1 /* 2 * net/sched/sch_generic.c Generic packet scheduler routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 11 * - Ingress support 12 */ 13 14 #include <linux/bitops.h> 15 #include <linux/module.h> 16 #include <linux/types.h> 17 #include <linux/kernel.h> 18 #include <linux/sched.h> 19 #include <linux/string.h> 20 #include <linux/errno.h> 21 #include <linux/netdevice.h> 22 #include <linux/skbuff.h> 23 #include <linux/rtnetlink.h> 24 #include <linux/init.h> 25 #include <linux/rcupdate.h> 26 #include <linux/list.h> 27 #include <linux/slab.h> 28 #include <net/sch_generic.h> 29 #include <net/pkt_sched.h> 30 #include <net/dst.h> 31 32 /* Main transmission queue. */ 33 34 /* Modifications to data participating in scheduling must be protected with 35 * qdisc_lock(qdisc) spinlock. 36 * 37 * The idea is the following: 38 * - enqueue, dequeue are serialized via qdisc root lock 39 * - ingress filtering is also serialized via qdisc root lock 40 * - updates to tree and tree walking are only done under the rtnl mutex. 41 */ 42 43 static inline int dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 44 { 45 skb_dst_force(skb); 46 q->gso_skb = skb; 47 q->qstats.requeues++; 48 q->q.qlen++; /* it's still part of the queue */ 49 __netif_schedule(q); 50 51 return 0; 52 } 53 54 static inline struct sk_buff *dequeue_skb(struct Qdisc *q) 55 { 56 struct sk_buff *skb = q->gso_skb; 57 const struct netdev_queue *txq = q->dev_queue; 58 59 if (unlikely(skb)) { 60 /* check the reason of requeuing without tx lock first */ 61 txq = netdev_get_tx_queue(txq->dev, skb_get_queue_mapping(skb)); 62 if (!netif_xmit_frozen_or_stopped(txq)) { 63 q->gso_skb = NULL; 64 q->q.qlen--; 65 } else 66 skb = NULL; 67 } else { 68 if (!(q->flags & TCQ_F_ONETXQUEUE) || !netif_xmit_frozen_or_stopped(txq)) 69 skb = q->dequeue(q); 70 } 71 72 return skb; 73 } 74 75 static inline int handle_dev_cpu_collision(struct sk_buff *skb, 76 struct netdev_queue *dev_queue, 77 struct Qdisc *q) 78 { 79 int ret; 80 81 if (unlikely(dev_queue->xmit_lock_owner == smp_processor_id())) { 82 /* 83 * Same CPU holding the lock. It may be a transient 84 * configuration error, when hard_start_xmit() recurses. We 85 * detect it by checking xmit owner and drop the packet when 86 * deadloop is detected. Return OK to try the next skb. 87 */ 88 kfree_skb(skb); 89 net_warn_ratelimited("Dead loop on netdevice %s, fix it urgently!\n", 90 dev_queue->dev->name); 91 ret = qdisc_qlen(q); 92 } else { 93 /* 94 * Another cpu is holding lock, requeue & delay xmits for 95 * some time. 96 */ 97 __this_cpu_inc(softnet_data.cpu_collision); 98 ret = dev_requeue_skb(skb, q); 99 } 100 101 return ret; 102 } 103 104 /* 105 * Transmit one skb, and handle the return status as required. Holding the 106 * __QDISC_STATE_RUNNING bit guarantees that only one CPU can execute this 107 * function. 108 * 109 * Returns to the caller: 110 * 0 - queue is empty or throttled. 111 * >0 - queue is not empty. 112 */ 113 int sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 114 struct net_device *dev, struct netdev_queue *txq, 115 spinlock_t *root_lock) 116 { 117 int ret = NETDEV_TX_BUSY; 118 119 /* And release qdisc */ 120 spin_unlock(root_lock); 121 122 HARD_TX_LOCK(dev, txq, smp_processor_id()); 123 if (!netif_xmit_frozen_or_stopped(txq)) 124 ret = dev_hard_start_xmit(skb, dev, txq); 125 126 HARD_TX_UNLOCK(dev, txq); 127 128 spin_lock(root_lock); 129 130 if (dev_xmit_complete(ret)) { 131 /* Driver sent out skb successfully or skb was consumed */ 132 ret = qdisc_qlen(q); 133 } else if (ret == NETDEV_TX_LOCKED) { 134 /* Driver try lock failed */ 135 ret = handle_dev_cpu_collision(skb, txq, q); 136 } else { 137 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 138 if (unlikely(ret != NETDEV_TX_BUSY)) 139 net_warn_ratelimited("BUG %s code %d qlen %d\n", 140 dev->name, ret, q->q.qlen); 141 142 ret = dev_requeue_skb(skb, q); 143 } 144 145 if (ret && netif_xmit_frozen_or_stopped(txq)) 146 ret = 0; 147 148 return ret; 149 } 150 151 /* 152 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 153 * 154 * __QDISC_STATE_RUNNING guarantees only one CPU can process 155 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 156 * this queue. 157 * 158 * netif_tx_lock serializes accesses to device driver. 159 * 160 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 161 * if one is grabbed, another must be free. 162 * 163 * Note, that this procedure can be called by a watchdog timer 164 * 165 * Returns to the caller: 166 * 0 - queue is empty or throttled. 167 * >0 - queue is not empty. 168 * 169 */ 170 static inline int qdisc_restart(struct Qdisc *q) 171 { 172 struct netdev_queue *txq; 173 struct net_device *dev; 174 spinlock_t *root_lock; 175 struct sk_buff *skb; 176 177 /* Dequeue packet */ 178 skb = dequeue_skb(q); 179 if (unlikely(!skb)) 180 return 0; 181 WARN_ON_ONCE(skb_dst_is_noref(skb)); 182 root_lock = qdisc_lock(q); 183 dev = qdisc_dev(q); 184 txq = netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 185 186 return sch_direct_xmit(skb, q, dev, txq, root_lock); 187 } 188 189 void __qdisc_run(struct Qdisc *q) 190 { 191 int quota = weight_p; 192 193 while (qdisc_restart(q)) { 194 /* 195 * Ordered by possible occurrence: Postpone processing if 196 * 1. we've exceeded packet quota 197 * 2. another process needs the CPU; 198 */ 199 if (--quota <= 0 || need_resched()) { 200 __netif_schedule(q); 201 break; 202 } 203 } 204 205 qdisc_run_end(q); 206 } 207 208 unsigned long dev_trans_start(struct net_device *dev) 209 { 210 unsigned long val, res = dev->trans_start; 211 unsigned int i; 212 213 for (i = 0; i < dev->num_tx_queues; i++) { 214 val = netdev_get_tx_queue(dev, i)->trans_start; 215 if (val && time_after(val, res)) 216 res = val; 217 } 218 dev->trans_start = res; 219 return res; 220 } 221 EXPORT_SYMBOL(dev_trans_start); 222 223 static void dev_watchdog(unsigned long arg) 224 { 225 struct net_device *dev = (struct net_device *)arg; 226 227 netif_tx_lock(dev); 228 if (!qdisc_tx_is_noop(dev)) { 229 if (netif_device_present(dev) && 230 netif_running(dev) && 231 netif_carrier_ok(dev)) { 232 int some_queue_timedout = 0; 233 unsigned int i; 234 unsigned long trans_start; 235 236 for (i = 0; i < dev->num_tx_queues; i++) { 237 struct netdev_queue *txq; 238 239 txq = netdev_get_tx_queue(dev, i); 240 /* 241 * old device drivers set dev->trans_start 242 */ 243 trans_start = txq->trans_start ? : dev->trans_start; 244 if (netif_xmit_stopped(txq) && 245 time_after(jiffies, (trans_start + 246 dev->watchdog_timeo))) { 247 some_queue_timedout = 1; 248 txq->trans_timeout++; 249 break; 250 } 251 } 252 253 if (some_queue_timedout) { 254 WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n", 255 dev->name, netdev_drivername(dev), i); 256 dev->netdev_ops->ndo_tx_timeout(dev); 257 } 258 if (!mod_timer(&dev->watchdog_timer, 259 round_jiffies(jiffies + 260 dev->watchdog_timeo))) 261 dev_hold(dev); 262 } 263 } 264 netif_tx_unlock(dev); 265 266 dev_put(dev); 267 } 268 269 void __netdev_watchdog_up(struct net_device *dev) 270 { 271 if (dev->netdev_ops->ndo_tx_timeout) { 272 if (dev->watchdog_timeo <= 0) 273 dev->watchdog_timeo = 5*HZ; 274 if (!mod_timer(&dev->watchdog_timer, 275 round_jiffies(jiffies + dev->watchdog_timeo))) 276 dev_hold(dev); 277 } 278 } 279 280 static void dev_watchdog_up(struct net_device *dev) 281 { 282 __netdev_watchdog_up(dev); 283 } 284 285 static void dev_watchdog_down(struct net_device *dev) 286 { 287 netif_tx_lock_bh(dev); 288 if (del_timer(&dev->watchdog_timer)) 289 dev_put(dev); 290 netif_tx_unlock_bh(dev); 291 } 292 293 /** 294 * netif_carrier_on - set carrier 295 * @dev: network device 296 * 297 * Device has detected that carrier. 298 */ 299 void netif_carrier_on(struct net_device *dev) 300 { 301 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 302 if (dev->reg_state == NETREG_UNINITIALIZED) 303 return; 304 linkwatch_fire_event(dev); 305 if (netif_running(dev)) 306 __netdev_watchdog_up(dev); 307 } 308 } 309 EXPORT_SYMBOL(netif_carrier_on); 310 311 /** 312 * netif_carrier_off - clear carrier 313 * @dev: network device 314 * 315 * Device has detected loss of carrier. 316 */ 317 void netif_carrier_off(struct net_device *dev) 318 { 319 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 320 if (dev->reg_state == NETREG_UNINITIALIZED) 321 return; 322 linkwatch_fire_event(dev); 323 } 324 } 325 EXPORT_SYMBOL(netif_carrier_off); 326 327 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 328 under all circumstances. It is difficult to invent anything faster or 329 cheaper. 330 */ 331 332 static int noop_enqueue(struct sk_buff *skb, struct Qdisc * qdisc) 333 { 334 kfree_skb(skb); 335 return NET_XMIT_CN; 336 } 337 338 static struct sk_buff *noop_dequeue(struct Qdisc * qdisc) 339 { 340 return NULL; 341 } 342 343 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 344 .id = "noop", 345 .priv_size = 0, 346 .enqueue = noop_enqueue, 347 .dequeue = noop_dequeue, 348 .peek = noop_dequeue, 349 .owner = THIS_MODULE, 350 }; 351 352 static struct netdev_queue noop_netdev_queue = { 353 .qdisc = &noop_qdisc, 354 .qdisc_sleeping = &noop_qdisc, 355 }; 356 357 struct Qdisc noop_qdisc = { 358 .enqueue = noop_enqueue, 359 .dequeue = noop_dequeue, 360 .flags = TCQ_F_BUILTIN, 361 .ops = &noop_qdisc_ops, 362 .list = LIST_HEAD_INIT(noop_qdisc.list), 363 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 364 .dev_queue = &noop_netdev_queue, 365 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 366 }; 367 EXPORT_SYMBOL(noop_qdisc); 368 369 static struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 370 .id = "noqueue", 371 .priv_size = 0, 372 .enqueue = noop_enqueue, 373 .dequeue = noop_dequeue, 374 .peek = noop_dequeue, 375 .owner = THIS_MODULE, 376 }; 377 378 static struct Qdisc noqueue_qdisc; 379 static struct netdev_queue noqueue_netdev_queue = { 380 .qdisc = &noqueue_qdisc, 381 .qdisc_sleeping = &noqueue_qdisc, 382 }; 383 384 static struct Qdisc noqueue_qdisc = { 385 .enqueue = NULL, 386 .dequeue = noop_dequeue, 387 .flags = TCQ_F_BUILTIN, 388 .ops = &noqueue_qdisc_ops, 389 .list = LIST_HEAD_INIT(noqueue_qdisc.list), 390 .q.lock = __SPIN_LOCK_UNLOCKED(noqueue_qdisc.q.lock), 391 .dev_queue = &noqueue_netdev_queue, 392 .busylock = __SPIN_LOCK_UNLOCKED(noqueue_qdisc.busylock), 393 }; 394 395 396 static const u8 prio2band[TC_PRIO_MAX + 1] = { 397 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1 398 }; 399 400 /* 3-band FIFO queue: old style, but should be a bit faster than 401 generic prio+fifo combination. 402 */ 403 404 #define PFIFO_FAST_BANDS 3 405 406 /* 407 * Private data for a pfifo_fast scheduler containing: 408 * - queues for the three band 409 * - bitmap indicating which of the bands contain skbs 410 */ 411 struct pfifo_fast_priv { 412 u32 bitmap; 413 struct sk_buff_head q[PFIFO_FAST_BANDS]; 414 }; 415 416 /* 417 * Convert a bitmap to the first band number where an skb is queued, where: 418 * bitmap=0 means there are no skbs on any band. 419 * bitmap=1 means there is an skb on band 0. 420 * bitmap=7 means there are skbs on all 3 bands, etc. 421 */ 422 static const int bitmap2band[] = {-1, 0, 1, 0, 2, 0, 1, 0}; 423 424 static inline struct sk_buff_head *band2list(struct pfifo_fast_priv *priv, 425 int band) 426 { 427 return priv->q + band; 428 } 429 430 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc) 431 { 432 if (skb_queue_len(&qdisc->q) < qdisc_dev(qdisc)->tx_queue_len) { 433 int band = prio2band[skb->priority & TC_PRIO_MAX]; 434 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 435 struct sk_buff_head *list = band2list(priv, band); 436 437 priv->bitmap |= (1 << band); 438 qdisc->q.qlen++; 439 return __qdisc_enqueue_tail(skb, qdisc, list); 440 } 441 442 return qdisc_drop(skb, qdisc); 443 } 444 445 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 446 { 447 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 448 int band = bitmap2band[priv->bitmap]; 449 450 if (likely(band >= 0)) { 451 struct sk_buff_head *list = band2list(priv, band); 452 struct sk_buff *skb = __qdisc_dequeue_head(qdisc, list); 453 454 qdisc->q.qlen--; 455 if (skb_queue_empty(list)) 456 priv->bitmap &= ~(1 << band); 457 458 return skb; 459 } 460 461 return NULL; 462 } 463 464 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 465 { 466 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 467 int band = bitmap2band[priv->bitmap]; 468 469 if (band >= 0) { 470 struct sk_buff_head *list = band2list(priv, band); 471 472 return skb_peek(list); 473 } 474 475 return NULL; 476 } 477 478 static void pfifo_fast_reset(struct Qdisc *qdisc) 479 { 480 int prio; 481 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 482 483 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) 484 __qdisc_reset_queue(qdisc, band2list(priv, prio)); 485 486 priv->bitmap = 0; 487 qdisc->qstats.backlog = 0; 488 qdisc->q.qlen = 0; 489 } 490 491 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 492 { 493 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 494 495 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1); 496 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 497 goto nla_put_failure; 498 return skb->len; 499 500 nla_put_failure: 501 return -1; 502 } 503 504 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt) 505 { 506 int prio; 507 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 508 509 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) 510 skb_queue_head_init(band2list(priv, prio)); 511 512 /* Can by-pass the queue discipline */ 513 qdisc->flags |= TCQ_F_CAN_BYPASS; 514 return 0; 515 } 516 517 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 518 .id = "pfifo_fast", 519 .priv_size = sizeof(struct pfifo_fast_priv), 520 .enqueue = pfifo_fast_enqueue, 521 .dequeue = pfifo_fast_dequeue, 522 .peek = pfifo_fast_peek, 523 .init = pfifo_fast_init, 524 .reset = pfifo_fast_reset, 525 .dump = pfifo_fast_dump, 526 .owner = THIS_MODULE, 527 }; 528 EXPORT_SYMBOL(pfifo_fast_ops); 529 530 static struct lock_class_key qdisc_tx_busylock; 531 532 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 533 struct Qdisc_ops *ops) 534 { 535 void *p; 536 struct Qdisc *sch; 537 unsigned int size = QDISC_ALIGN(sizeof(*sch)) + ops->priv_size; 538 int err = -ENOBUFS; 539 struct net_device *dev = dev_queue->dev; 540 541 p = kzalloc_node(size, GFP_KERNEL, 542 netdev_queue_numa_node_read(dev_queue)); 543 544 if (!p) 545 goto errout; 546 sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p); 547 /* if we got non aligned memory, ask more and do alignment ourself */ 548 if (sch != p) { 549 kfree(p); 550 p = kzalloc_node(size + QDISC_ALIGNTO - 1, GFP_KERNEL, 551 netdev_queue_numa_node_read(dev_queue)); 552 if (!p) 553 goto errout; 554 sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p); 555 sch->padded = (char *) sch - (char *) p; 556 } 557 INIT_LIST_HEAD(&sch->list); 558 skb_queue_head_init(&sch->q); 559 560 spin_lock_init(&sch->busylock); 561 lockdep_set_class(&sch->busylock, 562 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 563 564 sch->ops = ops; 565 sch->enqueue = ops->enqueue; 566 sch->dequeue = ops->dequeue; 567 sch->dev_queue = dev_queue; 568 dev_hold(dev); 569 atomic_set(&sch->refcnt, 1); 570 571 return sch; 572 errout: 573 return ERR_PTR(err); 574 } 575 576 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 577 struct Qdisc_ops *ops, unsigned int parentid) 578 { 579 struct Qdisc *sch; 580 581 sch = qdisc_alloc(dev_queue, ops); 582 if (IS_ERR(sch)) 583 goto errout; 584 sch->parent = parentid; 585 586 if (!ops->init || ops->init(sch, NULL) == 0) 587 return sch; 588 589 qdisc_destroy(sch); 590 errout: 591 return NULL; 592 } 593 EXPORT_SYMBOL(qdisc_create_dflt); 594 595 /* Under qdisc_lock(qdisc) and BH! */ 596 597 void qdisc_reset(struct Qdisc *qdisc) 598 { 599 const struct Qdisc_ops *ops = qdisc->ops; 600 601 if (ops->reset) 602 ops->reset(qdisc); 603 604 if (qdisc->gso_skb) { 605 kfree_skb(qdisc->gso_skb); 606 qdisc->gso_skb = NULL; 607 qdisc->q.qlen = 0; 608 } 609 } 610 EXPORT_SYMBOL(qdisc_reset); 611 612 static void qdisc_rcu_free(struct rcu_head *head) 613 { 614 struct Qdisc *qdisc = container_of(head, struct Qdisc, rcu_head); 615 616 kfree((char *) qdisc - qdisc->padded); 617 } 618 619 void qdisc_destroy(struct Qdisc *qdisc) 620 { 621 const struct Qdisc_ops *ops = qdisc->ops; 622 623 if (qdisc->flags & TCQ_F_BUILTIN || 624 !atomic_dec_and_test(&qdisc->refcnt)) 625 return; 626 627 #ifdef CONFIG_NET_SCHED 628 qdisc_list_del(qdisc); 629 630 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 631 #endif 632 gen_kill_estimator(&qdisc->bstats, &qdisc->rate_est); 633 if (ops->reset) 634 ops->reset(qdisc); 635 if (ops->destroy) 636 ops->destroy(qdisc); 637 638 module_put(ops->owner); 639 dev_put(qdisc_dev(qdisc)); 640 641 kfree_skb(qdisc->gso_skb); 642 /* 643 * gen_estimator est_timer() might access qdisc->q.lock, 644 * wait a RCU grace period before freeing qdisc. 645 */ 646 call_rcu(&qdisc->rcu_head, qdisc_rcu_free); 647 } 648 EXPORT_SYMBOL(qdisc_destroy); 649 650 /* Attach toplevel qdisc to device queue. */ 651 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 652 struct Qdisc *qdisc) 653 { 654 struct Qdisc *oqdisc = dev_queue->qdisc_sleeping; 655 spinlock_t *root_lock; 656 657 root_lock = qdisc_lock(oqdisc); 658 spin_lock_bh(root_lock); 659 660 /* Prune old scheduler */ 661 if (oqdisc && atomic_read(&oqdisc->refcnt) <= 1) 662 qdisc_reset(oqdisc); 663 664 /* ... and graft new one */ 665 if (qdisc == NULL) 666 qdisc = &noop_qdisc; 667 dev_queue->qdisc_sleeping = qdisc; 668 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 669 670 spin_unlock_bh(root_lock); 671 672 return oqdisc; 673 } 674 EXPORT_SYMBOL(dev_graft_qdisc); 675 676 static void attach_one_default_qdisc(struct net_device *dev, 677 struct netdev_queue *dev_queue, 678 void *_unused) 679 { 680 struct Qdisc *qdisc = &noqueue_qdisc; 681 682 if (dev->tx_queue_len) { 683 qdisc = qdisc_create_dflt(dev_queue, 684 &pfifo_fast_ops, TC_H_ROOT); 685 if (!qdisc) { 686 netdev_info(dev, "activation failed\n"); 687 return; 688 } 689 if (!netif_is_multiqueue(dev)) 690 qdisc->flags |= TCQ_F_ONETXQUEUE; 691 } 692 dev_queue->qdisc_sleeping = qdisc; 693 } 694 695 static void attach_default_qdiscs(struct net_device *dev) 696 { 697 struct netdev_queue *txq; 698 struct Qdisc *qdisc; 699 700 txq = netdev_get_tx_queue(dev, 0); 701 702 if (!netif_is_multiqueue(dev) || dev->tx_queue_len == 0) { 703 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 704 dev->qdisc = txq->qdisc_sleeping; 705 atomic_inc(&dev->qdisc->refcnt); 706 } else { 707 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT); 708 if (qdisc) { 709 qdisc->ops->attach(qdisc); 710 dev->qdisc = qdisc; 711 } 712 } 713 } 714 715 static void transition_one_qdisc(struct net_device *dev, 716 struct netdev_queue *dev_queue, 717 void *_need_watchdog) 718 { 719 struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping; 720 int *need_watchdog_p = _need_watchdog; 721 722 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 723 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 724 725 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 726 if (need_watchdog_p && new_qdisc != &noqueue_qdisc) { 727 dev_queue->trans_start = 0; 728 *need_watchdog_p = 1; 729 } 730 } 731 732 void dev_activate(struct net_device *dev) 733 { 734 int need_watchdog; 735 736 /* No queueing discipline is attached to device; 737 create default one i.e. pfifo_fast for devices, 738 which need queueing and noqueue_qdisc for 739 virtual interfaces 740 */ 741 742 if (dev->qdisc == &noop_qdisc) 743 attach_default_qdiscs(dev); 744 745 if (!netif_carrier_ok(dev)) 746 /* Delay activation until next carrier-on event */ 747 return; 748 749 need_watchdog = 0; 750 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 751 if (dev_ingress_queue(dev)) 752 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 753 754 if (need_watchdog) { 755 dev->trans_start = jiffies; 756 dev_watchdog_up(dev); 757 } 758 } 759 EXPORT_SYMBOL(dev_activate); 760 761 static void dev_deactivate_queue(struct net_device *dev, 762 struct netdev_queue *dev_queue, 763 void *_qdisc_default) 764 { 765 struct Qdisc *qdisc_default = _qdisc_default; 766 struct Qdisc *qdisc; 767 768 qdisc = dev_queue->qdisc; 769 if (qdisc) { 770 spin_lock_bh(qdisc_lock(qdisc)); 771 772 if (!(qdisc->flags & TCQ_F_BUILTIN)) 773 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 774 775 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 776 qdisc_reset(qdisc); 777 778 spin_unlock_bh(qdisc_lock(qdisc)); 779 } 780 } 781 782 static bool some_qdisc_is_busy(struct net_device *dev) 783 { 784 unsigned int i; 785 786 for (i = 0; i < dev->num_tx_queues; i++) { 787 struct netdev_queue *dev_queue; 788 spinlock_t *root_lock; 789 struct Qdisc *q; 790 int val; 791 792 dev_queue = netdev_get_tx_queue(dev, i); 793 q = dev_queue->qdisc_sleeping; 794 root_lock = qdisc_lock(q); 795 796 spin_lock_bh(root_lock); 797 798 val = (qdisc_is_running(q) || 799 test_bit(__QDISC_STATE_SCHED, &q->state)); 800 801 spin_unlock_bh(root_lock); 802 803 if (val) 804 return true; 805 } 806 return false; 807 } 808 809 /** 810 * dev_deactivate_many - deactivate transmissions on several devices 811 * @head: list of devices to deactivate 812 * 813 * This function returns only when all outstanding transmissions 814 * have completed, unless all devices are in dismantle phase. 815 */ 816 void dev_deactivate_many(struct list_head *head) 817 { 818 struct net_device *dev; 819 bool sync_needed = false; 820 821 list_for_each_entry(dev, head, unreg_list) { 822 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 823 &noop_qdisc); 824 if (dev_ingress_queue(dev)) 825 dev_deactivate_queue(dev, dev_ingress_queue(dev), 826 &noop_qdisc); 827 828 dev_watchdog_down(dev); 829 sync_needed |= !dev->dismantle; 830 } 831 832 /* Wait for outstanding qdisc-less dev_queue_xmit calls. 833 * This is avoided if all devices are in dismantle phase : 834 * Caller will call synchronize_net() for us 835 */ 836 if (sync_needed) 837 synchronize_net(); 838 839 /* Wait for outstanding qdisc_run calls. */ 840 list_for_each_entry(dev, head, unreg_list) 841 while (some_qdisc_is_busy(dev)) 842 yield(); 843 } 844 845 void dev_deactivate(struct net_device *dev) 846 { 847 LIST_HEAD(single); 848 849 list_add(&dev->unreg_list, &single); 850 dev_deactivate_many(&single); 851 list_del(&single); 852 } 853 EXPORT_SYMBOL(dev_deactivate); 854 855 static void dev_init_scheduler_queue(struct net_device *dev, 856 struct netdev_queue *dev_queue, 857 void *_qdisc) 858 { 859 struct Qdisc *qdisc = _qdisc; 860 861 dev_queue->qdisc = qdisc; 862 dev_queue->qdisc_sleeping = qdisc; 863 } 864 865 void dev_init_scheduler(struct net_device *dev) 866 { 867 dev->qdisc = &noop_qdisc; 868 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 869 if (dev_ingress_queue(dev)) 870 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 871 872 setup_timer(&dev->watchdog_timer, dev_watchdog, (unsigned long)dev); 873 } 874 875 static void shutdown_scheduler_queue(struct net_device *dev, 876 struct netdev_queue *dev_queue, 877 void *_qdisc_default) 878 { 879 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 880 struct Qdisc *qdisc_default = _qdisc_default; 881 882 if (qdisc) { 883 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 884 dev_queue->qdisc_sleeping = qdisc_default; 885 886 qdisc_destroy(qdisc); 887 } 888 } 889 890 void dev_shutdown(struct net_device *dev) 891 { 892 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 893 if (dev_ingress_queue(dev)) 894 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 895 qdisc_destroy(dev->qdisc); 896 dev->qdisc = &noop_qdisc; 897 898 WARN_ON(timer_pending(&dev->watchdog_timer)); 899 } 900 901 void psched_ratecfg_precompute(struct psched_ratecfg *r, 902 const struct tc_ratespec *conf) 903 { 904 u64 factor; 905 u64 mult; 906 int shift; 907 908 memset(r, 0, sizeof(*r)); 909 r->overhead = conf->overhead; 910 r->rate_bps = (u64)conf->rate << 3; 911 r->mult = 1; 912 /* 913 * Calibrate mult, shift so that token counting is accurate 914 * for smallest packet size (64 bytes). Token (time in ns) is 915 * computed as (bytes * 8) * NSEC_PER_SEC / rate_bps. It will 916 * work as long as the smallest packet transfer time can be 917 * accurately represented in nanosec. 918 */ 919 if (r->rate_bps > 0) { 920 /* 921 * Higher shift gives better accuracy. Find the largest 922 * shift such that mult fits in 32 bits. 923 */ 924 for (shift = 0; shift < 16; shift++) { 925 r->shift = shift; 926 factor = 8LLU * NSEC_PER_SEC * (1 << r->shift); 927 mult = div64_u64(factor, r->rate_bps); 928 if (mult > UINT_MAX) 929 break; 930 } 931 932 r->shift = shift - 1; 933 factor = 8LLU * NSEC_PER_SEC * (1 << r->shift); 934 r->mult = div64_u64(factor, r->rate_bps); 935 } 936 } 937 EXPORT_SYMBOL(psched_ratecfg_precompute); 938