1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net/sched/sch_generic.c Generic packet scheduler routines. 4 * 5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 7 * - Ingress support 8 */ 9 10 #include <linux/bitops.h> 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/string.h> 16 #include <linux/errno.h> 17 #include <linux/netdevice.h> 18 #include <linux/skbuff.h> 19 #include <linux/rtnetlink.h> 20 #include <linux/init.h> 21 #include <linux/rcupdate.h> 22 #include <linux/list.h> 23 #include <linux/slab.h> 24 #include <linux/if_vlan.h> 25 #include <linux/skb_array.h> 26 #include <linux/if_macvlan.h> 27 #include <net/sch_generic.h> 28 #include <net/pkt_sched.h> 29 #include <net/dst.h> 30 #include <trace/events/qdisc.h> 31 #include <trace/events/net.h> 32 #include <net/xfrm.h> 33 34 /* Qdisc to use by default */ 35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 36 EXPORT_SYMBOL(default_qdisc_ops); 37 38 static void qdisc_maybe_clear_missed(struct Qdisc *q, 39 const struct netdev_queue *txq) 40 { 41 clear_bit(__QDISC_STATE_MISSED, &q->state); 42 43 /* Make sure the below netif_xmit_frozen_or_stopped() 44 * checking happens after clearing STATE_MISSED. 45 */ 46 smp_mb__after_atomic(); 47 48 /* Checking netif_xmit_frozen_or_stopped() again to 49 * make sure STATE_MISSED is set if the STATE_MISSED 50 * set by netif_tx_wake_queue()'s rescheduling of 51 * net_tx_action() is cleared by the above clear_bit(). 52 */ 53 if (!netif_xmit_frozen_or_stopped(txq)) 54 set_bit(__QDISC_STATE_MISSED, &q->state); 55 else 56 set_bit(__QDISC_STATE_DRAINING, &q->state); 57 } 58 59 /* Main transmission queue. */ 60 61 /* Modifications to data participating in scheduling must be protected with 62 * qdisc_lock(qdisc) spinlock. 63 * 64 * The idea is the following: 65 * - enqueue, dequeue are serialized via qdisc root lock 66 * - ingress filtering is also serialized via qdisc root lock 67 * - updates to tree and tree walking are only done under the rtnl mutex. 68 */ 69 70 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL) 71 72 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q) 73 { 74 const struct netdev_queue *txq = q->dev_queue; 75 spinlock_t *lock = NULL; 76 struct sk_buff *skb; 77 78 if (q->flags & TCQ_F_NOLOCK) { 79 lock = qdisc_lock(q); 80 spin_lock(lock); 81 } 82 83 skb = skb_peek(&q->skb_bad_txq); 84 if (skb) { 85 /* check the reason of requeuing without tx lock first */ 86 txq = skb_get_tx_queue(txq->dev, skb); 87 if (!netif_xmit_frozen_or_stopped(txq)) { 88 skb = __skb_dequeue(&q->skb_bad_txq); 89 if (qdisc_is_percpu_stats(q)) { 90 qdisc_qstats_cpu_backlog_dec(q, skb); 91 qdisc_qstats_cpu_qlen_dec(q); 92 } else { 93 qdisc_qstats_backlog_dec(q, skb); 94 q->q.qlen--; 95 } 96 } else { 97 skb = SKB_XOFF_MAGIC; 98 qdisc_maybe_clear_missed(q, txq); 99 } 100 } 101 102 if (lock) 103 spin_unlock(lock); 104 105 return skb; 106 } 107 108 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q) 109 { 110 struct sk_buff *skb = skb_peek(&q->skb_bad_txq); 111 112 if (unlikely(skb)) 113 skb = __skb_dequeue_bad_txq(q); 114 115 return skb; 116 } 117 118 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q, 119 struct sk_buff *skb) 120 { 121 spinlock_t *lock = NULL; 122 123 if (q->flags & TCQ_F_NOLOCK) { 124 lock = qdisc_lock(q); 125 spin_lock(lock); 126 } 127 128 __skb_queue_tail(&q->skb_bad_txq, skb); 129 130 if (qdisc_is_percpu_stats(q)) { 131 qdisc_qstats_cpu_backlog_inc(q, skb); 132 qdisc_qstats_cpu_qlen_inc(q); 133 } else { 134 qdisc_qstats_backlog_inc(q, skb); 135 q->q.qlen++; 136 } 137 138 if (lock) 139 spin_unlock(lock); 140 } 141 142 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 143 { 144 spinlock_t *lock = NULL; 145 146 if (q->flags & TCQ_F_NOLOCK) { 147 lock = qdisc_lock(q); 148 spin_lock(lock); 149 } 150 151 while (skb) { 152 struct sk_buff *next = skb->next; 153 154 __skb_queue_tail(&q->gso_skb, skb); 155 156 /* it's still part of the queue */ 157 if (qdisc_is_percpu_stats(q)) { 158 qdisc_qstats_cpu_requeues_inc(q); 159 qdisc_qstats_cpu_backlog_inc(q, skb); 160 qdisc_qstats_cpu_qlen_inc(q); 161 } else { 162 q->qstats.requeues++; 163 qdisc_qstats_backlog_inc(q, skb); 164 q->q.qlen++; 165 } 166 167 skb = next; 168 } 169 170 if (lock) { 171 spin_unlock(lock); 172 set_bit(__QDISC_STATE_MISSED, &q->state); 173 } else { 174 __netif_schedule(q); 175 } 176 } 177 178 static void try_bulk_dequeue_skb(struct Qdisc *q, 179 struct sk_buff *skb, 180 const struct netdev_queue *txq, 181 int *packets) 182 { 183 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len; 184 185 while (bytelimit > 0) { 186 struct sk_buff *nskb = q->dequeue(q); 187 188 if (!nskb) 189 break; 190 191 bytelimit -= nskb->len; /* covers GSO len */ 192 skb->next = nskb; 193 skb = nskb; 194 (*packets)++; /* GSO counts as one pkt */ 195 } 196 skb_mark_not_on_list(skb); 197 } 198 199 /* This variant of try_bulk_dequeue_skb() makes sure 200 * all skbs in the chain are for the same txq 201 */ 202 static void try_bulk_dequeue_skb_slow(struct Qdisc *q, 203 struct sk_buff *skb, 204 int *packets) 205 { 206 int mapping = skb_get_queue_mapping(skb); 207 struct sk_buff *nskb; 208 int cnt = 0; 209 210 do { 211 nskb = q->dequeue(q); 212 if (!nskb) 213 break; 214 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) { 215 qdisc_enqueue_skb_bad_txq(q, nskb); 216 break; 217 } 218 skb->next = nskb; 219 skb = nskb; 220 } while (++cnt < 8); 221 (*packets) += cnt; 222 skb_mark_not_on_list(skb); 223 } 224 225 /* Note that dequeue_skb can possibly return a SKB list (via skb->next). 226 * A requeued skb (via q->gso_skb) can also be a SKB list. 227 */ 228 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate, 229 int *packets) 230 { 231 const struct netdev_queue *txq = q->dev_queue; 232 struct sk_buff *skb = NULL; 233 234 *packets = 1; 235 if (unlikely(!skb_queue_empty(&q->gso_skb))) { 236 spinlock_t *lock = NULL; 237 238 if (q->flags & TCQ_F_NOLOCK) { 239 lock = qdisc_lock(q); 240 spin_lock(lock); 241 } 242 243 skb = skb_peek(&q->gso_skb); 244 245 /* skb may be null if another cpu pulls gso_skb off in between 246 * empty check and lock. 247 */ 248 if (!skb) { 249 if (lock) 250 spin_unlock(lock); 251 goto validate; 252 } 253 254 /* skb in gso_skb were already validated */ 255 *validate = false; 256 if (xfrm_offload(skb)) 257 *validate = true; 258 /* check the reason of requeuing without tx lock first */ 259 txq = skb_get_tx_queue(txq->dev, skb); 260 if (!netif_xmit_frozen_or_stopped(txq)) { 261 skb = __skb_dequeue(&q->gso_skb); 262 if (qdisc_is_percpu_stats(q)) { 263 qdisc_qstats_cpu_backlog_dec(q, skb); 264 qdisc_qstats_cpu_qlen_dec(q); 265 } else { 266 qdisc_qstats_backlog_dec(q, skb); 267 q->q.qlen--; 268 } 269 } else { 270 skb = NULL; 271 qdisc_maybe_clear_missed(q, txq); 272 } 273 if (lock) 274 spin_unlock(lock); 275 goto trace; 276 } 277 validate: 278 *validate = true; 279 280 if ((q->flags & TCQ_F_ONETXQUEUE) && 281 netif_xmit_frozen_or_stopped(txq)) { 282 qdisc_maybe_clear_missed(q, txq); 283 return skb; 284 } 285 286 skb = qdisc_dequeue_skb_bad_txq(q); 287 if (unlikely(skb)) { 288 if (skb == SKB_XOFF_MAGIC) 289 return NULL; 290 goto bulk; 291 } 292 skb = q->dequeue(q); 293 if (skb) { 294 bulk: 295 if (qdisc_may_bulk(q)) 296 try_bulk_dequeue_skb(q, skb, txq, packets); 297 else 298 try_bulk_dequeue_skb_slow(q, skb, packets); 299 } 300 trace: 301 trace_qdisc_dequeue(q, txq, *packets, skb); 302 return skb; 303 } 304 305 /* 306 * Transmit possibly several skbs, and handle the return status as 307 * required. Owning qdisc running bit guarantees that only one CPU 308 * can execute this function. 309 * 310 * Returns to the caller: 311 * false - hardware queue frozen backoff 312 * true - feel free to send more pkts 313 */ 314 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 315 struct net_device *dev, struct netdev_queue *txq, 316 spinlock_t *root_lock, bool validate) 317 { 318 int ret = NETDEV_TX_BUSY; 319 bool again = false; 320 321 /* And release qdisc */ 322 if (root_lock) 323 spin_unlock(root_lock); 324 325 /* Note that we validate skb (GSO, checksum, ...) outside of locks */ 326 if (validate) 327 skb = validate_xmit_skb_list(skb, dev, &again); 328 329 #ifdef CONFIG_XFRM_OFFLOAD 330 if (unlikely(again)) { 331 if (root_lock) 332 spin_lock(root_lock); 333 334 dev_requeue_skb(skb, q); 335 return false; 336 } 337 #endif 338 339 if (likely(skb)) { 340 HARD_TX_LOCK(dev, txq, smp_processor_id()); 341 if (!netif_xmit_frozen_or_stopped(txq)) 342 skb = dev_hard_start_xmit(skb, dev, txq, &ret); 343 else 344 qdisc_maybe_clear_missed(q, txq); 345 346 HARD_TX_UNLOCK(dev, txq); 347 } else { 348 if (root_lock) 349 spin_lock(root_lock); 350 return true; 351 } 352 353 if (root_lock) 354 spin_lock(root_lock); 355 356 if (!dev_xmit_complete(ret)) { 357 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 358 if (unlikely(ret != NETDEV_TX_BUSY)) 359 net_warn_ratelimited("BUG %s code %d qlen %d\n", 360 dev->name, ret, q->q.qlen); 361 362 dev_requeue_skb(skb, q); 363 return false; 364 } 365 366 return true; 367 } 368 369 /* 370 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 371 * 372 * running seqcount guarantees only one CPU can process 373 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 374 * this queue. 375 * 376 * netif_tx_lock serializes accesses to device driver. 377 * 378 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 379 * if one is grabbed, another must be free. 380 * 381 * Note, that this procedure can be called by a watchdog timer 382 * 383 * Returns to the caller: 384 * 0 - queue is empty or throttled. 385 * >0 - queue is not empty. 386 * 387 */ 388 static inline bool qdisc_restart(struct Qdisc *q, int *packets) 389 { 390 spinlock_t *root_lock = NULL; 391 struct netdev_queue *txq; 392 struct net_device *dev; 393 struct sk_buff *skb; 394 bool validate; 395 396 /* Dequeue packet */ 397 skb = dequeue_skb(q, &validate, packets); 398 if (unlikely(!skb)) 399 return false; 400 401 if (!(q->flags & TCQ_F_NOLOCK)) 402 root_lock = qdisc_lock(q); 403 404 dev = qdisc_dev(q); 405 txq = skb_get_tx_queue(dev, skb); 406 407 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate); 408 } 409 410 void __qdisc_run(struct Qdisc *q) 411 { 412 int quota = READ_ONCE(dev_tx_weight); 413 int packets; 414 415 while (qdisc_restart(q, &packets)) { 416 quota -= packets; 417 if (quota <= 0) { 418 if (q->flags & TCQ_F_NOLOCK) 419 set_bit(__QDISC_STATE_MISSED, &q->state); 420 else 421 __netif_schedule(q); 422 423 break; 424 } 425 } 426 } 427 428 unsigned long dev_trans_start(struct net_device *dev) 429 { 430 unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start); 431 unsigned long val; 432 unsigned int i; 433 434 for (i = 1; i < dev->num_tx_queues; i++) { 435 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start); 436 if (val && time_after(val, res)) 437 res = val; 438 } 439 440 return res; 441 } 442 EXPORT_SYMBOL(dev_trans_start); 443 444 static void netif_freeze_queues(struct net_device *dev) 445 { 446 unsigned int i; 447 int cpu; 448 449 cpu = smp_processor_id(); 450 for (i = 0; i < dev->num_tx_queues; i++) { 451 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 452 453 /* We are the only thread of execution doing a 454 * freeze, but we have to grab the _xmit_lock in 455 * order to synchronize with threads which are in 456 * the ->hard_start_xmit() handler and already 457 * checked the frozen bit. 458 */ 459 __netif_tx_lock(txq, cpu); 460 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 461 __netif_tx_unlock(txq); 462 } 463 } 464 465 void netif_tx_lock(struct net_device *dev) 466 { 467 spin_lock(&dev->tx_global_lock); 468 netif_freeze_queues(dev); 469 } 470 EXPORT_SYMBOL(netif_tx_lock); 471 472 static void netif_unfreeze_queues(struct net_device *dev) 473 { 474 unsigned int i; 475 476 for (i = 0; i < dev->num_tx_queues; i++) { 477 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 478 479 /* No need to grab the _xmit_lock here. If the 480 * queue is not stopped for another reason, we 481 * force a schedule. 482 */ 483 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 484 netif_schedule_queue(txq); 485 } 486 } 487 488 void netif_tx_unlock(struct net_device *dev) 489 { 490 netif_unfreeze_queues(dev); 491 spin_unlock(&dev->tx_global_lock); 492 } 493 EXPORT_SYMBOL(netif_tx_unlock); 494 495 static void dev_watchdog(struct timer_list *t) 496 { 497 struct net_device *dev = from_timer(dev, t, watchdog_timer); 498 bool release = true; 499 500 spin_lock(&dev->tx_global_lock); 501 if (!qdisc_tx_is_noop(dev)) { 502 if (netif_device_present(dev) && 503 netif_running(dev) && 504 netif_carrier_ok(dev)) { 505 unsigned int timedout_ms = 0; 506 unsigned int i; 507 unsigned long trans_start; 508 unsigned long oldest_start = jiffies; 509 510 for (i = 0; i < dev->num_tx_queues; i++) { 511 struct netdev_queue *txq; 512 513 txq = netdev_get_tx_queue(dev, i); 514 if (!netif_xmit_stopped(txq)) 515 continue; 516 517 /* Paired with WRITE_ONCE() + smp_mb...() in 518 * netdev_tx_sent_queue() and netif_tx_stop_queue(). 519 */ 520 smp_mb(); 521 trans_start = READ_ONCE(txq->trans_start); 522 523 if (time_after(jiffies, trans_start + dev->watchdog_timeo)) { 524 timedout_ms = jiffies_to_msecs(jiffies - trans_start); 525 atomic_long_inc(&txq->trans_timeout); 526 break; 527 } 528 if (time_after(oldest_start, trans_start)) 529 oldest_start = trans_start; 530 } 531 532 if (unlikely(timedout_ms)) { 533 trace_net_dev_xmit_timeout(dev, i); 534 netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n", 535 raw_smp_processor_id(), 536 i, timedout_ms); 537 netif_freeze_queues(dev); 538 dev->netdev_ops->ndo_tx_timeout(dev, i); 539 netif_unfreeze_queues(dev); 540 } 541 if (!mod_timer(&dev->watchdog_timer, 542 round_jiffies(oldest_start + 543 dev->watchdog_timeo))) 544 release = false; 545 } 546 } 547 spin_unlock(&dev->tx_global_lock); 548 549 if (release) 550 netdev_put(dev, &dev->watchdog_dev_tracker); 551 } 552 553 void __netdev_watchdog_up(struct net_device *dev) 554 { 555 if (dev->netdev_ops->ndo_tx_timeout) { 556 if (dev->watchdog_timeo <= 0) 557 dev->watchdog_timeo = 5*HZ; 558 if (!mod_timer(&dev->watchdog_timer, 559 round_jiffies(jiffies + dev->watchdog_timeo))) 560 netdev_hold(dev, &dev->watchdog_dev_tracker, 561 GFP_ATOMIC); 562 } 563 } 564 EXPORT_SYMBOL_GPL(__netdev_watchdog_up); 565 566 static void dev_watchdog_up(struct net_device *dev) 567 { 568 __netdev_watchdog_up(dev); 569 } 570 571 static void dev_watchdog_down(struct net_device *dev) 572 { 573 netif_tx_lock_bh(dev); 574 if (del_timer(&dev->watchdog_timer)) 575 netdev_put(dev, &dev->watchdog_dev_tracker); 576 netif_tx_unlock_bh(dev); 577 } 578 579 /** 580 * netif_carrier_on - set carrier 581 * @dev: network device 582 * 583 * Device has detected acquisition of carrier. 584 */ 585 void netif_carrier_on(struct net_device *dev) 586 { 587 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 588 if (dev->reg_state == NETREG_UNINITIALIZED) 589 return; 590 atomic_inc(&dev->carrier_up_count); 591 linkwatch_fire_event(dev); 592 if (netif_running(dev)) 593 __netdev_watchdog_up(dev); 594 } 595 } 596 EXPORT_SYMBOL(netif_carrier_on); 597 598 /** 599 * netif_carrier_off - clear carrier 600 * @dev: network device 601 * 602 * Device has detected loss of carrier. 603 */ 604 void netif_carrier_off(struct net_device *dev) 605 { 606 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 607 if (dev->reg_state == NETREG_UNINITIALIZED) 608 return; 609 atomic_inc(&dev->carrier_down_count); 610 linkwatch_fire_event(dev); 611 } 612 } 613 EXPORT_SYMBOL(netif_carrier_off); 614 615 /** 616 * netif_carrier_event - report carrier state event 617 * @dev: network device 618 * 619 * Device has detected a carrier event but the carrier state wasn't changed. 620 * Use in drivers when querying carrier state asynchronously, to avoid missing 621 * events (link flaps) if link recovers before it's queried. 622 */ 623 void netif_carrier_event(struct net_device *dev) 624 { 625 if (dev->reg_state == NETREG_UNINITIALIZED) 626 return; 627 atomic_inc(&dev->carrier_up_count); 628 atomic_inc(&dev->carrier_down_count); 629 linkwatch_fire_event(dev); 630 } 631 EXPORT_SYMBOL_GPL(netif_carrier_event); 632 633 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 634 under all circumstances. It is difficult to invent anything faster or 635 cheaper. 636 */ 637 638 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 639 struct sk_buff **to_free) 640 { 641 __qdisc_drop(skb, to_free); 642 return NET_XMIT_CN; 643 } 644 645 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 646 { 647 return NULL; 648 } 649 650 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 651 .id = "noop", 652 .priv_size = 0, 653 .enqueue = noop_enqueue, 654 .dequeue = noop_dequeue, 655 .peek = noop_dequeue, 656 .owner = THIS_MODULE, 657 }; 658 659 static struct netdev_queue noop_netdev_queue = { 660 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc), 661 RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc), 662 }; 663 664 struct Qdisc noop_qdisc = { 665 .enqueue = noop_enqueue, 666 .dequeue = noop_dequeue, 667 .flags = TCQ_F_BUILTIN, 668 .ops = &noop_qdisc_ops, 669 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 670 .dev_queue = &noop_netdev_queue, 671 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 672 .gso_skb = { 673 .next = (struct sk_buff *)&noop_qdisc.gso_skb, 674 .prev = (struct sk_buff *)&noop_qdisc.gso_skb, 675 .qlen = 0, 676 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock), 677 }, 678 .skb_bad_txq = { 679 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 680 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq, 681 .qlen = 0, 682 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock), 683 }, 684 }; 685 EXPORT_SYMBOL(noop_qdisc); 686 687 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt, 688 struct netlink_ext_ack *extack) 689 { 690 /* register_qdisc() assigns a default of noop_enqueue if unset, 691 * but __dev_queue_xmit() treats noqueue only as such 692 * if this is NULL - so clear it here. */ 693 qdisc->enqueue = NULL; 694 return 0; 695 } 696 697 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 698 .id = "noqueue", 699 .priv_size = 0, 700 .init = noqueue_init, 701 .enqueue = noop_enqueue, 702 .dequeue = noop_dequeue, 703 .peek = noop_dequeue, 704 .owner = THIS_MODULE, 705 }; 706 707 static const u8 prio2band[TC_PRIO_MAX + 1] = { 708 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1 709 }; 710 711 /* 3-band FIFO queue: old style, but should be a bit faster than 712 generic prio+fifo combination. 713 */ 714 715 #define PFIFO_FAST_BANDS 3 716 717 /* 718 * Private data for a pfifo_fast scheduler containing: 719 * - rings for priority bands 720 */ 721 struct pfifo_fast_priv { 722 struct skb_array q[PFIFO_FAST_BANDS]; 723 }; 724 725 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv, 726 int band) 727 { 728 return &priv->q[band]; 729 } 730 731 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc, 732 struct sk_buff **to_free) 733 { 734 int band = prio2band[skb->priority & TC_PRIO_MAX]; 735 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 736 struct skb_array *q = band2list(priv, band); 737 unsigned int pkt_len = qdisc_pkt_len(skb); 738 int err; 739 740 err = skb_array_produce(q, skb); 741 742 if (unlikely(err)) { 743 if (qdisc_is_percpu_stats(qdisc)) 744 return qdisc_drop_cpu(skb, qdisc, to_free); 745 else 746 return qdisc_drop(skb, qdisc, to_free); 747 } 748 749 qdisc_update_stats_at_enqueue(qdisc, pkt_len); 750 return NET_XMIT_SUCCESS; 751 } 752 753 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 754 { 755 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 756 struct sk_buff *skb = NULL; 757 bool need_retry = true; 758 int band; 759 760 retry: 761 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 762 struct skb_array *q = band2list(priv, band); 763 764 if (__skb_array_empty(q)) 765 continue; 766 767 skb = __skb_array_consume(q); 768 } 769 if (likely(skb)) { 770 qdisc_update_stats_at_dequeue(qdisc, skb); 771 } else if (need_retry && 772 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) { 773 /* Delay clearing the STATE_MISSED here to reduce 774 * the overhead of the second spin_trylock() in 775 * qdisc_run_begin() and __netif_schedule() calling 776 * in qdisc_run_end(). 777 */ 778 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 779 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 780 781 /* Make sure dequeuing happens after clearing 782 * STATE_MISSED. 783 */ 784 smp_mb__after_atomic(); 785 786 need_retry = false; 787 788 goto retry; 789 } 790 791 return skb; 792 } 793 794 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 795 { 796 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 797 struct sk_buff *skb = NULL; 798 int band; 799 800 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) { 801 struct skb_array *q = band2list(priv, band); 802 803 skb = __skb_array_peek(q); 804 } 805 806 return skb; 807 } 808 809 static void pfifo_fast_reset(struct Qdisc *qdisc) 810 { 811 int i, band; 812 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 813 814 for (band = 0; band < PFIFO_FAST_BANDS; band++) { 815 struct skb_array *q = band2list(priv, band); 816 struct sk_buff *skb; 817 818 /* NULL ring is possible if destroy path is due to a failed 819 * skb_array_init() in pfifo_fast_init() case. 820 */ 821 if (!q->ring.queue) 822 continue; 823 824 while ((skb = __skb_array_consume(q)) != NULL) 825 kfree_skb(skb); 826 } 827 828 if (qdisc_is_percpu_stats(qdisc)) { 829 for_each_possible_cpu(i) { 830 struct gnet_stats_queue *q; 831 832 q = per_cpu_ptr(qdisc->cpu_qstats, i); 833 q->backlog = 0; 834 q->qlen = 0; 835 } 836 } 837 } 838 839 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 840 { 841 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 842 843 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1); 844 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 845 goto nla_put_failure; 846 return skb->len; 847 848 nla_put_failure: 849 return -1; 850 } 851 852 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt, 853 struct netlink_ext_ack *extack) 854 { 855 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len; 856 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 857 int prio; 858 859 /* guard against zero length rings */ 860 if (!qlen) 861 return -EINVAL; 862 863 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 864 struct skb_array *q = band2list(priv, prio); 865 int err; 866 867 err = skb_array_init(q, qlen, GFP_KERNEL); 868 if (err) 869 return -ENOMEM; 870 } 871 872 /* Can by-pass the queue discipline */ 873 qdisc->flags |= TCQ_F_CAN_BYPASS; 874 return 0; 875 } 876 877 static void pfifo_fast_destroy(struct Qdisc *sch) 878 { 879 struct pfifo_fast_priv *priv = qdisc_priv(sch); 880 int prio; 881 882 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 883 struct skb_array *q = band2list(priv, prio); 884 885 /* NULL ring is possible if destroy path is due to a failed 886 * skb_array_init() in pfifo_fast_init() case. 887 */ 888 if (!q->ring.queue) 889 continue; 890 /* Destroy ring but no need to kfree_skb because a call to 891 * pfifo_fast_reset() has already done that work. 892 */ 893 ptr_ring_cleanup(&q->ring, NULL); 894 } 895 } 896 897 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch, 898 unsigned int new_len) 899 { 900 struct pfifo_fast_priv *priv = qdisc_priv(sch); 901 struct skb_array *bands[PFIFO_FAST_BANDS]; 902 int prio; 903 904 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) { 905 struct skb_array *q = band2list(priv, prio); 906 907 bands[prio] = q; 908 } 909 910 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len, 911 GFP_KERNEL); 912 } 913 914 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 915 .id = "pfifo_fast", 916 .priv_size = sizeof(struct pfifo_fast_priv), 917 .enqueue = pfifo_fast_enqueue, 918 .dequeue = pfifo_fast_dequeue, 919 .peek = pfifo_fast_peek, 920 .init = pfifo_fast_init, 921 .destroy = pfifo_fast_destroy, 922 .reset = pfifo_fast_reset, 923 .dump = pfifo_fast_dump, 924 .change_tx_queue_len = pfifo_fast_change_tx_queue_len, 925 .owner = THIS_MODULE, 926 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS, 927 }; 928 EXPORT_SYMBOL(pfifo_fast_ops); 929 930 static struct lock_class_key qdisc_tx_busylock; 931 932 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 933 const struct Qdisc_ops *ops, 934 struct netlink_ext_ack *extack) 935 { 936 struct Qdisc *sch; 937 unsigned int size = sizeof(*sch) + ops->priv_size; 938 int err = -ENOBUFS; 939 struct net_device *dev; 940 941 if (!dev_queue) { 942 NL_SET_ERR_MSG(extack, "No device queue given"); 943 err = -EINVAL; 944 goto errout; 945 } 946 947 dev = dev_queue->dev; 948 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue)); 949 950 if (!sch) 951 goto errout; 952 __skb_queue_head_init(&sch->gso_skb); 953 __skb_queue_head_init(&sch->skb_bad_txq); 954 gnet_stats_basic_sync_init(&sch->bstats); 955 lockdep_register_key(&sch->root_lock_key); 956 spin_lock_init(&sch->q.lock); 957 lockdep_set_class(&sch->q.lock, &sch->root_lock_key); 958 959 if (ops->static_flags & TCQ_F_CPUSTATS) { 960 sch->cpu_bstats = 961 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync); 962 if (!sch->cpu_bstats) 963 goto errout1; 964 965 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue); 966 if (!sch->cpu_qstats) { 967 free_percpu(sch->cpu_bstats); 968 goto errout1; 969 } 970 } 971 972 spin_lock_init(&sch->busylock); 973 lockdep_set_class(&sch->busylock, 974 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 975 976 /* seqlock has the same scope of busylock, for NOLOCK qdisc */ 977 spin_lock_init(&sch->seqlock); 978 lockdep_set_class(&sch->seqlock, 979 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 980 981 sch->ops = ops; 982 sch->flags = ops->static_flags; 983 sch->enqueue = ops->enqueue; 984 sch->dequeue = ops->dequeue; 985 sch->dev_queue = dev_queue; 986 netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL); 987 refcount_set(&sch->refcnt, 1); 988 989 return sch; 990 errout1: 991 lockdep_unregister_key(&sch->root_lock_key); 992 kfree(sch); 993 errout: 994 return ERR_PTR(err); 995 } 996 997 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 998 const struct Qdisc_ops *ops, 999 unsigned int parentid, 1000 struct netlink_ext_ack *extack) 1001 { 1002 struct Qdisc *sch; 1003 1004 if (!try_module_get(ops->owner)) { 1005 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter"); 1006 return NULL; 1007 } 1008 1009 sch = qdisc_alloc(dev_queue, ops, extack); 1010 if (IS_ERR(sch)) { 1011 module_put(ops->owner); 1012 return NULL; 1013 } 1014 sch->parent = parentid; 1015 1016 if (!ops->init || ops->init(sch, NULL, extack) == 0) { 1017 trace_qdisc_create(ops, dev_queue->dev, parentid); 1018 return sch; 1019 } 1020 1021 qdisc_put(sch); 1022 return NULL; 1023 } 1024 EXPORT_SYMBOL(qdisc_create_dflt); 1025 1026 /* Under qdisc_lock(qdisc) and BH! */ 1027 1028 void qdisc_reset(struct Qdisc *qdisc) 1029 { 1030 const struct Qdisc_ops *ops = qdisc->ops; 1031 1032 trace_qdisc_reset(qdisc); 1033 1034 if (ops->reset) 1035 ops->reset(qdisc); 1036 1037 __skb_queue_purge(&qdisc->gso_skb); 1038 __skb_queue_purge(&qdisc->skb_bad_txq); 1039 1040 qdisc->q.qlen = 0; 1041 qdisc->qstats.backlog = 0; 1042 } 1043 EXPORT_SYMBOL(qdisc_reset); 1044 1045 void qdisc_free(struct Qdisc *qdisc) 1046 { 1047 if (qdisc_is_percpu_stats(qdisc)) { 1048 free_percpu(qdisc->cpu_bstats); 1049 free_percpu(qdisc->cpu_qstats); 1050 } 1051 1052 kfree(qdisc); 1053 } 1054 1055 static void qdisc_free_cb(struct rcu_head *head) 1056 { 1057 struct Qdisc *q = container_of(head, struct Qdisc, rcu); 1058 1059 qdisc_free(q); 1060 } 1061 1062 static void __qdisc_destroy(struct Qdisc *qdisc) 1063 { 1064 const struct Qdisc_ops *ops = qdisc->ops; 1065 1066 #ifdef CONFIG_NET_SCHED 1067 qdisc_hash_del(qdisc); 1068 1069 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 1070 #endif 1071 gen_kill_estimator(&qdisc->rate_est); 1072 1073 qdisc_reset(qdisc); 1074 1075 if (ops->destroy) 1076 ops->destroy(qdisc); 1077 1078 lockdep_unregister_key(&qdisc->root_lock_key); 1079 module_put(ops->owner); 1080 netdev_put(qdisc_dev(qdisc), &qdisc->dev_tracker); 1081 1082 trace_qdisc_destroy(qdisc); 1083 1084 call_rcu(&qdisc->rcu, qdisc_free_cb); 1085 } 1086 1087 void qdisc_destroy(struct Qdisc *qdisc) 1088 { 1089 if (qdisc->flags & TCQ_F_BUILTIN) 1090 return; 1091 1092 __qdisc_destroy(qdisc); 1093 } 1094 1095 void qdisc_put(struct Qdisc *qdisc) 1096 { 1097 if (!qdisc) 1098 return; 1099 1100 if (qdisc->flags & TCQ_F_BUILTIN || 1101 !refcount_dec_and_test(&qdisc->refcnt)) 1102 return; 1103 1104 __qdisc_destroy(qdisc); 1105 } 1106 EXPORT_SYMBOL(qdisc_put); 1107 1108 /* Version of qdisc_put() that is called with rtnl mutex unlocked. 1109 * Intended to be used as optimization, this function only takes rtnl lock if 1110 * qdisc reference counter reached zero. 1111 */ 1112 1113 void qdisc_put_unlocked(struct Qdisc *qdisc) 1114 { 1115 if (qdisc->flags & TCQ_F_BUILTIN || 1116 !refcount_dec_and_rtnl_lock(&qdisc->refcnt)) 1117 return; 1118 1119 __qdisc_destroy(qdisc); 1120 rtnl_unlock(); 1121 } 1122 EXPORT_SYMBOL(qdisc_put_unlocked); 1123 1124 /* Attach toplevel qdisc to device queue. */ 1125 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 1126 struct Qdisc *qdisc) 1127 { 1128 struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1129 spinlock_t *root_lock; 1130 1131 root_lock = qdisc_lock(oqdisc); 1132 spin_lock_bh(root_lock); 1133 1134 /* ... and graft new one */ 1135 if (qdisc == NULL) 1136 qdisc = &noop_qdisc; 1137 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1138 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 1139 1140 spin_unlock_bh(root_lock); 1141 1142 return oqdisc; 1143 } 1144 EXPORT_SYMBOL(dev_graft_qdisc); 1145 1146 static void shutdown_scheduler_queue(struct net_device *dev, 1147 struct netdev_queue *dev_queue, 1148 void *_qdisc_default) 1149 { 1150 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1151 struct Qdisc *qdisc_default = _qdisc_default; 1152 1153 if (qdisc) { 1154 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1155 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default); 1156 1157 qdisc_put(qdisc); 1158 } 1159 } 1160 1161 static void attach_one_default_qdisc(struct net_device *dev, 1162 struct netdev_queue *dev_queue, 1163 void *_unused) 1164 { 1165 struct Qdisc *qdisc; 1166 const struct Qdisc_ops *ops = default_qdisc_ops; 1167 1168 if (dev->priv_flags & IFF_NO_QUEUE) 1169 ops = &noqueue_qdisc_ops; 1170 else if(dev->type == ARPHRD_CAN) 1171 ops = &pfifo_fast_ops; 1172 1173 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL); 1174 if (!qdisc) 1175 return; 1176 1177 if (!netif_is_multiqueue(dev)) 1178 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; 1179 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1180 } 1181 1182 static void attach_default_qdiscs(struct net_device *dev) 1183 { 1184 struct netdev_queue *txq; 1185 struct Qdisc *qdisc; 1186 1187 txq = netdev_get_tx_queue(dev, 0); 1188 1189 if (!netif_is_multiqueue(dev) || 1190 dev->priv_flags & IFF_NO_QUEUE) { 1191 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1192 qdisc = rtnl_dereference(txq->qdisc_sleeping); 1193 rcu_assign_pointer(dev->qdisc, qdisc); 1194 qdisc_refcount_inc(qdisc); 1195 } else { 1196 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL); 1197 if (qdisc) { 1198 rcu_assign_pointer(dev->qdisc, qdisc); 1199 qdisc->ops->attach(qdisc); 1200 } 1201 } 1202 qdisc = rtnl_dereference(dev->qdisc); 1203 1204 /* Detect default qdisc setup/init failed and fallback to "noqueue" */ 1205 if (qdisc == &noop_qdisc) { 1206 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n", 1207 default_qdisc_ops->id, noqueue_qdisc_ops.id); 1208 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1209 dev->priv_flags |= IFF_NO_QUEUE; 1210 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 1211 qdisc = rtnl_dereference(txq->qdisc_sleeping); 1212 rcu_assign_pointer(dev->qdisc, qdisc); 1213 qdisc_refcount_inc(qdisc); 1214 dev->priv_flags ^= IFF_NO_QUEUE; 1215 } 1216 1217 #ifdef CONFIG_NET_SCHED 1218 if (qdisc != &noop_qdisc) 1219 qdisc_hash_add(qdisc, false); 1220 #endif 1221 } 1222 1223 static void transition_one_qdisc(struct net_device *dev, 1224 struct netdev_queue *dev_queue, 1225 void *_need_watchdog) 1226 { 1227 struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1228 int *need_watchdog_p = _need_watchdog; 1229 1230 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 1231 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 1232 1233 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 1234 if (need_watchdog_p) { 1235 WRITE_ONCE(dev_queue->trans_start, 0); 1236 *need_watchdog_p = 1; 1237 } 1238 } 1239 1240 void dev_activate(struct net_device *dev) 1241 { 1242 int need_watchdog; 1243 1244 /* No queueing discipline is attached to device; 1245 * create default one for devices, which need queueing 1246 * and noqueue_qdisc for virtual interfaces 1247 */ 1248 1249 if (rtnl_dereference(dev->qdisc) == &noop_qdisc) 1250 attach_default_qdiscs(dev); 1251 1252 if (!netif_carrier_ok(dev)) 1253 /* Delay activation until next carrier-on event */ 1254 return; 1255 1256 need_watchdog = 0; 1257 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 1258 if (dev_ingress_queue(dev)) 1259 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 1260 1261 if (need_watchdog) { 1262 netif_trans_update(dev); 1263 dev_watchdog_up(dev); 1264 } 1265 } 1266 EXPORT_SYMBOL(dev_activate); 1267 1268 static void qdisc_deactivate(struct Qdisc *qdisc) 1269 { 1270 if (qdisc->flags & TCQ_F_BUILTIN) 1271 return; 1272 1273 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 1274 } 1275 1276 static void dev_deactivate_queue(struct net_device *dev, 1277 struct netdev_queue *dev_queue, 1278 void *_qdisc_default) 1279 { 1280 struct Qdisc *qdisc_default = _qdisc_default; 1281 struct Qdisc *qdisc; 1282 1283 qdisc = rtnl_dereference(dev_queue->qdisc); 1284 if (qdisc) { 1285 qdisc_deactivate(qdisc); 1286 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 1287 } 1288 } 1289 1290 static void dev_reset_queue(struct net_device *dev, 1291 struct netdev_queue *dev_queue, 1292 void *_unused) 1293 { 1294 struct Qdisc *qdisc; 1295 bool nolock; 1296 1297 qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1298 if (!qdisc) 1299 return; 1300 1301 nolock = qdisc->flags & TCQ_F_NOLOCK; 1302 1303 if (nolock) 1304 spin_lock_bh(&qdisc->seqlock); 1305 spin_lock_bh(qdisc_lock(qdisc)); 1306 1307 qdisc_reset(qdisc); 1308 1309 spin_unlock_bh(qdisc_lock(qdisc)); 1310 if (nolock) { 1311 clear_bit(__QDISC_STATE_MISSED, &qdisc->state); 1312 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state); 1313 spin_unlock_bh(&qdisc->seqlock); 1314 } 1315 } 1316 1317 static bool some_qdisc_is_busy(struct net_device *dev) 1318 { 1319 unsigned int i; 1320 1321 for (i = 0; i < dev->num_tx_queues; i++) { 1322 struct netdev_queue *dev_queue; 1323 spinlock_t *root_lock; 1324 struct Qdisc *q; 1325 int val; 1326 1327 dev_queue = netdev_get_tx_queue(dev, i); 1328 q = rtnl_dereference(dev_queue->qdisc_sleeping); 1329 1330 root_lock = qdisc_lock(q); 1331 spin_lock_bh(root_lock); 1332 1333 val = (qdisc_is_running(q) || 1334 test_bit(__QDISC_STATE_SCHED, &q->state)); 1335 1336 spin_unlock_bh(root_lock); 1337 1338 if (val) 1339 return true; 1340 } 1341 return false; 1342 } 1343 1344 /** 1345 * dev_deactivate_many - deactivate transmissions on several devices 1346 * @head: list of devices to deactivate 1347 * 1348 * This function returns only when all outstanding transmissions 1349 * have completed, unless all devices are in dismantle phase. 1350 */ 1351 void dev_deactivate_many(struct list_head *head) 1352 { 1353 struct net_device *dev; 1354 1355 list_for_each_entry(dev, head, close_list) { 1356 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 1357 &noop_qdisc); 1358 if (dev_ingress_queue(dev)) 1359 dev_deactivate_queue(dev, dev_ingress_queue(dev), 1360 &noop_qdisc); 1361 1362 dev_watchdog_down(dev); 1363 } 1364 1365 /* Wait for outstanding qdisc-less dev_queue_xmit calls or 1366 * outstanding qdisc enqueuing calls. 1367 * This is avoided if all devices are in dismantle phase : 1368 * Caller will call synchronize_net() for us 1369 */ 1370 synchronize_net(); 1371 1372 list_for_each_entry(dev, head, close_list) { 1373 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL); 1374 1375 if (dev_ingress_queue(dev)) 1376 dev_reset_queue(dev, dev_ingress_queue(dev), NULL); 1377 } 1378 1379 /* Wait for outstanding qdisc_run calls. */ 1380 list_for_each_entry(dev, head, close_list) { 1381 while (some_qdisc_is_busy(dev)) { 1382 /* wait_event() would avoid this sleep-loop but would 1383 * require expensive checks in the fast paths of packet 1384 * processing which isn't worth it. 1385 */ 1386 schedule_timeout_uninterruptible(1); 1387 } 1388 } 1389 } 1390 1391 void dev_deactivate(struct net_device *dev) 1392 { 1393 LIST_HEAD(single); 1394 1395 list_add(&dev->close_list, &single); 1396 dev_deactivate_many(&single); 1397 list_del(&single); 1398 } 1399 EXPORT_SYMBOL(dev_deactivate); 1400 1401 static int qdisc_change_tx_queue_len(struct net_device *dev, 1402 struct netdev_queue *dev_queue) 1403 { 1404 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping); 1405 const struct Qdisc_ops *ops = qdisc->ops; 1406 1407 if (ops->change_tx_queue_len) 1408 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len); 1409 return 0; 1410 } 1411 1412 void dev_qdisc_change_real_num_tx(struct net_device *dev, 1413 unsigned int new_real_tx) 1414 { 1415 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc); 1416 1417 if (qdisc->ops->change_real_num_tx) 1418 qdisc->ops->change_real_num_tx(qdisc, new_real_tx); 1419 } 1420 1421 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx) 1422 { 1423 #ifdef CONFIG_NET_SCHED 1424 struct net_device *dev = qdisc_dev(sch); 1425 struct Qdisc *qdisc; 1426 unsigned int i; 1427 1428 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) { 1429 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping); 1430 /* Only update the default qdiscs we created, 1431 * qdiscs with handles are always hashed. 1432 */ 1433 if (qdisc != &noop_qdisc && !qdisc->handle) 1434 qdisc_hash_del(qdisc); 1435 } 1436 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) { 1437 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping); 1438 if (qdisc != &noop_qdisc && !qdisc->handle) 1439 qdisc_hash_add(qdisc, false); 1440 } 1441 #endif 1442 } 1443 EXPORT_SYMBOL(mq_change_real_num_tx); 1444 1445 int dev_qdisc_change_tx_queue_len(struct net_device *dev) 1446 { 1447 bool up = dev->flags & IFF_UP; 1448 unsigned int i; 1449 int ret = 0; 1450 1451 if (up) 1452 dev_deactivate(dev); 1453 1454 for (i = 0; i < dev->num_tx_queues; i++) { 1455 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]); 1456 1457 /* TODO: revert changes on a partial failure */ 1458 if (ret) 1459 break; 1460 } 1461 1462 if (up) 1463 dev_activate(dev); 1464 return ret; 1465 } 1466 1467 static void dev_init_scheduler_queue(struct net_device *dev, 1468 struct netdev_queue *dev_queue, 1469 void *_qdisc) 1470 { 1471 struct Qdisc *qdisc = _qdisc; 1472 1473 rcu_assign_pointer(dev_queue->qdisc, qdisc); 1474 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc); 1475 } 1476 1477 void dev_init_scheduler(struct net_device *dev) 1478 { 1479 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1480 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 1481 if (dev_ingress_queue(dev)) 1482 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1483 1484 timer_setup(&dev->watchdog_timer, dev_watchdog, 0); 1485 } 1486 1487 void dev_shutdown(struct net_device *dev) 1488 { 1489 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 1490 if (dev_ingress_queue(dev)) 1491 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 1492 qdisc_put(rtnl_dereference(dev->qdisc)); 1493 rcu_assign_pointer(dev->qdisc, &noop_qdisc); 1494 1495 WARN_ON(timer_pending(&dev->watchdog_timer)); 1496 } 1497 1498 /** 1499 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division 1500 * @rate: Rate to compute reciprocal division values of 1501 * @mult: Multiplier for reciprocal division 1502 * @shift: Shift for reciprocal division 1503 * 1504 * The multiplier and shift for reciprocal division by rate are stored 1505 * in mult and shift. 1506 * 1507 * The deal here is to replace a divide by a reciprocal one 1508 * in fast path (a reciprocal divide is a multiply and a shift) 1509 * 1510 * Normal formula would be : 1511 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 1512 * 1513 * We compute mult/shift to use instead : 1514 * time_in_ns = (len * mult) >> shift; 1515 * 1516 * We try to get the highest possible mult value for accuracy, 1517 * but have to make sure no overflows will ever happen. 1518 * 1519 * reciprocal_value() is not used here it doesn't handle 64-bit values. 1520 */ 1521 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift) 1522 { 1523 u64 factor = NSEC_PER_SEC; 1524 1525 *mult = 1; 1526 *shift = 0; 1527 1528 if (rate <= 0) 1529 return; 1530 1531 for (;;) { 1532 *mult = div64_u64(factor, rate); 1533 if (*mult & (1U << 31) || factor & (1ULL << 63)) 1534 break; 1535 factor <<= 1; 1536 (*shift)++; 1537 } 1538 } 1539 1540 void psched_ratecfg_precompute(struct psched_ratecfg *r, 1541 const struct tc_ratespec *conf, 1542 u64 rate64) 1543 { 1544 memset(r, 0, sizeof(*r)); 1545 r->overhead = conf->overhead; 1546 r->mpu = conf->mpu; 1547 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 1548 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 1549 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift); 1550 } 1551 EXPORT_SYMBOL(psched_ratecfg_precompute); 1552 1553 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64) 1554 { 1555 r->rate_pkts_ps = pktrate64; 1556 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift); 1557 } 1558 EXPORT_SYMBOL(psched_ppscfg_precompute); 1559 1560 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp, 1561 struct tcf_proto *tp_head) 1562 { 1563 /* Protected with chain0->filter_chain_lock. 1564 * Can't access chain directly because tp_head can be NULL. 1565 */ 1566 struct mini_Qdisc *miniq_old = 1567 rcu_dereference_protected(*miniqp->p_miniq, 1); 1568 struct mini_Qdisc *miniq; 1569 1570 if (!tp_head) { 1571 RCU_INIT_POINTER(*miniqp->p_miniq, NULL); 1572 } else { 1573 miniq = miniq_old != &miniqp->miniq1 ? 1574 &miniqp->miniq1 : &miniqp->miniq2; 1575 1576 /* We need to make sure that readers won't see the miniq 1577 * we are about to modify. So ensure that at least one RCU 1578 * grace period has elapsed since the miniq was made 1579 * inactive. 1580 */ 1581 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 1582 cond_synchronize_rcu(miniq->rcu_state); 1583 else if (!poll_state_synchronize_rcu(miniq->rcu_state)) 1584 synchronize_rcu_expedited(); 1585 1586 miniq->filter_list = tp_head; 1587 rcu_assign_pointer(*miniqp->p_miniq, miniq); 1588 } 1589 1590 if (miniq_old) 1591 /* This is counterpart of the rcu sync above. We need to 1592 * block potential new user of miniq_old until all readers 1593 * are not seeing it. 1594 */ 1595 miniq_old->rcu_state = start_poll_synchronize_rcu(); 1596 } 1597 EXPORT_SYMBOL(mini_qdisc_pair_swap); 1598 1599 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp, 1600 struct tcf_block *block) 1601 { 1602 miniqp->miniq1.block = block; 1603 miniqp->miniq2.block = block; 1604 } 1605 EXPORT_SYMBOL(mini_qdisc_pair_block_init); 1606 1607 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc, 1608 struct mini_Qdisc __rcu **p_miniq) 1609 { 1610 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats; 1611 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats; 1612 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats; 1613 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats; 1614 miniqp->miniq1.rcu_state = get_state_synchronize_rcu(); 1615 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state; 1616 miniqp->p_miniq = p_miniq; 1617 } 1618 EXPORT_SYMBOL(mini_qdisc_pair_init); 1619