block potential new user of miniq_old until all readers 1582 * are not seeing it. 1583 */ 1584 miniq_old->rcu_state = start_poll_synchronize_rcu(); 1585 } 1586 EXPORT_SYMBOL(mini_qdisc_pair_swap); 1587 1588 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, 1589 struct tcf_block *block) 1590 { 1591 miniqp->miniq1.block = block; 1592 miniqp->miniq2.block = block; 1593 } 1594 EXPORT_SYMBOL(mini_qdisc_pair_block_init); 1595 1596 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, 1597 struct mini_Qdisc __rcu **p_miniq) 1598 { 1599 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; 1600 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; 1601 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; 1602 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; 1603 miniqp->miniq1.rcu_state = get_state_synchronize_rcu(); 1604 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state; 1605 miniqp->p_miniq = p_miniq; 1606 } 1607 EXPORT_SYMBOL(mini_qdisc_pair_init); 1608