xref: /openbmc/linux/net/sched/sch_generic.c (revision 46209401)
1 /*
2  * net/sched/sch_generic.c	Generic packet scheduler routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10  *              Jamal Hadi Salim, <hadi@cyberus.ca> 990601
11  *              - Ingress support
12  */
13 
14 #include <linux/bitops.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/sched.h>
19 #include <linux/string.h>
20 #include <linux/errno.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/rtnetlink.h>
24 #include <linux/init.h>
25 #include <linux/rcupdate.h>
26 #include <linux/list.h>
27 #include <linux/slab.h>
28 #include <linux/if_vlan.h>
29 #include <net/sch_generic.h>
30 #include <net/pkt_sched.h>
31 #include <net/dst.h>
32 #include <trace/events/qdisc.h>
33 
34 /* Qdisc to use by default */
35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
36 EXPORT_SYMBOL(default_qdisc_ops);
37 
38 /* Main transmission queue. */
39 
40 /* Modifications to data participating in scheduling must be protected with
41  * qdisc_lock(qdisc) spinlock.
42  *
43  * The idea is the following:
44  * - enqueue, dequeue are serialized via qdisc root lock
45  * - ingress filtering is also serialized via qdisc root lock
46  * - updates to tree and tree walking are only done under the rtnl mutex.
47  */
48 
49 static inline int dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
50 {
51 	q->gso_skb = skb;
52 	q->qstats.requeues++;
53 	qdisc_qstats_backlog_inc(q, skb);
54 	q->q.qlen++;	/* it's still part of the queue */
55 	__netif_schedule(q);
56 
57 	return 0;
58 }
59 
60 static void try_bulk_dequeue_skb(struct Qdisc *q,
61 				 struct sk_buff *skb,
62 				 const struct netdev_queue *txq,
63 				 int *packets)
64 {
65 	int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
66 
67 	while (bytelimit > 0) {
68 		struct sk_buff *nskb = q->dequeue(q);
69 
70 		if (!nskb)
71 			break;
72 
73 		bytelimit -= nskb->len; /* covers GSO len */
74 		skb->next = nskb;
75 		skb = nskb;
76 		(*packets)++; /* GSO counts as one pkt */
77 	}
78 	skb->next = NULL;
79 }
80 
81 /* This variant of try_bulk_dequeue_skb() makes sure
82  * all skbs in the chain are for the same txq
83  */
84 static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
85 				      struct sk_buff *skb,
86 				      int *packets)
87 {
88 	int mapping = skb_get_queue_mapping(skb);
89 	struct sk_buff *nskb;
90 	int cnt = 0;
91 
92 	do {
93 		nskb = q->dequeue(q);
94 		if (!nskb)
95 			break;
96 		if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
97 			q->skb_bad_txq = nskb;
98 			qdisc_qstats_backlog_inc(q, nskb);
99 			q->q.qlen++;
100 			break;
101 		}
102 		skb->next = nskb;
103 		skb = nskb;
104 	} while (++cnt < 8);
105 	(*packets) += cnt;
106 	skb->next = NULL;
107 }
108 
109 /* Note that dequeue_skb can possibly return a SKB list (via skb->next).
110  * A requeued skb (via q->gso_skb) can also be a SKB list.
111  */
112 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
113 				   int *packets)
114 {
115 	struct sk_buff *skb = q->gso_skb;
116 	const struct netdev_queue *txq = q->dev_queue;
117 
118 	*packets = 1;
119 	if (unlikely(skb)) {
120 		/* skb in gso_skb were already validated */
121 		*validate = false;
122 		/* check the reason of requeuing without tx lock first */
123 		txq = skb_get_tx_queue(txq->dev, skb);
124 		if (!netif_xmit_frozen_or_stopped(txq)) {
125 			q->gso_skb = NULL;
126 			qdisc_qstats_backlog_dec(q, skb);
127 			q->q.qlen--;
128 		} else
129 			skb = NULL;
130 		goto trace;
131 	}
132 	*validate = true;
133 	skb = q->skb_bad_txq;
134 	if (unlikely(skb)) {
135 		/* check the reason of requeuing without tx lock first */
136 		txq = skb_get_tx_queue(txq->dev, skb);
137 		if (!netif_xmit_frozen_or_stopped(txq)) {
138 			q->skb_bad_txq = NULL;
139 			qdisc_qstats_backlog_dec(q, skb);
140 			q->q.qlen--;
141 			goto bulk;
142 		}
143 		skb = NULL;
144 		goto trace;
145 	}
146 	if (!(q->flags & TCQ_F_ONETXQUEUE) ||
147 	    !netif_xmit_frozen_or_stopped(txq))
148 		skb = q->dequeue(q);
149 	if (skb) {
150 bulk:
151 		if (qdisc_may_bulk(q))
152 			try_bulk_dequeue_skb(q, skb, txq, packets);
153 		else
154 			try_bulk_dequeue_skb_slow(q, skb, packets);
155 	}
156 trace:
157 	trace_qdisc_dequeue(q, txq, *packets, skb);
158 	return skb;
159 }
160 
161 /*
162  * Transmit possibly several skbs, and handle the return status as
163  * required. Owning running seqcount bit guarantees that
164  * only one CPU can execute this function.
165  *
166  * Returns to the caller:
167  *				0  - queue is empty or throttled.
168  *				>0 - queue is not empty.
169  */
170 int sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
171 		    struct net_device *dev, struct netdev_queue *txq,
172 		    spinlock_t *root_lock, bool validate)
173 {
174 	int ret = NETDEV_TX_BUSY;
175 
176 	/* And release qdisc */
177 	spin_unlock(root_lock);
178 
179 	/* Note that we validate skb (GSO, checksum, ...) outside of locks */
180 	if (validate)
181 		skb = validate_xmit_skb_list(skb, dev);
182 
183 	if (likely(skb)) {
184 		HARD_TX_LOCK(dev, txq, smp_processor_id());
185 		if (!netif_xmit_frozen_or_stopped(txq))
186 			skb = dev_hard_start_xmit(skb, dev, txq, &ret);
187 
188 		HARD_TX_UNLOCK(dev, txq);
189 	} else {
190 		spin_lock(root_lock);
191 		return qdisc_qlen(q);
192 	}
193 	spin_lock(root_lock);
194 
195 	if (dev_xmit_complete(ret)) {
196 		/* Driver sent out skb successfully or skb was consumed */
197 		ret = qdisc_qlen(q);
198 	} else {
199 		/* Driver returned NETDEV_TX_BUSY - requeue skb */
200 		if (unlikely(ret != NETDEV_TX_BUSY))
201 			net_warn_ratelimited("BUG %s code %d qlen %d\n",
202 					     dev->name, ret, q->q.qlen);
203 
204 		ret = dev_requeue_skb(skb, q);
205 	}
206 
207 	if (ret && netif_xmit_frozen_or_stopped(txq))
208 		ret = 0;
209 
210 	return ret;
211 }
212 
213 /*
214  * NOTE: Called under qdisc_lock(q) with locally disabled BH.
215  *
216  * running seqcount guarantees only one CPU can process
217  * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
218  * this queue.
219  *
220  *  netif_tx_lock serializes accesses to device driver.
221  *
222  *  qdisc_lock(q) and netif_tx_lock are mutually exclusive,
223  *  if one is grabbed, another must be free.
224  *
225  * Note, that this procedure can be called by a watchdog timer
226  *
227  * Returns to the caller:
228  *				0  - queue is empty or throttled.
229  *				>0 - queue is not empty.
230  *
231  */
232 static inline int qdisc_restart(struct Qdisc *q, int *packets)
233 {
234 	struct netdev_queue *txq;
235 	struct net_device *dev;
236 	spinlock_t *root_lock;
237 	struct sk_buff *skb;
238 	bool validate;
239 
240 	/* Dequeue packet */
241 	skb = dequeue_skb(q, &validate, packets);
242 	if (unlikely(!skb))
243 		return 0;
244 
245 	root_lock = qdisc_lock(q);
246 	dev = qdisc_dev(q);
247 	txq = skb_get_tx_queue(dev, skb);
248 
249 	return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
250 }
251 
252 void __qdisc_run(struct Qdisc *q)
253 {
254 	int quota = dev_tx_weight;
255 	int packets;
256 
257 	while (qdisc_restart(q, &packets)) {
258 		/*
259 		 * Ordered by possible occurrence: Postpone processing if
260 		 * 1. we've exceeded packet quota
261 		 * 2. another process needs the CPU;
262 		 */
263 		quota -= packets;
264 		if (quota <= 0 || need_resched()) {
265 			__netif_schedule(q);
266 			break;
267 		}
268 	}
269 
270 	qdisc_run_end(q);
271 }
272 
273 unsigned long dev_trans_start(struct net_device *dev)
274 {
275 	unsigned long val, res;
276 	unsigned int i;
277 
278 	if (is_vlan_dev(dev))
279 		dev = vlan_dev_real_dev(dev);
280 	res = netdev_get_tx_queue(dev, 0)->trans_start;
281 	for (i = 1; i < dev->num_tx_queues; i++) {
282 		val = netdev_get_tx_queue(dev, i)->trans_start;
283 		if (val && time_after(val, res))
284 			res = val;
285 	}
286 
287 	return res;
288 }
289 EXPORT_SYMBOL(dev_trans_start);
290 
291 static void dev_watchdog(struct timer_list *t)
292 {
293 	struct net_device *dev = from_timer(dev, t, watchdog_timer);
294 
295 	netif_tx_lock(dev);
296 	if (!qdisc_tx_is_noop(dev)) {
297 		if (netif_device_present(dev) &&
298 		    netif_running(dev) &&
299 		    netif_carrier_ok(dev)) {
300 			int some_queue_timedout = 0;
301 			unsigned int i;
302 			unsigned long trans_start;
303 
304 			for (i = 0; i < dev->num_tx_queues; i++) {
305 				struct netdev_queue *txq;
306 
307 				txq = netdev_get_tx_queue(dev, i);
308 				trans_start = txq->trans_start;
309 				if (netif_xmit_stopped(txq) &&
310 				    time_after(jiffies, (trans_start +
311 							 dev->watchdog_timeo))) {
312 					some_queue_timedout = 1;
313 					txq->trans_timeout++;
314 					break;
315 				}
316 			}
317 
318 			if (some_queue_timedout) {
319 				WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n",
320 				       dev->name, netdev_drivername(dev), i);
321 				dev->netdev_ops->ndo_tx_timeout(dev);
322 			}
323 			if (!mod_timer(&dev->watchdog_timer,
324 				       round_jiffies(jiffies +
325 						     dev->watchdog_timeo)))
326 				dev_hold(dev);
327 		}
328 	}
329 	netif_tx_unlock(dev);
330 
331 	dev_put(dev);
332 }
333 
334 void __netdev_watchdog_up(struct net_device *dev)
335 {
336 	if (dev->netdev_ops->ndo_tx_timeout) {
337 		if (dev->watchdog_timeo <= 0)
338 			dev->watchdog_timeo = 5*HZ;
339 		if (!mod_timer(&dev->watchdog_timer,
340 			       round_jiffies(jiffies + dev->watchdog_timeo)))
341 			dev_hold(dev);
342 	}
343 }
344 
345 static void dev_watchdog_up(struct net_device *dev)
346 {
347 	__netdev_watchdog_up(dev);
348 }
349 
350 static void dev_watchdog_down(struct net_device *dev)
351 {
352 	netif_tx_lock_bh(dev);
353 	if (del_timer(&dev->watchdog_timer))
354 		dev_put(dev);
355 	netif_tx_unlock_bh(dev);
356 }
357 
358 /**
359  *	netif_carrier_on - set carrier
360  *	@dev: network device
361  *
362  * Device has detected that carrier.
363  */
364 void netif_carrier_on(struct net_device *dev)
365 {
366 	if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
367 		if (dev->reg_state == NETREG_UNINITIALIZED)
368 			return;
369 		atomic_inc(&dev->carrier_changes);
370 		linkwatch_fire_event(dev);
371 		if (netif_running(dev))
372 			__netdev_watchdog_up(dev);
373 	}
374 }
375 EXPORT_SYMBOL(netif_carrier_on);
376 
377 /**
378  *	netif_carrier_off - clear carrier
379  *	@dev: network device
380  *
381  * Device has detected loss of carrier.
382  */
383 void netif_carrier_off(struct net_device *dev)
384 {
385 	if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
386 		if (dev->reg_state == NETREG_UNINITIALIZED)
387 			return;
388 		atomic_inc(&dev->carrier_changes);
389 		linkwatch_fire_event(dev);
390 	}
391 }
392 EXPORT_SYMBOL(netif_carrier_off);
393 
394 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces
395    under all circumstances. It is difficult to invent anything faster or
396    cheaper.
397  */
398 
399 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
400 			struct sk_buff **to_free)
401 {
402 	__qdisc_drop(skb, to_free);
403 	return NET_XMIT_CN;
404 }
405 
406 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
407 {
408 	return NULL;
409 }
410 
411 struct Qdisc_ops noop_qdisc_ops __read_mostly = {
412 	.id		=	"noop",
413 	.priv_size	=	0,
414 	.enqueue	=	noop_enqueue,
415 	.dequeue	=	noop_dequeue,
416 	.peek		=	noop_dequeue,
417 	.owner		=	THIS_MODULE,
418 };
419 
420 static struct netdev_queue noop_netdev_queue = {
421 	.qdisc		=	&noop_qdisc,
422 	.qdisc_sleeping	=	&noop_qdisc,
423 };
424 
425 struct Qdisc noop_qdisc = {
426 	.enqueue	=	noop_enqueue,
427 	.dequeue	=	noop_dequeue,
428 	.flags		=	TCQ_F_BUILTIN,
429 	.ops		=	&noop_qdisc_ops,
430 	.q.lock		=	__SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
431 	.dev_queue	=	&noop_netdev_queue,
432 	.running	=	SEQCNT_ZERO(noop_qdisc.running),
433 	.busylock	=	__SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
434 };
435 EXPORT_SYMBOL(noop_qdisc);
436 
437 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt)
438 {
439 	/* register_qdisc() assigns a default of noop_enqueue if unset,
440 	 * but __dev_queue_xmit() treats noqueue only as such
441 	 * if this is NULL - so clear it here. */
442 	qdisc->enqueue = NULL;
443 	return 0;
444 }
445 
446 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
447 	.id		=	"noqueue",
448 	.priv_size	=	0,
449 	.init		=	noqueue_init,
450 	.enqueue	=	noop_enqueue,
451 	.dequeue	=	noop_dequeue,
452 	.peek		=	noop_dequeue,
453 	.owner		=	THIS_MODULE,
454 };
455 
456 static const u8 prio2band[TC_PRIO_MAX + 1] = {
457 	1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
458 };
459 
460 /* 3-band FIFO queue: old style, but should be a bit faster than
461    generic prio+fifo combination.
462  */
463 
464 #define PFIFO_FAST_BANDS 3
465 
466 /*
467  * Private data for a pfifo_fast scheduler containing:
468  * 	- queues for the three band
469  * 	- bitmap indicating which of the bands contain skbs
470  */
471 struct pfifo_fast_priv {
472 	u32 bitmap;
473 	struct qdisc_skb_head q[PFIFO_FAST_BANDS];
474 };
475 
476 /*
477  * Convert a bitmap to the first band number where an skb is queued, where:
478  * 	bitmap=0 means there are no skbs on any band.
479  * 	bitmap=1 means there is an skb on band 0.
480  *	bitmap=7 means there are skbs on all 3 bands, etc.
481  */
482 static const int bitmap2band[] = {-1, 0, 1, 0, 2, 0, 1, 0};
483 
484 static inline struct qdisc_skb_head *band2list(struct pfifo_fast_priv *priv,
485 					     int band)
486 {
487 	return priv->q + band;
488 }
489 
490 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
491 			      struct sk_buff **to_free)
492 {
493 	if (qdisc->q.qlen < qdisc_dev(qdisc)->tx_queue_len) {
494 		int band = prio2band[skb->priority & TC_PRIO_MAX];
495 		struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
496 		struct qdisc_skb_head *list = band2list(priv, band);
497 
498 		priv->bitmap |= (1 << band);
499 		qdisc->q.qlen++;
500 		return __qdisc_enqueue_tail(skb, qdisc, list);
501 	}
502 
503 	return qdisc_drop(skb, qdisc, to_free);
504 }
505 
506 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
507 {
508 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
509 	int band = bitmap2band[priv->bitmap];
510 
511 	if (likely(band >= 0)) {
512 		struct qdisc_skb_head *qh = band2list(priv, band);
513 		struct sk_buff *skb = __qdisc_dequeue_head(qh);
514 
515 		if (likely(skb != NULL)) {
516 			qdisc_qstats_backlog_dec(qdisc, skb);
517 			qdisc_bstats_update(qdisc, skb);
518 		}
519 
520 		qdisc->q.qlen--;
521 		if (qh->qlen == 0)
522 			priv->bitmap &= ~(1 << band);
523 
524 		return skb;
525 	}
526 
527 	return NULL;
528 }
529 
530 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
531 {
532 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
533 	int band = bitmap2band[priv->bitmap];
534 
535 	if (band >= 0) {
536 		struct qdisc_skb_head *qh = band2list(priv, band);
537 
538 		return qh->head;
539 	}
540 
541 	return NULL;
542 }
543 
544 static void pfifo_fast_reset(struct Qdisc *qdisc)
545 {
546 	int prio;
547 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
548 
549 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++)
550 		__qdisc_reset_queue(band2list(priv, prio));
551 
552 	priv->bitmap = 0;
553 	qdisc->qstats.backlog = 0;
554 	qdisc->q.qlen = 0;
555 }
556 
557 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
558 {
559 	struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
560 
561 	memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1);
562 	if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
563 		goto nla_put_failure;
564 	return skb->len;
565 
566 nla_put_failure:
567 	return -1;
568 }
569 
570 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt)
571 {
572 	int prio;
573 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
574 
575 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++)
576 		qdisc_skb_head_init(band2list(priv, prio));
577 
578 	/* Can by-pass the queue discipline */
579 	qdisc->flags |= TCQ_F_CAN_BYPASS;
580 	return 0;
581 }
582 
583 struct Qdisc_ops pfifo_fast_ops __read_mostly = {
584 	.id		=	"pfifo_fast",
585 	.priv_size	=	sizeof(struct pfifo_fast_priv),
586 	.enqueue	=	pfifo_fast_enqueue,
587 	.dequeue	=	pfifo_fast_dequeue,
588 	.peek		=	pfifo_fast_peek,
589 	.init		=	pfifo_fast_init,
590 	.reset		=	pfifo_fast_reset,
591 	.dump		=	pfifo_fast_dump,
592 	.owner		=	THIS_MODULE,
593 };
594 EXPORT_SYMBOL(pfifo_fast_ops);
595 
596 static struct lock_class_key qdisc_tx_busylock;
597 static struct lock_class_key qdisc_running_key;
598 
599 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
600 			  const struct Qdisc_ops *ops)
601 {
602 	void *p;
603 	struct Qdisc *sch;
604 	unsigned int size = QDISC_ALIGN(sizeof(*sch)) + ops->priv_size;
605 	int err = -ENOBUFS;
606 	struct net_device *dev;
607 
608 	if (!dev_queue) {
609 		err = -EINVAL;
610 		goto errout;
611 	}
612 
613 	dev = dev_queue->dev;
614 	p = kzalloc_node(size, GFP_KERNEL,
615 			 netdev_queue_numa_node_read(dev_queue));
616 
617 	if (!p)
618 		goto errout;
619 	sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p);
620 	/* if we got non aligned memory, ask more and do alignment ourself */
621 	if (sch != p) {
622 		kfree(p);
623 		p = kzalloc_node(size + QDISC_ALIGNTO - 1, GFP_KERNEL,
624 				 netdev_queue_numa_node_read(dev_queue));
625 		if (!p)
626 			goto errout;
627 		sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p);
628 		sch->padded = (char *) sch - (char *) p;
629 	}
630 	qdisc_skb_head_init(&sch->q);
631 	spin_lock_init(&sch->q.lock);
632 
633 	spin_lock_init(&sch->busylock);
634 	lockdep_set_class(&sch->busylock,
635 			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
636 
637 	seqcount_init(&sch->running);
638 	lockdep_set_class(&sch->running,
639 			  dev->qdisc_running_key ?: &qdisc_running_key);
640 
641 	sch->ops = ops;
642 	sch->enqueue = ops->enqueue;
643 	sch->dequeue = ops->dequeue;
644 	sch->dev_queue = dev_queue;
645 	dev_hold(dev);
646 	refcount_set(&sch->refcnt, 1);
647 
648 	return sch;
649 errout:
650 	return ERR_PTR(err);
651 }
652 
653 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
654 				const struct Qdisc_ops *ops,
655 				unsigned int parentid)
656 {
657 	struct Qdisc *sch;
658 
659 	if (!try_module_get(ops->owner))
660 		return NULL;
661 
662 	sch = qdisc_alloc(dev_queue, ops);
663 	if (IS_ERR(sch)) {
664 		module_put(ops->owner);
665 		return NULL;
666 	}
667 	sch->parent = parentid;
668 
669 	if (!ops->init || ops->init(sch, NULL) == 0)
670 		return sch;
671 
672 	qdisc_destroy(sch);
673 	return NULL;
674 }
675 EXPORT_SYMBOL(qdisc_create_dflt);
676 
677 /* Under qdisc_lock(qdisc) and BH! */
678 
679 void qdisc_reset(struct Qdisc *qdisc)
680 {
681 	const struct Qdisc_ops *ops = qdisc->ops;
682 
683 	if (ops->reset)
684 		ops->reset(qdisc);
685 
686 	kfree_skb(qdisc->skb_bad_txq);
687 	qdisc->skb_bad_txq = NULL;
688 
689 	if (qdisc->gso_skb) {
690 		kfree_skb_list(qdisc->gso_skb);
691 		qdisc->gso_skb = NULL;
692 	}
693 	qdisc->q.qlen = 0;
694 	qdisc->qstats.backlog = 0;
695 }
696 EXPORT_SYMBOL(qdisc_reset);
697 
698 static void qdisc_free(struct Qdisc *qdisc)
699 {
700 	if (qdisc_is_percpu_stats(qdisc)) {
701 		free_percpu(qdisc->cpu_bstats);
702 		free_percpu(qdisc->cpu_qstats);
703 	}
704 
705 	kfree((char *) qdisc - qdisc->padded);
706 }
707 
708 void qdisc_destroy(struct Qdisc *qdisc)
709 {
710 	const struct Qdisc_ops  *ops = qdisc->ops;
711 
712 	if (qdisc->flags & TCQ_F_BUILTIN ||
713 	    !refcount_dec_and_test(&qdisc->refcnt))
714 		return;
715 
716 #ifdef CONFIG_NET_SCHED
717 	qdisc_hash_del(qdisc);
718 
719 	qdisc_put_stab(rtnl_dereference(qdisc->stab));
720 #endif
721 	gen_kill_estimator(&qdisc->rate_est);
722 	if (ops->reset)
723 		ops->reset(qdisc);
724 	if (ops->destroy)
725 		ops->destroy(qdisc);
726 
727 	module_put(ops->owner);
728 	dev_put(qdisc_dev(qdisc));
729 
730 	kfree_skb_list(qdisc->gso_skb);
731 	kfree_skb(qdisc->skb_bad_txq);
732 	qdisc_free(qdisc);
733 }
734 EXPORT_SYMBOL(qdisc_destroy);
735 
736 /* Attach toplevel qdisc to device queue. */
737 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
738 			      struct Qdisc *qdisc)
739 {
740 	struct Qdisc *oqdisc = dev_queue->qdisc_sleeping;
741 	spinlock_t *root_lock;
742 
743 	root_lock = qdisc_lock(oqdisc);
744 	spin_lock_bh(root_lock);
745 
746 	/* Prune old scheduler */
747 	if (oqdisc && refcount_read(&oqdisc->refcnt) <= 1)
748 		qdisc_reset(oqdisc);
749 
750 	/* ... and graft new one */
751 	if (qdisc == NULL)
752 		qdisc = &noop_qdisc;
753 	dev_queue->qdisc_sleeping = qdisc;
754 	rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
755 
756 	spin_unlock_bh(root_lock);
757 
758 	return oqdisc;
759 }
760 EXPORT_SYMBOL(dev_graft_qdisc);
761 
762 static void attach_one_default_qdisc(struct net_device *dev,
763 				     struct netdev_queue *dev_queue,
764 				     void *_unused)
765 {
766 	struct Qdisc *qdisc;
767 	const struct Qdisc_ops *ops = default_qdisc_ops;
768 
769 	if (dev->priv_flags & IFF_NO_QUEUE)
770 		ops = &noqueue_qdisc_ops;
771 
772 	qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT);
773 	if (!qdisc) {
774 		netdev_info(dev, "activation failed\n");
775 		return;
776 	}
777 	if (!netif_is_multiqueue(dev))
778 		qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
779 	dev_queue->qdisc_sleeping = qdisc;
780 }
781 
782 static void attach_default_qdiscs(struct net_device *dev)
783 {
784 	struct netdev_queue *txq;
785 	struct Qdisc *qdisc;
786 
787 	txq = netdev_get_tx_queue(dev, 0);
788 
789 	if (!netif_is_multiqueue(dev) ||
790 	    dev->priv_flags & IFF_NO_QUEUE) {
791 		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
792 		dev->qdisc = txq->qdisc_sleeping;
793 		qdisc_refcount_inc(dev->qdisc);
794 	} else {
795 		qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT);
796 		if (qdisc) {
797 			dev->qdisc = qdisc;
798 			qdisc->ops->attach(qdisc);
799 		}
800 	}
801 #ifdef CONFIG_NET_SCHED
802 	if (dev->qdisc != &noop_qdisc)
803 		qdisc_hash_add(dev->qdisc, false);
804 #endif
805 }
806 
807 static void transition_one_qdisc(struct net_device *dev,
808 				 struct netdev_queue *dev_queue,
809 				 void *_need_watchdog)
810 {
811 	struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping;
812 	int *need_watchdog_p = _need_watchdog;
813 
814 	if (!(new_qdisc->flags & TCQ_F_BUILTIN))
815 		clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
816 
817 	rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
818 	if (need_watchdog_p) {
819 		dev_queue->trans_start = 0;
820 		*need_watchdog_p = 1;
821 	}
822 }
823 
824 void dev_activate(struct net_device *dev)
825 {
826 	int need_watchdog;
827 
828 	/* No queueing discipline is attached to device;
829 	 * create default one for devices, which need queueing
830 	 * and noqueue_qdisc for virtual interfaces
831 	 */
832 
833 	if (dev->qdisc == &noop_qdisc)
834 		attach_default_qdiscs(dev);
835 
836 	if (!netif_carrier_ok(dev))
837 		/* Delay activation until next carrier-on event */
838 		return;
839 
840 	need_watchdog = 0;
841 	netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
842 	if (dev_ingress_queue(dev))
843 		transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
844 
845 	if (need_watchdog) {
846 		netif_trans_update(dev);
847 		dev_watchdog_up(dev);
848 	}
849 }
850 EXPORT_SYMBOL(dev_activate);
851 
852 static void dev_deactivate_queue(struct net_device *dev,
853 				 struct netdev_queue *dev_queue,
854 				 void *_qdisc_default)
855 {
856 	struct Qdisc *qdisc_default = _qdisc_default;
857 	struct Qdisc *qdisc;
858 
859 	qdisc = rtnl_dereference(dev_queue->qdisc);
860 	if (qdisc) {
861 		spin_lock_bh(qdisc_lock(qdisc));
862 
863 		if (!(qdisc->flags & TCQ_F_BUILTIN))
864 			set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
865 
866 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
867 		qdisc_reset(qdisc);
868 
869 		spin_unlock_bh(qdisc_lock(qdisc));
870 	}
871 }
872 
873 static bool some_qdisc_is_busy(struct net_device *dev)
874 {
875 	unsigned int i;
876 
877 	for (i = 0; i < dev->num_tx_queues; i++) {
878 		struct netdev_queue *dev_queue;
879 		spinlock_t *root_lock;
880 		struct Qdisc *q;
881 		int val;
882 
883 		dev_queue = netdev_get_tx_queue(dev, i);
884 		q = dev_queue->qdisc_sleeping;
885 		root_lock = qdisc_lock(q);
886 
887 		spin_lock_bh(root_lock);
888 
889 		val = (qdisc_is_running(q) ||
890 		       test_bit(__QDISC_STATE_SCHED, &q->state));
891 
892 		spin_unlock_bh(root_lock);
893 
894 		if (val)
895 			return true;
896 	}
897 	return false;
898 }
899 
900 /**
901  * 	dev_deactivate_many - deactivate transmissions on several devices
902  * 	@head: list of devices to deactivate
903  *
904  *	This function returns only when all outstanding transmissions
905  *	have completed, unless all devices are in dismantle phase.
906  */
907 void dev_deactivate_many(struct list_head *head)
908 {
909 	struct net_device *dev;
910 	bool sync_needed = false;
911 
912 	list_for_each_entry(dev, head, close_list) {
913 		netdev_for_each_tx_queue(dev, dev_deactivate_queue,
914 					 &noop_qdisc);
915 		if (dev_ingress_queue(dev))
916 			dev_deactivate_queue(dev, dev_ingress_queue(dev),
917 					     &noop_qdisc);
918 
919 		dev_watchdog_down(dev);
920 		sync_needed |= !dev->dismantle;
921 	}
922 
923 	/* Wait for outstanding qdisc-less dev_queue_xmit calls.
924 	 * This is avoided if all devices are in dismantle phase :
925 	 * Caller will call synchronize_net() for us
926 	 */
927 	if (sync_needed)
928 		synchronize_net();
929 
930 	/* Wait for outstanding qdisc_run calls. */
931 	list_for_each_entry(dev, head, close_list)
932 		while (some_qdisc_is_busy(dev))
933 			yield();
934 }
935 
936 void dev_deactivate(struct net_device *dev)
937 {
938 	LIST_HEAD(single);
939 
940 	list_add(&dev->close_list, &single);
941 	dev_deactivate_many(&single);
942 	list_del(&single);
943 }
944 EXPORT_SYMBOL(dev_deactivate);
945 
946 static void dev_init_scheduler_queue(struct net_device *dev,
947 				     struct netdev_queue *dev_queue,
948 				     void *_qdisc)
949 {
950 	struct Qdisc *qdisc = _qdisc;
951 
952 	rcu_assign_pointer(dev_queue->qdisc, qdisc);
953 	dev_queue->qdisc_sleeping = qdisc;
954 }
955 
956 void dev_init_scheduler(struct net_device *dev)
957 {
958 	dev->qdisc = &noop_qdisc;
959 	netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
960 	if (dev_ingress_queue(dev))
961 		dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
962 
963 	timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
964 }
965 
966 static void shutdown_scheduler_queue(struct net_device *dev,
967 				     struct netdev_queue *dev_queue,
968 				     void *_qdisc_default)
969 {
970 	struct Qdisc *qdisc = dev_queue->qdisc_sleeping;
971 	struct Qdisc *qdisc_default = _qdisc_default;
972 
973 	if (qdisc) {
974 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
975 		dev_queue->qdisc_sleeping = qdisc_default;
976 
977 		qdisc_destroy(qdisc);
978 	}
979 }
980 
981 void dev_shutdown(struct net_device *dev)
982 {
983 	netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
984 	if (dev_ingress_queue(dev))
985 		shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
986 	qdisc_destroy(dev->qdisc);
987 	dev->qdisc = &noop_qdisc;
988 
989 	WARN_ON(timer_pending(&dev->watchdog_timer));
990 }
991 
992 void psched_ratecfg_precompute(struct psched_ratecfg *r,
993 			       const struct tc_ratespec *conf,
994 			       u64 rate64)
995 {
996 	memset(r, 0, sizeof(*r));
997 	r->overhead = conf->overhead;
998 	r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
999 	r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1000 	r->mult = 1;
1001 	/*
1002 	 * The deal here is to replace a divide by a reciprocal one
1003 	 * in fast path (a reciprocal divide is a multiply and a shift)
1004 	 *
1005 	 * Normal formula would be :
1006 	 *  time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1007 	 *
1008 	 * We compute mult/shift to use instead :
1009 	 *  time_in_ns = (len * mult) >> shift;
1010 	 *
1011 	 * We try to get the highest possible mult value for accuracy,
1012 	 * but have to make sure no overflows will ever happen.
1013 	 */
1014 	if (r->rate_bytes_ps > 0) {
1015 		u64 factor = NSEC_PER_SEC;
1016 
1017 		for (;;) {
1018 			r->mult = div64_u64(factor, r->rate_bytes_ps);
1019 			if (r->mult & (1U << 31) || factor & (1ULL << 63))
1020 				break;
1021 			factor <<= 1;
1022 			r->shift++;
1023 		}
1024 	}
1025 }
1026 EXPORT_SYMBOL(psched_ratecfg_precompute);
1027 
1028 static void mini_qdisc_rcu_func(struct rcu_head *head)
1029 {
1030 }
1031 
1032 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1033 			  struct tcf_proto *tp_head)
1034 {
1035 	struct mini_Qdisc *miniq_old = rtnl_dereference(*miniqp->p_miniq);
1036 	struct mini_Qdisc *miniq;
1037 
1038 	if (!tp_head) {
1039 		RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1040 		return;
1041 	}
1042 
1043 	miniq = !miniq_old || miniq_old == &miniqp->miniq2 ?
1044 		&miniqp->miniq1 : &miniqp->miniq2;
1045 
1046 	/* We need to make sure that readers won't see the miniq
1047 	 * we are about to modify. So wait until previous call_rcu_bh callback
1048 	 * is done.
1049 	 */
1050 	rcu_barrier_bh();
1051 	miniq->filter_list = tp_head;
1052 	rcu_assign_pointer(*miniqp->p_miniq, miniq);
1053 
1054 	if (miniq_old)
1055 		/* This is counterpart of the rcu barrier above. We need to
1056 		 * block potential new user of miniq_old until all readers
1057 		 * are not seeing it.
1058 		 */
1059 		call_rcu_bh(&miniq_old->rcu, mini_qdisc_rcu_func);
1060 }
1061 EXPORT_SYMBOL(mini_qdisc_pair_swap);
1062 
1063 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1064 			  struct mini_Qdisc __rcu **p_miniq)
1065 {
1066 	miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1067 	miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1068 	miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1069 	miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1070 	miniqp->p_miniq = p_miniq;
1071 }
1072 EXPORT_SYMBOL(mini_qdisc_pair_init);
1073