1 /* 2 * net/sched/sch_generic.c Generic packet scheduler routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> 10 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601 11 * - Ingress support 12 */ 13 14 #include <linux/bitops.h> 15 #include <linux/module.h> 16 #include <linux/types.h> 17 #include <linux/kernel.h> 18 #include <linux/sched.h> 19 #include <linux/string.h> 20 #include <linux/errno.h> 21 #include <linux/netdevice.h> 22 #include <linux/skbuff.h> 23 #include <linux/rtnetlink.h> 24 #include <linux/init.h> 25 #include <linux/rcupdate.h> 26 #include <linux/list.h> 27 #include <linux/slab.h> 28 #include <linux/if_vlan.h> 29 #include <net/sch_generic.h> 30 #include <net/pkt_sched.h> 31 #include <net/dst.h> 32 33 /* Qdisc to use by default */ 34 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops; 35 EXPORT_SYMBOL(default_qdisc_ops); 36 37 /* Main transmission queue. */ 38 39 /* Modifications to data participating in scheduling must be protected with 40 * qdisc_lock(qdisc) spinlock. 41 * 42 * The idea is the following: 43 * - enqueue, dequeue are serialized via qdisc root lock 44 * - ingress filtering is also serialized via qdisc root lock 45 * - updates to tree and tree walking are only done under the rtnl mutex. 46 */ 47 48 static inline int dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q) 49 { 50 skb_dst_force(skb); 51 q->gso_skb = skb; 52 q->qstats.requeues++; 53 q->q.qlen++; /* it's still part of the queue */ 54 __netif_schedule(q); 55 56 return 0; 57 } 58 59 static inline struct sk_buff *dequeue_skb(struct Qdisc *q) 60 { 61 struct sk_buff *skb = q->gso_skb; 62 const struct netdev_queue *txq = q->dev_queue; 63 64 if (unlikely(skb)) { 65 /* check the reason of requeuing without tx lock first */ 66 txq = netdev_get_tx_queue(txq->dev, skb_get_queue_mapping(skb)); 67 if (!netif_xmit_frozen_or_stopped(txq)) { 68 q->gso_skb = NULL; 69 q->q.qlen--; 70 } else 71 skb = NULL; 72 } else { 73 if (!(q->flags & TCQ_F_ONETXQUEUE) || !netif_xmit_frozen_or_stopped(txq)) 74 skb = q->dequeue(q); 75 } 76 77 return skb; 78 } 79 80 static inline int handle_dev_cpu_collision(struct sk_buff *skb, 81 struct netdev_queue *dev_queue, 82 struct Qdisc *q) 83 { 84 int ret; 85 86 if (unlikely(dev_queue->xmit_lock_owner == smp_processor_id())) { 87 /* 88 * Same CPU holding the lock. It may be a transient 89 * configuration error, when hard_start_xmit() recurses. We 90 * detect it by checking xmit owner and drop the packet when 91 * deadloop is detected. Return OK to try the next skb. 92 */ 93 kfree_skb(skb); 94 net_warn_ratelimited("Dead loop on netdevice %s, fix it urgently!\n", 95 dev_queue->dev->name); 96 ret = qdisc_qlen(q); 97 } else { 98 /* 99 * Another cpu is holding lock, requeue & delay xmits for 100 * some time. 101 */ 102 __this_cpu_inc(softnet_data.cpu_collision); 103 ret = dev_requeue_skb(skb, q); 104 } 105 106 return ret; 107 } 108 109 /* 110 * Transmit one skb, and handle the return status as required. Holding the 111 * __QDISC_STATE_RUNNING bit guarantees that only one CPU can execute this 112 * function. 113 * 114 * Returns to the caller: 115 * 0 - queue is empty or throttled. 116 * >0 - queue is not empty. 117 */ 118 int sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q, 119 struct net_device *dev, struct netdev_queue *txq, 120 spinlock_t *root_lock) 121 { 122 int ret = NETDEV_TX_BUSY; 123 124 /* And release qdisc */ 125 spin_unlock(root_lock); 126 127 HARD_TX_LOCK(dev, txq, smp_processor_id()); 128 if (!netif_xmit_frozen_or_stopped(txq)) 129 ret = dev_hard_start_xmit(skb, dev, txq); 130 131 HARD_TX_UNLOCK(dev, txq); 132 133 spin_lock(root_lock); 134 135 if (dev_xmit_complete(ret)) { 136 /* Driver sent out skb successfully or skb was consumed */ 137 ret = qdisc_qlen(q); 138 } else if (ret == NETDEV_TX_LOCKED) { 139 /* Driver try lock failed */ 140 ret = handle_dev_cpu_collision(skb, txq, q); 141 } else { 142 /* Driver returned NETDEV_TX_BUSY - requeue skb */ 143 if (unlikely(ret != NETDEV_TX_BUSY)) 144 net_warn_ratelimited("BUG %s code %d qlen %d\n", 145 dev->name, ret, q->q.qlen); 146 147 ret = dev_requeue_skb(skb, q); 148 } 149 150 if (ret && netif_xmit_frozen_or_stopped(txq)) 151 ret = 0; 152 153 return ret; 154 } 155 156 /* 157 * NOTE: Called under qdisc_lock(q) with locally disabled BH. 158 * 159 * __QDISC_STATE_RUNNING guarantees only one CPU can process 160 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for 161 * this queue. 162 * 163 * netif_tx_lock serializes accesses to device driver. 164 * 165 * qdisc_lock(q) and netif_tx_lock are mutually exclusive, 166 * if one is grabbed, another must be free. 167 * 168 * Note, that this procedure can be called by a watchdog timer 169 * 170 * Returns to the caller: 171 * 0 - queue is empty or throttled. 172 * >0 - queue is not empty. 173 * 174 */ 175 static inline int qdisc_restart(struct Qdisc *q) 176 { 177 struct netdev_queue *txq; 178 struct net_device *dev; 179 spinlock_t *root_lock; 180 struct sk_buff *skb; 181 182 /* Dequeue packet */ 183 skb = dequeue_skb(q); 184 if (unlikely(!skb)) 185 return 0; 186 WARN_ON_ONCE(skb_dst_is_noref(skb)); 187 root_lock = qdisc_lock(q); 188 dev = qdisc_dev(q); 189 txq = netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 190 191 return sch_direct_xmit(skb, q, dev, txq, root_lock); 192 } 193 194 void __qdisc_run(struct Qdisc *q) 195 { 196 int quota = weight_p; 197 198 while (qdisc_restart(q)) { 199 /* 200 * Ordered by possible occurrence: Postpone processing if 201 * 1. we've exceeded packet quota 202 * 2. another process needs the CPU; 203 */ 204 if (--quota <= 0 || need_resched()) { 205 __netif_schedule(q); 206 break; 207 } 208 } 209 210 qdisc_run_end(q); 211 } 212 213 unsigned long dev_trans_start(struct net_device *dev) 214 { 215 unsigned long val, res; 216 unsigned int i; 217 218 if (is_vlan_dev(dev)) 219 dev = vlan_dev_real_dev(dev); 220 res = dev->trans_start; 221 for (i = 0; i < dev->num_tx_queues; i++) { 222 val = netdev_get_tx_queue(dev, i)->trans_start; 223 if (val && time_after(val, res)) 224 res = val; 225 } 226 dev->trans_start = res; 227 228 return res; 229 } 230 EXPORT_SYMBOL(dev_trans_start); 231 232 static void dev_watchdog(unsigned long arg) 233 { 234 struct net_device *dev = (struct net_device *)arg; 235 236 netif_tx_lock(dev); 237 if (!qdisc_tx_is_noop(dev)) { 238 if (netif_device_present(dev) && 239 netif_running(dev) && 240 netif_carrier_ok(dev)) { 241 int some_queue_timedout = 0; 242 unsigned int i; 243 unsigned long trans_start; 244 245 for (i = 0; i < dev->num_tx_queues; i++) { 246 struct netdev_queue *txq; 247 248 txq = netdev_get_tx_queue(dev, i); 249 /* 250 * old device drivers set dev->trans_start 251 */ 252 trans_start = txq->trans_start ? : dev->trans_start; 253 if (netif_xmit_stopped(txq) && 254 time_after(jiffies, (trans_start + 255 dev->watchdog_timeo))) { 256 some_queue_timedout = 1; 257 txq->trans_timeout++; 258 break; 259 } 260 } 261 262 if (some_queue_timedout) { 263 WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n", 264 dev->name, netdev_drivername(dev), i); 265 dev->netdev_ops->ndo_tx_timeout(dev); 266 } 267 if (!mod_timer(&dev->watchdog_timer, 268 round_jiffies(jiffies + 269 dev->watchdog_timeo))) 270 dev_hold(dev); 271 } 272 } 273 netif_tx_unlock(dev); 274 275 dev_put(dev); 276 } 277 278 void __netdev_watchdog_up(struct net_device *dev) 279 { 280 if (dev->netdev_ops->ndo_tx_timeout) { 281 if (dev->watchdog_timeo <= 0) 282 dev->watchdog_timeo = 5*HZ; 283 if (!mod_timer(&dev->watchdog_timer, 284 round_jiffies(jiffies + dev->watchdog_timeo))) 285 dev_hold(dev); 286 } 287 } 288 289 static void dev_watchdog_up(struct net_device *dev) 290 { 291 __netdev_watchdog_up(dev); 292 } 293 294 static void dev_watchdog_down(struct net_device *dev) 295 { 296 netif_tx_lock_bh(dev); 297 if (del_timer(&dev->watchdog_timer)) 298 dev_put(dev); 299 netif_tx_unlock_bh(dev); 300 } 301 302 /** 303 * netif_carrier_on - set carrier 304 * @dev: network device 305 * 306 * Device has detected that carrier. 307 */ 308 void netif_carrier_on(struct net_device *dev) 309 { 310 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 311 if (dev->reg_state == NETREG_UNINITIALIZED) 312 return; 313 linkwatch_fire_event(dev); 314 if (netif_running(dev)) 315 __netdev_watchdog_up(dev); 316 } 317 } 318 EXPORT_SYMBOL(netif_carrier_on); 319 320 /** 321 * netif_carrier_off - clear carrier 322 * @dev: network device 323 * 324 * Device has detected loss of carrier. 325 */ 326 void netif_carrier_off(struct net_device *dev) 327 { 328 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) { 329 if (dev->reg_state == NETREG_UNINITIALIZED) 330 return; 331 linkwatch_fire_event(dev); 332 } 333 } 334 EXPORT_SYMBOL(netif_carrier_off); 335 336 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces 337 under all circumstances. It is difficult to invent anything faster or 338 cheaper. 339 */ 340 341 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc) 342 { 343 kfree_skb(skb); 344 return NET_XMIT_CN; 345 } 346 347 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc) 348 { 349 return NULL; 350 } 351 352 struct Qdisc_ops noop_qdisc_ops __read_mostly = { 353 .id = "noop", 354 .priv_size = 0, 355 .enqueue = noop_enqueue, 356 .dequeue = noop_dequeue, 357 .peek = noop_dequeue, 358 .owner = THIS_MODULE, 359 }; 360 361 static struct netdev_queue noop_netdev_queue = { 362 .qdisc = &noop_qdisc, 363 .qdisc_sleeping = &noop_qdisc, 364 }; 365 366 struct Qdisc noop_qdisc = { 367 .enqueue = noop_enqueue, 368 .dequeue = noop_dequeue, 369 .flags = TCQ_F_BUILTIN, 370 .ops = &noop_qdisc_ops, 371 .list = LIST_HEAD_INIT(noop_qdisc.list), 372 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock), 373 .dev_queue = &noop_netdev_queue, 374 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock), 375 }; 376 EXPORT_SYMBOL(noop_qdisc); 377 378 static struct Qdisc_ops noqueue_qdisc_ops __read_mostly = { 379 .id = "noqueue", 380 .priv_size = 0, 381 .enqueue = noop_enqueue, 382 .dequeue = noop_dequeue, 383 .peek = noop_dequeue, 384 .owner = THIS_MODULE, 385 }; 386 387 static struct Qdisc noqueue_qdisc; 388 static struct netdev_queue noqueue_netdev_queue = { 389 .qdisc = &noqueue_qdisc, 390 .qdisc_sleeping = &noqueue_qdisc, 391 }; 392 393 static struct Qdisc noqueue_qdisc = { 394 .enqueue = NULL, 395 .dequeue = noop_dequeue, 396 .flags = TCQ_F_BUILTIN, 397 .ops = &noqueue_qdisc_ops, 398 .list = LIST_HEAD_INIT(noqueue_qdisc.list), 399 .q.lock = __SPIN_LOCK_UNLOCKED(noqueue_qdisc.q.lock), 400 .dev_queue = &noqueue_netdev_queue, 401 .busylock = __SPIN_LOCK_UNLOCKED(noqueue_qdisc.busylock), 402 }; 403 404 405 static const u8 prio2band[TC_PRIO_MAX + 1] = { 406 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1 407 }; 408 409 /* 3-band FIFO queue: old style, but should be a bit faster than 410 generic prio+fifo combination. 411 */ 412 413 #define PFIFO_FAST_BANDS 3 414 415 /* 416 * Private data for a pfifo_fast scheduler containing: 417 * - queues for the three band 418 * - bitmap indicating which of the bands contain skbs 419 */ 420 struct pfifo_fast_priv { 421 u32 bitmap; 422 struct sk_buff_head q[PFIFO_FAST_BANDS]; 423 }; 424 425 /* 426 * Convert a bitmap to the first band number where an skb is queued, where: 427 * bitmap=0 means there are no skbs on any band. 428 * bitmap=1 means there is an skb on band 0. 429 * bitmap=7 means there are skbs on all 3 bands, etc. 430 */ 431 static const int bitmap2band[] = {-1, 0, 1, 0, 2, 0, 1, 0}; 432 433 static inline struct sk_buff_head *band2list(struct pfifo_fast_priv *priv, 434 int band) 435 { 436 return priv->q + band; 437 } 438 439 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc) 440 { 441 if (skb_queue_len(&qdisc->q) < qdisc_dev(qdisc)->tx_queue_len) { 442 int band = prio2band[skb->priority & TC_PRIO_MAX]; 443 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 444 struct sk_buff_head *list = band2list(priv, band); 445 446 priv->bitmap |= (1 << band); 447 qdisc->q.qlen++; 448 return __qdisc_enqueue_tail(skb, qdisc, list); 449 } 450 451 return qdisc_drop(skb, qdisc); 452 } 453 454 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc) 455 { 456 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 457 int band = bitmap2band[priv->bitmap]; 458 459 if (likely(band >= 0)) { 460 struct sk_buff_head *list = band2list(priv, band); 461 struct sk_buff *skb = __qdisc_dequeue_head(qdisc, list); 462 463 qdisc->q.qlen--; 464 if (skb_queue_empty(list)) 465 priv->bitmap &= ~(1 << band); 466 467 return skb; 468 } 469 470 return NULL; 471 } 472 473 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc) 474 { 475 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 476 int band = bitmap2band[priv->bitmap]; 477 478 if (band >= 0) { 479 struct sk_buff_head *list = band2list(priv, band); 480 481 return skb_peek(list); 482 } 483 484 return NULL; 485 } 486 487 static void pfifo_fast_reset(struct Qdisc *qdisc) 488 { 489 int prio; 490 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 491 492 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) 493 __qdisc_reset_queue(qdisc, band2list(priv, prio)); 494 495 priv->bitmap = 0; 496 qdisc->qstats.backlog = 0; 497 qdisc->q.qlen = 0; 498 } 499 500 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb) 501 { 502 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS }; 503 504 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1); 505 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt)) 506 goto nla_put_failure; 507 return skb->len; 508 509 nla_put_failure: 510 return -1; 511 } 512 513 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt) 514 { 515 int prio; 516 struct pfifo_fast_priv *priv = qdisc_priv(qdisc); 517 518 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) 519 skb_queue_head_init(band2list(priv, prio)); 520 521 /* Can by-pass the queue discipline */ 522 qdisc->flags |= TCQ_F_CAN_BYPASS; 523 return 0; 524 } 525 526 struct Qdisc_ops pfifo_fast_ops __read_mostly = { 527 .id = "pfifo_fast", 528 .priv_size = sizeof(struct pfifo_fast_priv), 529 .enqueue = pfifo_fast_enqueue, 530 .dequeue = pfifo_fast_dequeue, 531 .peek = pfifo_fast_peek, 532 .init = pfifo_fast_init, 533 .reset = pfifo_fast_reset, 534 .dump = pfifo_fast_dump, 535 .owner = THIS_MODULE, 536 }; 537 538 static struct lock_class_key qdisc_tx_busylock; 539 540 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue, 541 const struct Qdisc_ops *ops) 542 { 543 void *p; 544 struct Qdisc *sch; 545 unsigned int size = QDISC_ALIGN(sizeof(*sch)) + ops->priv_size; 546 int err = -ENOBUFS; 547 struct net_device *dev = dev_queue->dev; 548 549 p = kzalloc_node(size, GFP_KERNEL, 550 netdev_queue_numa_node_read(dev_queue)); 551 552 if (!p) 553 goto errout; 554 sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p); 555 /* if we got non aligned memory, ask more and do alignment ourself */ 556 if (sch != p) { 557 kfree(p); 558 p = kzalloc_node(size + QDISC_ALIGNTO - 1, GFP_KERNEL, 559 netdev_queue_numa_node_read(dev_queue)); 560 if (!p) 561 goto errout; 562 sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p); 563 sch->padded = (char *) sch - (char *) p; 564 } 565 INIT_LIST_HEAD(&sch->list); 566 skb_queue_head_init(&sch->q); 567 568 spin_lock_init(&sch->busylock); 569 lockdep_set_class(&sch->busylock, 570 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock); 571 572 sch->ops = ops; 573 sch->enqueue = ops->enqueue; 574 sch->dequeue = ops->dequeue; 575 sch->dev_queue = dev_queue; 576 dev_hold(dev); 577 atomic_set(&sch->refcnt, 1); 578 579 return sch; 580 errout: 581 return ERR_PTR(err); 582 } 583 584 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue, 585 const struct Qdisc_ops *ops, 586 unsigned int parentid) 587 { 588 struct Qdisc *sch; 589 590 if (!try_module_get(ops->owner)) 591 goto errout; 592 593 sch = qdisc_alloc(dev_queue, ops); 594 if (IS_ERR(sch)) 595 goto errout; 596 sch->parent = parentid; 597 598 if (!ops->init || ops->init(sch, NULL) == 0) 599 return sch; 600 601 qdisc_destroy(sch); 602 errout: 603 return NULL; 604 } 605 EXPORT_SYMBOL(qdisc_create_dflt); 606 607 /* Under qdisc_lock(qdisc) and BH! */ 608 609 void qdisc_reset(struct Qdisc *qdisc) 610 { 611 const struct Qdisc_ops *ops = qdisc->ops; 612 613 if (ops->reset) 614 ops->reset(qdisc); 615 616 if (qdisc->gso_skb) { 617 kfree_skb(qdisc->gso_skb); 618 qdisc->gso_skb = NULL; 619 qdisc->q.qlen = 0; 620 } 621 } 622 EXPORT_SYMBOL(qdisc_reset); 623 624 static void qdisc_rcu_free(struct rcu_head *head) 625 { 626 struct Qdisc *qdisc = container_of(head, struct Qdisc, rcu_head); 627 628 kfree((char *) qdisc - qdisc->padded); 629 } 630 631 void qdisc_destroy(struct Qdisc *qdisc) 632 { 633 const struct Qdisc_ops *ops = qdisc->ops; 634 635 if (qdisc->flags & TCQ_F_BUILTIN || 636 !atomic_dec_and_test(&qdisc->refcnt)) 637 return; 638 639 #ifdef CONFIG_NET_SCHED 640 qdisc_list_del(qdisc); 641 642 qdisc_put_stab(rtnl_dereference(qdisc->stab)); 643 #endif 644 gen_kill_estimator(&qdisc->bstats, &qdisc->rate_est); 645 if (ops->reset) 646 ops->reset(qdisc); 647 if (ops->destroy) 648 ops->destroy(qdisc); 649 650 module_put(ops->owner); 651 dev_put(qdisc_dev(qdisc)); 652 653 kfree_skb(qdisc->gso_skb); 654 /* 655 * gen_estimator est_timer() might access qdisc->q.lock, 656 * wait a RCU grace period before freeing qdisc. 657 */ 658 call_rcu(&qdisc->rcu_head, qdisc_rcu_free); 659 } 660 EXPORT_SYMBOL(qdisc_destroy); 661 662 /* Attach toplevel qdisc to device queue. */ 663 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue, 664 struct Qdisc *qdisc) 665 { 666 struct Qdisc *oqdisc = dev_queue->qdisc_sleeping; 667 spinlock_t *root_lock; 668 669 root_lock = qdisc_lock(oqdisc); 670 spin_lock_bh(root_lock); 671 672 /* Prune old scheduler */ 673 if (oqdisc && atomic_read(&oqdisc->refcnt) <= 1) 674 qdisc_reset(oqdisc); 675 676 /* ... and graft new one */ 677 if (qdisc == NULL) 678 qdisc = &noop_qdisc; 679 dev_queue->qdisc_sleeping = qdisc; 680 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc); 681 682 spin_unlock_bh(root_lock); 683 684 return oqdisc; 685 } 686 EXPORT_SYMBOL(dev_graft_qdisc); 687 688 static void attach_one_default_qdisc(struct net_device *dev, 689 struct netdev_queue *dev_queue, 690 void *_unused) 691 { 692 struct Qdisc *qdisc = &noqueue_qdisc; 693 694 if (dev->tx_queue_len) { 695 qdisc = qdisc_create_dflt(dev_queue, 696 default_qdisc_ops, TC_H_ROOT); 697 if (!qdisc) { 698 netdev_info(dev, "activation failed\n"); 699 return; 700 } 701 if (!netif_is_multiqueue(dev)) 702 qdisc->flags |= TCQ_F_ONETXQUEUE; 703 } 704 dev_queue->qdisc_sleeping = qdisc; 705 } 706 707 static void attach_default_qdiscs(struct net_device *dev) 708 { 709 struct netdev_queue *txq; 710 struct Qdisc *qdisc; 711 712 txq = netdev_get_tx_queue(dev, 0); 713 714 if (!netif_is_multiqueue(dev) || dev->tx_queue_len == 0) { 715 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL); 716 dev->qdisc = txq->qdisc_sleeping; 717 atomic_inc(&dev->qdisc->refcnt); 718 } else { 719 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT); 720 if (qdisc) { 721 dev->qdisc = qdisc; 722 qdisc->ops->attach(qdisc); 723 } 724 } 725 } 726 727 static void transition_one_qdisc(struct net_device *dev, 728 struct netdev_queue *dev_queue, 729 void *_need_watchdog) 730 { 731 struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping; 732 int *need_watchdog_p = _need_watchdog; 733 734 if (!(new_qdisc->flags & TCQ_F_BUILTIN)) 735 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state); 736 737 rcu_assign_pointer(dev_queue->qdisc, new_qdisc); 738 if (need_watchdog_p && new_qdisc != &noqueue_qdisc) { 739 dev_queue->trans_start = 0; 740 *need_watchdog_p = 1; 741 } 742 } 743 744 void dev_activate(struct net_device *dev) 745 { 746 int need_watchdog; 747 748 /* No queueing discipline is attached to device; 749 * create default one for devices, which need queueing 750 * and noqueue_qdisc for virtual interfaces 751 */ 752 753 if (dev->qdisc == &noop_qdisc) 754 attach_default_qdiscs(dev); 755 756 if (!netif_carrier_ok(dev)) 757 /* Delay activation until next carrier-on event */ 758 return; 759 760 need_watchdog = 0; 761 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog); 762 if (dev_ingress_queue(dev)) 763 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL); 764 765 if (need_watchdog) { 766 dev->trans_start = jiffies; 767 dev_watchdog_up(dev); 768 } 769 } 770 EXPORT_SYMBOL(dev_activate); 771 772 static void dev_deactivate_queue(struct net_device *dev, 773 struct netdev_queue *dev_queue, 774 void *_qdisc_default) 775 { 776 struct Qdisc *qdisc_default = _qdisc_default; 777 struct Qdisc *qdisc; 778 779 qdisc = dev_queue->qdisc; 780 if (qdisc) { 781 spin_lock_bh(qdisc_lock(qdisc)); 782 783 if (!(qdisc->flags & TCQ_F_BUILTIN)) 784 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state); 785 786 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 787 qdisc_reset(qdisc); 788 789 spin_unlock_bh(qdisc_lock(qdisc)); 790 } 791 } 792 793 static bool some_qdisc_is_busy(struct net_device *dev) 794 { 795 unsigned int i; 796 797 for (i = 0; i < dev->num_tx_queues; i++) { 798 struct netdev_queue *dev_queue; 799 spinlock_t *root_lock; 800 struct Qdisc *q; 801 int val; 802 803 dev_queue = netdev_get_tx_queue(dev, i); 804 q = dev_queue->qdisc_sleeping; 805 root_lock = qdisc_lock(q); 806 807 spin_lock_bh(root_lock); 808 809 val = (qdisc_is_running(q) || 810 test_bit(__QDISC_STATE_SCHED, &q->state)); 811 812 spin_unlock_bh(root_lock); 813 814 if (val) 815 return true; 816 } 817 return false; 818 } 819 820 /** 821 * dev_deactivate_many - deactivate transmissions on several devices 822 * @head: list of devices to deactivate 823 * 824 * This function returns only when all outstanding transmissions 825 * have completed, unless all devices are in dismantle phase. 826 */ 827 void dev_deactivate_many(struct list_head *head) 828 { 829 struct net_device *dev; 830 bool sync_needed = false; 831 832 list_for_each_entry(dev, head, close_list) { 833 netdev_for_each_tx_queue(dev, dev_deactivate_queue, 834 &noop_qdisc); 835 if (dev_ingress_queue(dev)) 836 dev_deactivate_queue(dev, dev_ingress_queue(dev), 837 &noop_qdisc); 838 839 dev_watchdog_down(dev); 840 sync_needed |= !dev->dismantle; 841 } 842 843 /* Wait for outstanding qdisc-less dev_queue_xmit calls. 844 * This is avoided if all devices are in dismantle phase : 845 * Caller will call synchronize_net() for us 846 */ 847 if (sync_needed) 848 synchronize_net(); 849 850 /* Wait for outstanding qdisc_run calls. */ 851 list_for_each_entry(dev, head, close_list) 852 while (some_qdisc_is_busy(dev)) 853 yield(); 854 } 855 856 void dev_deactivate(struct net_device *dev) 857 { 858 LIST_HEAD(single); 859 860 list_add(&dev->close_list, &single); 861 dev_deactivate_many(&single); 862 list_del(&single); 863 } 864 EXPORT_SYMBOL(dev_deactivate); 865 866 static void dev_init_scheduler_queue(struct net_device *dev, 867 struct netdev_queue *dev_queue, 868 void *_qdisc) 869 { 870 struct Qdisc *qdisc = _qdisc; 871 872 dev_queue->qdisc = qdisc; 873 dev_queue->qdisc_sleeping = qdisc; 874 } 875 876 void dev_init_scheduler(struct net_device *dev) 877 { 878 dev->qdisc = &noop_qdisc; 879 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc); 880 if (dev_ingress_queue(dev)) 881 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 882 883 setup_timer(&dev->watchdog_timer, dev_watchdog, (unsigned long)dev); 884 } 885 886 static void shutdown_scheduler_queue(struct net_device *dev, 887 struct netdev_queue *dev_queue, 888 void *_qdisc_default) 889 { 890 struct Qdisc *qdisc = dev_queue->qdisc_sleeping; 891 struct Qdisc *qdisc_default = _qdisc_default; 892 893 if (qdisc) { 894 rcu_assign_pointer(dev_queue->qdisc, qdisc_default); 895 dev_queue->qdisc_sleeping = qdisc_default; 896 897 qdisc_destroy(qdisc); 898 } 899 } 900 901 void dev_shutdown(struct net_device *dev) 902 { 903 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc); 904 if (dev_ingress_queue(dev)) 905 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc); 906 qdisc_destroy(dev->qdisc); 907 dev->qdisc = &noop_qdisc; 908 909 WARN_ON(timer_pending(&dev->watchdog_timer)); 910 } 911 912 void psched_ratecfg_precompute(struct psched_ratecfg *r, 913 const struct tc_ratespec *conf, 914 u64 rate64) 915 { 916 memset(r, 0, sizeof(*r)); 917 r->overhead = conf->overhead; 918 r->rate_bytes_ps = max_t(u64, conf->rate, rate64); 919 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK); 920 r->mult = 1; 921 /* 922 * The deal here is to replace a divide by a reciprocal one 923 * in fast path (a reciprocal divide is a multiply and a shift) 924 * 925 * Normal formula would be : 926 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps 927 * 928 * We compute mult/shift to use instead : 929 * time_in_ns = (len * mult) >> shift; 930 * 931 * We try to get the highest possible mult value for accuracy, 932 * but have to make sure no overflows will ever happen. 933 */ 934 if (r->rate_bytes_ps > 0) { 935 u64 factor = NSEC_PER_SEC; 936 937 for (;;) { 938 r->mult = div64_u64(factor, r->rate_bytes_ps); 939 if (r->mult & (1U << 31) || factor & (1ULL << 63)) 940 break; 941 factor <<= 1; 942 r->shift++; 943 } 944 } 945 } 946 EXPORT_SYMBOL(psched_ratecfg_precompute); 947