1 /* 2 * net/sched/sch_generic.c Generic packet scheduler routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 11 * - Ingress support 12 */ 13 14 #include <linux/bitops.h> 15 #include <linux/module.h> 16 #include <linux/types.h> 17 #include <linux/kernel.h> 18 #include <linux/sched.h> 19 #include <linux/string.h> 20 #include <linux/errno.h> 21 #include <linux/netdevice.h> 22 #include <linux/skbuff.h> 23 #include <linux/rtnetlink.h> 24 #include <linux/init.h> 25 #include <linux/rcupdate.h> 26 #include <linux/list.h> 27 #include <linux/slab.h> 28 #include <linux/if_vlan.h> 29 #include <net/sch_generic.h> 30 #include <net/pkt_sched.h> 31 #include <net/dst.h> 32 33 /* Qdisc to use by default */ 34 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 35 EXPORT_SYMBOL(default_qdisc_ops); 36 37 /* Main transmission queue. */ 38 39 /* Modifications to data participating in scheduling must be protected with 40 * qdisc_lock(qdisc) spinlock. 41 * 42 * The idea is the following: 43 * - enqueue, dequeue are serialized via qdisc root lock 44 * - ingress filtering is also serialized via qdisc root lock 45 * - updates to tree and tree walking are only done under the rtnl mutex. 46 */ 47 48 static inline int dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 49 { 50 skb_dst_force(skb); 51 q->gso_skb = skb; 52 q->qstats.requeues++; 53 q->q.qlen++; /* it's still part of the queue */ 54 __netif_schedule(q); 55 56 return 0; 57 } 58 59 static inline struct sk_buff *dequeue_skb(struct Qdisc *q) 60 { 61 struct sk_buff *skb = q->gso_skb; 62 const struct netdev_queue *txq = q->dev_queue; 63 64 if (unlikely(skb)) { 65 /* check the reason of requeuing without tx lock first */ 66 txq = netdev_get_tx_queue(txq->dev, skb_get_queue_mapping(skb)); 67 if (!netif_xmit_frozen_or_stopped(txq)) { 68 q->gso_skb = NULL; 69 q->q.qlen--; 70 } else 71 skb = NULL; 72 } else { 73 if (!(q->flags & TCQ_F_ONETXQUEUE) || !netif_xmit_frozen_or_stopped(txq)) 74 skb = q->dequeue(q); 75 } 76 77 return skb; 78 } 79 80 static inline int handle_dev_cpu_collision(struct sk_buff *skb, 81 struct netdev_queue *dev_queue, 82 struct Qdisc *q) 83 { 84 int ret; 85 86 if (unlikely(dev_queue->xmit_lock_owner == smp_processor_id())) { 87 /* 88 * Same CPU holding the lock. It may be a transient 89 * configuration error, when hard_start_xmit() recurses. We 90 * detect it by checking xmit owner and drop the packet when 91 * deadloop is detected. Return OK to try the next skb. 92 */ 93 kfree_skb(skb); 94 net_warn_ratelimited("Dead loop on netdevice %s, fix it urgently!\n", 95 dev_queue->dev->name); 96 ret = qdisc_qlen(q); 97 } else { 98 /* 99 * Another cpu is holding lock, requeue & delay xmits for 100 * some time. 101 */ 102 __this_cpu_inc(softnet_data.cpu_collision); 103 ret = dev_requeue_skb(skb, q); 104 } 105 106 return ret; 107 } 108 109 /* 110 * Transmit one skb, and handle the return status as required. Holding the 111 * __QDISC_STATE_RUNNING bit guarantees that only one CPU can execute this 112 * function. 113 * 114 * Returns to the caller: 115 * 0 - queue is empty or throttled. 116 * >0 - queue is not empty. 117 */ 118 int sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 119 struct net_device *dev, struct netdev_queue *txq, 120 spinlock_t *root_lock) 121 { 122 int ret = NETDEV_TX_BUSY; 123 124 /* And release qdisc */ 125 spin_unlock(root_lock); 126 127 HARD_TX_LOCK(dev, txq, smp_processor_id()); 128 if (!netif_xmit_frozen_or_stopped(txq)) 129 ret = dev_hard_start_xmit(skb, dev, txq); 130 131 HARD_TX_UNLOCK(dev, txq); 132 133 spin_lock(root_lock); 134 135 if (dev_xmit_complete(ret)) { 136 /* Driver sent out skb successfully or skb was consumed */ 137 ret = qdisc_qlen(q); 138 } else if (ret == NETDEV_TX_LOCKED) { 139 /* Driver try lock failed */ 140 ret = handle_dev_cpu_collision(skb, txq, q); 141 } else { 142 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 143 if (unlikely(ret != NETDEV_TX_BUSY)) 144 net_warn_ratelimited("BUG %s code %d qlen %d\n", 145 dev->name, ret, q->q.qlen); 146 147 ret = dev_requeue_skb(skb, q); 148 } 149 150 if (ret && netif_xmit_frozen_or_stopped(txq)) 151 ret = 0; 152 153 return ret; 154 } 155 156 /* 157 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 158 * 159 * __QDISC_STATE_RUNNING guarantees only one CPU can process 160 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 161 * this queue. 162 * 163 * netif_tx_lock serializes accesses to device driver. 164 * 165 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 166 * if one is grabbed, another must be free. 167 * 168 * Note, that this procedure can be called by a watchdog timer 169 * 170 * Returns to the caller: 171 * 0 - queue is empty or throttled. 172 * >0 - queue is not empty. 173 * 174 */ 175 static inline int qdisc_restart(struct Qdisc *q) 176 { 177 struct netdev_queue *txq; 178 struct net_device *dev; 179 spinlock_t *root_lock; 180 struct sk_buff *skb; 181 182 /* Dequeue packet */ 183 skb = dequeue_skb(q); 184 if (unlikely(!skb)) 185 return 0; 186 WARN_ON_ONCE(skb_dst_is_noref(skb)); 187 root_lock = qdisc_lock(q); 188 dev = qdisc_dev(q); 189 txq = netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 190 191 return sch_direct_xmit(skb, q, dev, txq, root_lock); 192 } 193 194 void __qdisc_run(struct Qdisc *q) 195 { 196 int quota = weight_p; 197 198 while (qdisc_restart(q)) { 199 /* 200 * Ordered by possible occurrence: Postpone processing if 201 * 1. we've exceeded packet quota 202 * 2. another process needs the CPU; 203 */ 204 if (--quota <= 0 || need_resched()) { 205 __netif_schedule(q); 206 break; 207 } 208 } 209 210 qdisc_run_end(q); 211 } 212 213 unsigned long dev_trans_start(struct net_device *dev) 214 { 215 unsigned long val, res; 216 unsigned int i; 217 218 if (is_vlan_dev(dev)) 219 dev = vlan_dev_real_dev(dev); 220 res = dev->trans_start; 221 for (i = 0; i < dev->num_tx_queues; i++) { 222 val = netdev_get_tx_queue(dev, i)->trans_start; 223 if (val && time_after(val, res)) 224 res = val; 225 } 226 dev->trans_start = res; 227 228 return res; 229 } 230 EXPORT_SYMBOL(dev_trans_start); 231 232 static void dev_watchdog(unsigned long arg) 233 { 234 struct net_device *dev = (struct net_device *)arg; 235 236 netif_tx_lock(dev); 237 if (!qdisc_tx_is_noop(dev)) { 238 if (netif_device_present(dev) && 239 netif_running(dev) && 240 netif_carrier_ok(dev)) { 241 int some_queue_timedout = 0; 242 unsigned int i; 243 unsigned long trans_start; 244 245 for (i = 0; i < dev->num_tx_queues; i++) { 246 struct netdev_queue *txq; 247 248 txq = netdev_get_tx_queue(dev, i); 249 /* 250 * old device drivers set dev->trans_start 251 */ 252 trans_start = txq->trans_start ? : dev->trans_start; 253 if (netif_xmit_stopped(txq) && 254 time_after(jiffies, (trans_start + 255 dev->watchdog_timeo))) { 256 some_queue_timedout = 1; 257 txq->trans_timeout++; 258 break; 259 } 260 } 261 262 if (some_queue_timedout) { 263 WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n", 264 dev->name, netdev_drivername(dev), i); 265 dev->netdev_ops->ndo_tx_timeout(dev); 266 } 267 if (!mod_timer(&dev->watchdog_timer, 268 round_jiffies(jiffies + 269 dev->watchdog_timeo))) 270 dev_hold(dev); 271 } 272 } 273 netif_tx_unlock(dev); 274 275 dev_put(dev); 276 } 277 278 void __netdev_watchdog_up(struct net_device *dev) 279 { 280 if (dev->netdev_ops->ndo_tx_timeout) { 281 if (dev->watchdog_timeo <= 0) 282 dev->watchdog_timeo = 5*HZ; 283 if (!mod_timer(&dev->watchdog_timer, 284 round_jiffies(jiffies + dev->watchdog_timeo))) 285 dev_hold(dev); 286 } 287 } 288 289 static void dev_watchdog_up(struct net_device *dev) 290 { 291 __netdev_watchdog_up(dev); 292 } 293 294 static void dev_watchdog_down(struct net_device *dev) 295 { 296 netif_tx_lock_bh(dev); 297 if (del_timer(&dev->watchdog_timer)) 298 dev_put(dev); 299 netif_tx_unlock_bh(dev); 300 } 301 302 /** 303 * netif_carrier_on - set carrier 304 * @dev: network device 305 * 306 * Device has detected that carrier. 307 */ 308 void netif_carrier_on(struct net_device *dev) 309 { 310 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 311 if (dev->reg_state == NETREG_UNINITIALIZED) 312 return; 313 atomic_inc(&dev->carrier_changes); 314 linkwatch_fire_event(dev); 315 if (netif_running(dev)) 316 __netdev_watchdog_up(dev); 317 } 318 } 319 EXPORT_SYMBOL(netif_carrier_on); 320 321 /** 322 * netif_carrier_off - clear carrier 323 * @dev: network device 324 * 325 * Device has detected loss of carrier. 326 */ 327 void netif_carrier_off(struct net_device *dev) 328 { 329 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 330 if (dev->reg_state == NETREG_UNINITIALIZED) 331 return; 332 atomic_inc(&dev->carrier_changes); 333 linkwatch_fire_event(dev); 334 } 335 } 336 EXPORT_SYMBOL(netif_carrier_off); 337 338 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 339 under all circumstances. It is difficult to invent anything faster or 340 cheaper. 341 */ 342 343 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc) 344 { 345 kfree_skb(skb); 346 return NET_XMIT_CN; 347 } 348 349 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 350 { 351 return NULL; 352 } 353 354 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 355 .id = "noop", 356 .priv_size = 0, 357 .enqueue = noop_enqueue, 358 .dequeue = noop_dequeue, 359 .peek = noop_dequeue, 360 .owner = THIS_MODULE, 361 }; 362 363 static struct netdev_queue noop_netdev_queue = { 364 .qdisc = &noop_qdisc, 365 .qdisc_sleeping = &noop_qdisc, 366 }; 367 368 struct Qdisc noop_qdisc = { 369 .enqueue = noop_enqueue, 370 .dequeue = noop_dequeue, 371 .flags = TCQ_F_BUILTIN, 372 .ops = &noop_qdisc_ops, 373 .list = LIST_HEAD_INIT(noop_qdisc.list), 374 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 375 .dev_queue = &noop_netdev_queue, 376 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 377 }; 378 EXPORT_SYMBOL(noop_qdisc); 379 380 static struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 381 .id = "noqueue", 382 .priv_size = 0, 383 .enqueue = noop_enqueue, 384 .dequeue = noop_dequeue, 385 .peek = noop_dequeue, 386 .owner = THIS_MODULE, 387 }; 388 389 static struct Qdisc noqueue_qdisc; 390 static struct netdev_queue noqueue_netdev_queue = { 391 .qdisc = &noqueue_qdisc, 392 .qdisc_sleeping = &noqueue_qdisc, 393 }; 394 395 static struct Qdisc noqueue_qdisc = { 396 .enqueue = NULL, 397 .dequeue = noop_dequeue, 398 .flags = TCQ_F_BUILTIN, 399 .ops = &noqueue_qdisc_ops, 400 .list = LIST_HEAD_INIT(noqueue_qdisc.list), 401 .q.lock = __SPIN_LOCK_UNLOCKED(noqueue_qdisc.q.lock), 402 .dev_queue = &noqueue_netdev_queue, 403 .busylock = __SPIN_LOCK_UNLOCKED(noqueue_qdisc.busylock), 404 }; 405 406 407 static const u8 prio2band[TC_PRIO_MAX + 1] = { 408 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1 409 }; 410 411 /* 3-band FIFO queue: old style, but should be a bit faster than 412 generic prio+fifo combination. 413 */ 414 415 #define PFIFO_FAST_BANDS 3 416 417 /* 418 * Private data for a pfifo_fast scheduler containing: 419 * - queues for the three band 420 * - bitmap indicating which of the bands contain skbs 421 */ 422 struct pfifo_fast_priv { 423 u32 bitmap; 424 struct sk_buff_head q[PFIFO_FAST_BANDS]; 425 }; 426 427 /* 428 * Convert a bitmap to the first band number where an skb is queued, where: 429 * bitmap=0 means there are no skbs on any band. 430 * bitmap=1 means there is an skb on band 0. 431 * bitmap=7 means there are skbs on all 3 bands, etc. 432 */ 433 static const int bitmap2band[] = {-1, 0, 1, 0, 2, 0, 1, 0}; 434 435 static inline struct sk_buff_head *band2list(struct pfifo_fast_priv *priv, 436 int band) 437 { 438 return priv->q + band; 439 } 440 441 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc) 442 { 443 if (skb_queue_len(&qdisc->q) < qdisc_dev(qdisc)->tx_queue_len) { 444 int band = prio2band[skb->priority & TC_PRIO_MAX]; 445 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 446 struct sk_buff_head *list = band2list(priv, band); 447 448 priv->bitmap |= (1 << band); 449 qdisc->q.qlen++; 450 return __qdisc_enqueue_tail(skb, qdisc, list); 451 } 452 453 return qdisc_drop(skb, qdisc); 454 } 455 456 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 457 { 458 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 459 int band = bitmap2band[priv->bitmap]; 460 461 if (likely(band >= 0)) { 462 struct sk_buff_head *list = band2list(priv, band); 463 struct sk_buff *skb = __qdisc_dequeue_head(qdisc, list); 464 465 qdisc->q.qlen--; 466 if (skb_queue_empty(list)) 467 priv->bitmap &= ~(1 << band); 468 469 return skb; 470 } 471 472 return NULL; 473 } 474 475 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 476 { 477 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 478 int band = bitmap2band[priv->bitmap]; 479 480 if (band >= 0) { 481 struct sk_buff_head *list = band2list(priv, band); 482 483 return skb_peek(list); 484 } 485 486 return NULL; 487 } 488 489 static void pfifo_fast_reset(struct Qdisc *qdisc) 490 { 491 int prio; 492 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 493 494 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) 495 __qdisc_reset_queue(qdisc, band2list(priv, prio)); 496 497 priv->bitmap = 0; 498 qdisc->qstats.backlog = 0; 499 qdisc->q.qlen = 0; 500 } 501 502 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 503 { 504 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 505 506 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1); 507 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 508 goto nla_put_failure; 509 return skb->len; 510 511 nla_put_failure: 512 return -1; 513 } 514 515 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt) 516 { 517 int prio; 518 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 519 520 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) 521 skb_queue_head_init(band2list(priv, prio)); 522 523 /* Can by-pass the queue discipline */ 524 qdisc->flags |= TCQ_F_CAN_BYPASS; 525 return 0; 526 } 527 528 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 529 .id = "pfifo_fast", 530 .priv_size = sizeof(struct pfifo_fast_priv), 531 .enqueue = pfifo_fast_enqueue, 532 .dequeue = pfifo_fast_dequeue, 533 .peek = pfifo_fast_peek, 534 .init = pfifo_fast_init, 535 .reset = pfifo_fast_reset, 536 .dump = pfifo_fast_dump, 537 .owner = THIS_MODULE, 538 }; 539 540 static struct lock_class_key qdisc_tx_busylock; 541 542 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 543 const struct Qdisc_ops *ops) 544 { 545 void *p; 546 struct Qdisc *sch; 547 unsigned int size = QDISC_ALIGN(sizeof(*sch)) + ops->priv_size; 548 int err = -ENOBUFS; 549 struct net_device *dev = dev_queue->dev; 550 551 p = kzalloc_node(size, GFP_KERNEL, 552 netdev_queue_numa_node_read(dev_queue)); 553 554 if (!p) 555 goto errout; 556 sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p); 557 /* if we got non aligned memory, ask more and do alignment ourself */ 558 if (sch != p) { 559 kfree(p); 560 p = kzalloc_node(size + QDISC_ALIGNTO - 1, GFP_KERNEL, 561 netdev_queue_numa_node_read(dev_queue)); 562 if (!p) 563 goto errout; 564 sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p); 565 sch->padded = (char *) sch - (char *) p; 566 } 567 INIT_LIST_HEAD(&sch->list); 568 skb_queue_head_init(&sch->q); 569 570 spin_lock_init(&sch->busylock); 571 lockdep_set_class(&sch->busylock, 572 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 573 574 sch->ops = ops; 575 sch->enqueue = ops->enqueue; 576 sch->dequeue = ops->dequeue; 577 sch->dev_queue = dev_queue; 578 dev_hold(dev); 579 atomic_set(&sch->refcnt, 1); 580 581 return sch; 582 errout: 583 return ERR_PTR(err); 584 } 585 586 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 587 const struct Qdisc_ops *ops, 588 unsigned int parentid) 589 { 590 struct Qdisc *sch; 591 592 if (!try_module_get(ops->owner)) 593 goto errout; 594 595 sch = qdisc_alloc(dev_queue, ops); 596 if (IS_ERR(sch)) 597 goto errout; 598 sch->parent = parentid; 599 600 if (!ops->init || ops->init(sch, NULL) == 0) 601 return sch; 602 603 qdisc_destroy(sch); 604 errout: 605 return NULL; 606 } 607 EXPORT_SYMBOL(qdisc_create_dflt); 608 609 /* Under qdisc_lock(qdisc) and BH! */ 610 611 void qdisc_reset(struct Qdisc *qdisc) 612 { 613 const struct Qdisc_ops *ops = qdisc->ops; 614 615 if (ops->reset) 616 ops->reset(qdisc); 617 618 if (qdisc->gso_skb) { 619 kfree_skb(qdisc->gso_skb); 620 qdisc->gso_skb = NULL; 621 qdisc->q.qlen = 0; 622 } 623 } 624 EXPORT_SYMBOL(qdisc_reset); 625 626 static void qdisc_rcu_free(struct rcu_head *head) 627 { 628 struct Qdisc *qdisc = container_of(head, struct Qdisc, rcu_head); 629 630 kfree((char *) qdisc - qdisc->padded); 631 } 632 633 void qdisc_destroy(struct Qdisc *qdisc) 634 { 635 const struct Qdisc_ops *ops = qdisc->ops; 636 637 if (qdisc->flags & TCQ_F_BUILTIN || 638 !atomic_dec_and_test(&qdisc->refcnt)) 639 return; 640 641 #ifdef CONFIG_NET_SCHED 642 qdisc_list_del(qdisc); 643 644 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 645 #endif 646 gen_kill_estimator(&qdisc->bstats, &qdisc->rate_est); 647 if (ops->reset) 648 ops->reset(qdisc); 649 if (ops->destroy) 650 ops->destroy(qdisc); 651 652 module_put(ops->owner); 653 dev_put(qdisc_dev(qdisc)); 654 655 kfree_skb(qdisc->gso_skb); 656 /* 657 * gen_estimator est_timer() might access qdisc->q.lock, 658 * wait a RCU grace period before freeing qdisc. 659 */ 660 call_rcu(&qdisc->rcu_head, qdisc_rcu_free); 661 } 662 EXPORT_SYMBOL(qdisc_destroy); 663 664 /* Attach toplevel qdisc to device queue. */ 665 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 666 struct Qdisc *qdisc) 667 { 668 struct Qdisc *oqdisc = dev_queue->qdisc_sleeping; 669 spinlock_t *root_lock; 670 671 root_lock = qdisc_lock(oqdisc); 672 spin_lock_bh(root_lock); 673 674 /* Prune old scheduler */ 675 if (oqdisc && atomic_read(&oqdisc->refcnt) <= 1) 676 qdisc_reset(oqdisc); 677 678 /* ... and graft new one */ 679 if (qdisc == NULL) 680 qdisc = &noop_qdisc; 681 dev_queue->qdisc_sleeping = qdisc; 682 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 683 684 spin_unlock_bh(root_lock); 685 686 return oqdisc; 687 } 688 EXPORT_SYMBOL(dev_graft_qdisc); 689 690 static void attach_one_default_qdisc(struct net_device *dev, 691 struct netdev_queue *dev_queue, 692 void *_unused) 693 { 694 struct Qdisc *qdisc = &noqueue_qdisc; 695 696 if (dev->tx_queue_len) { 697 qdisc = qdisc_create_dflt(dev_queue, 698 default_qdisc_ops, TC_H_ROOT); 699 if (!qdisc) { 700 netdev_info(dev, "activation failed\n"); 701 return; 702 } 703 if (!netif_is_multiqueue(dev)) 704 qdisc->flags |= TCQ_F_ONETXQUEUE; 705 } 706 dev_queue->qdisc_sleeping = qdisc; 707 } 708 709 static void attach_default_qdiscs(struct net_device *dev) 710 { 711 struct netdev_queue *txq; 712 struct Qdisc *qdisc; 713 714 txq = netdev_get_tx_queue(dev, 0); 715 716 if (!netif_is_multiqueue(dev) || dev->tx_queue_len == 0) { 717 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 718 dev->qdisc = txq->qdisc_sleeping; 719 atomic_inc(&dev->qdisc->refcnt); 720 } else { 721 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT); 722 if (qdisc) { 723 dev->qdisc = qdisc; 724 qdisc->ops->attach(qdisc); 725 } 726 } 727 } 728 729 static void transition_one_qdisc(struct net_device *dev, 730 struct netdev_queue *dev_queue, 731 void *_need_watchdog) 732 { 733 struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping; 734 int *need_watchdog_p = _need_watchdog; 735 736 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 737 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 738 739 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 740 if (need_watchdog_p && new_qdisc != &noqueue_qdisc) { 741 dev_queue->trans_start = 0; 742 *need_watchdog_p = 1; 743 } 744 } 745 746 void dev_activate(struct net_device *dev) 747 { 748 int need_watchdog; 749 750 /* No queueing discipline is attached to device; 751 * create default one for devices, which need queueing 752 * and noqueue_qdisc for virtual interfaces 753 */ 754 755 if (dev->qdisc == &noop_qdisc) 756 attach_default_qdiscs(dev); 757 758 if (!netif_carrier_ok(dev)) 759 /* Delay activation until next carrier-on event */ 760 return; 761 762 need_watchdog = 0; 763 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 764 if (dev_ingress_queue(dev)) 765 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 766 767 if (need_watchdog) { 768 dev->trans_start = jiffies; 769 dev_watchdog_up(dev); 770 } 771 } 772 EXPORT_SYMBOL(dev_activate); 773 774 static void dev_deactivate_queue(struct net_device *dev, 775 struct netdev_queue *dev_queue, 776 void *_qdisc_default) 777 { 778 struct Qdisc *qdisc_default = _qdisc_default; 779 struct Qdisc *qdisc; 780 781 qdisc = dev_queue->qdisc; 782 if (qdisc) { 783 spin_lock_bh(qdisc_lock(qdisc)); 784 785 if (!(qdisc->flags & TCQ_F_BUILTIN)) 786 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 787 788 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 789 qdisc_reset(qdisc); 790 791 spin_unlock_bh(qdisc_lock(qdisc)); 792 } 793 } 794 795 static bool some_qdisc_is_busy(struct net_device *dev) 796 { 797 unsigned int i; 798 799 for (i = 0; i < dev->num_tx_queues; i++) { 800 struct netdev_queue *dev_queue; 801 spinlock_t *root_lock; 802 struct Qdisc *q; 803 int val; 804 805 dev_queue = netdev_get_tx_queue(dev, i); 806 q = dev_queue->qdisc_sleeping; 807 root_lock = qdisc_lock(q); 808 809 spin_lock_bh(root_lock); 810 811 val = (qdisc_is_running(q) || 812 test_bit(__QDISC_STATE_SCHED, &q->state)); 813 814 spin_unlock_bh(root_lock); 815 816 if (val) 817 return true; 818 } 819 return false; 820 } 821 822 /** 823 * dev_deactivate_many - deactivate transmissions on several devices 824 * @head: list of devices to deactivate 825 * 826 * This function returns only when all outstanding transmissions 827 * have completed, unless all devices are in dismantle phase. 828 */ 829 void dev_deactivate_many(struct list_head *head) 830 { 831 struct net_device *dev; 832 bool sync_needed = false; 833 834 list_for_each_entry(dev, head, close_list) { 835 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 836 &noop_qdisc); 837 if (dev_ingress_queue(dev)) 838 dev_deactivate_queue(dev, dev_ingress_queue(dev), 839 &noop_qdisc); 840 841 dev_watchdog_down(dev); 842 sync_needed |= !dev->dismantle; 843 } 844 845 /* Wait for outstanding qdisc-less dev_queue_xmit calls. 846 * This is avoided if all devices are in dismantle phase : 847 * Caller will call synchronize_net() for us 848 */ 849 if (sync_needed) 850 synchronize_net(); 851 852 /* Wait for outstanding qdisc_run calls. */ 853 list_for_each_entry(dev, head, close_list) 854 while (some_qdisc_is_busy(dev)) 855 yield(); 856 } 857 858 void dev_deactivate(struct net_device *dev) 859 { 860 LIST_HEAD(single); 861 862 list_add(&dev->close_list, &single); 863 dev_deactivate_many(&single); 864 list_del(&single); 865 } 866 EXPORT_SYMBOL(dev_deactivate); 867 868 static void dev_init_scheduler_queue(struct net_device *dev, 869 struct netdev_queue *dev_queue, 870 void *_qdisc) 871 { 872 struct Qdisc *qdisc = _qdisc; 873 874 dev_queue->qdisc = qdisc; 875 dev_queue->qdisc_sleeping = qdisc; 876 } 877 878 void dev_init_scheduler(struct net_device *dev) 879 { 880 dev->qdisc = &noop_qdisc; 881 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 882 if (dev_ingress_queue(dev)) 883 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 884 885 setup_timer(&dev->watchdog_timer, dev_watchdog, (unsigned long)dev); 886 } 887 888 static void shutdown_scheduler_queue(struct net_device *dev, 889 struct netdev_queue *dev_queue, 890 void *_qdisc_default) 891 { 892 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 893 struct Qdisc *qdisc_default = _qdisc_default; 894 895 if (qdisc) { 896 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 897 dev_queue->qdisc_sleeping = qdisc_default; 898 899 qdisc_destroy(qdisc); 900 } 901 } 902 903 void dev_shutdown(struct net_device *dev) 904 { 905 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 906 if (dev_ingress_queue(dev)) 907 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 908 qdisc_destroy(dev->qdisc); 909 dev->qdisc = &noop_qdisc; 910 911 WARN_ON(timer_pending(&dev->watchdog_timer)); 912 } 913 914 void psched_ratecfg_precompute(struct psched_ratecfg *r, 915 const struct tc_ratespec *conf, 916 u64 rate64) 917 { 918 memset(r, 0, sizeof(*r)); 919 r->overhead = conf->overhead; 920 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 921 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 922 r->mult = 1; 923 /* 924 * The deal here is to replace a divide by a reciprocal one 925 * in fast path (a reciprocal divide is a multiply and a shift) 926 * 927 * Normal formula would be : 928 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 929 * 930 * We compute mult/shift to use instead : 931 * time_in_ns = (len * mult) >> shift; 932 * 933 * We try to get the highest possible mult value for accuracy, 934 * but have to make sure no overflows will ever happen. 935 */ 936 if (r->rate_bytes_ps > 0) { 937 u64 factor = NSEC_PER_SEC; 938 939 for (;;) { 940 r->mult = div64_u64(factor, r->rate_bytes_ps); 941 if (r->mult & (1U << 31) || factor & (1ULL << 63)) 942 break; 943 factor <<= 1; 944 r->shift++; 945 } 946 } 947 } 948 EXPORT_SYMBOL(psched_ratecfg_precompute); 949