xref: /openbmc/linux/net/sched/sch_generic.c (revision 2f164822)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net/sched/sch_generic.c	Generic packet scheduler routines.
4  *
5  * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6  *              Jamal Hadi Salim, <hadi@cyberus.ca> 990601
7  *              - Ingress support
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/init.h>
21 #include <linux/rcupdate.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/if_vlan.h>
25 #include <linux/skb_array.h>
26 #include <linux/if_macvlan.h>
27 #include <net/sch_generic.h>
28 #include <net/pkt_sched.h>
29 #include <net/dst.h>
30 #include <trace/events/qdisc.h>
31 #include <trace/events/net.h>
32 #include <net/xfrm.h>
33 
34 /* Qdisc to use by default */
35 const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
36 EXPORT_SYMBOL(default_qdisc_ops);
37 
38 static void qdisc_maybe_clear_missed(struct Qdisc *q,
39 				     const struct netdev_queue *txq)
40 {
41 	clear_bit(__QDISC_STATE_MISSED, &q->state);
42 
43 	/* Make sure the below netif_xmit_frozen_or_stopped()
44 	 * checking happens after clearing STATE_MISSED.
45 	 */
46 	smp_mb__after_atomic();
47 
48 	/* Checking netif_xmit_frozen_or_stopped() again to
49 	 * make sure STATE_MISSED is set if the STATE_MISSED
50 	 * set by netif_tx_wake_queue()'s rescheduling of
51 	 * net_tx_action() is cleared by the above clear_bit().
52 	 */
53 	if (!netif_xmit_frozen_or_stopped(txq))
54 		set_bit(__QDISC_STATE_MISSED, &q->state);
55 	else
56 		set_bit(__QDISC_STATE_DRAINING, &q->state);
57 }
58 
59 /* Main transmission queue. */
60 
61 /* Modifications to data participating in scheduling must be protected with
62  * qdisc_lock(qdisc) spinlock.
63  *
64  * The idea is the following:
65  * - enqueue, dequeue are serialized via qdisc root lock
66  * - ingress filtering is also serialized via qdisc root lock
67  * - updates to tree and tree walking are only done under the rtnl mutex.
68  */
69 
70 #define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
71 
72 static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
73 {
74 	const struct netdev_queue *txq = q->dev_queue;
75 	spinlock_t *lock = NULL;
76 	struct sk_buff *skb;
77 
78 	if (q->flags & TCQ_F_NOLOCK) {
79 		lock = qdisc_lock(q);
80 		spin_lock(lock);
81 	}
82 
83 	skb = skb_peek(&q->skb_bad_txq);
84 	if (skb) {
85 		/* check the reason of requeuing without tx lock first */
86 		txq = skb_get_tx_queue(txq->dev, skb);
87 		if (!netif_xmit_frozen_or_stopped(txq)) {
88 			skb = __skb_dequeue(&q->skb_bad_txq);
89 			if (qdisc_is_percpu_stats(q)) {
90 				qdisc_qstats_cpu_backlog_dec(q, skb);
91 				qdisc_qstats_cpu_qlen_dec(q);
92 			} else {
93 				qdisc_qstats_backlog_dec(q, skb);
94 				q->q.qlen--;
95 			}
96 		} else {
97 			skb = SKB_XOFF_MAGIC;
98 			qdisc_maybe_clear_missed(q, txq);
99 		}
100 	}
101 
102 	if (lock)
103 		spin_unlock(lock);
104 
105 	return skb;
106 }
107 
108 static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
109 {
110 	struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
111 
112 	if (unlikely(skb))
113 		skb = __skb_dequeue_bad_txq(q);
114 
115 	return skb;
116 }
117 
118 static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
119 					     struct sk_buff *skb)
120 {
121 	spinlock_t *lock = NULL;
122 
123 	if (q->flags & TCQ_F_NOLOCK) {
124 		lock = qdisc_lock(q);
125 		spin_lock(lock);
126 	}
127 
128 	__skb_queue_tail(&q->skb_bad_txq, skb);
129 
130 	if (qdisc_is_percpu_stats(q)) {
131 		qdisc_qstats_cpu_backlog_inc(q, skb);
132 		qdisc_qstats_cpu_qlen_inc(q);
133 	} else {
134 		qdisc_qstats_backlog_inc(q, skb);
135 		q->q.qlen++;
136 	}
137 
138 	if (lock)
139 		spin_unlock(lock);
140 }
141 
142 static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
143 {
144 	spinlock_t *lock = NULL;
145 
146 	if (q->flags & TCQ_F_NOLOCK) {
147 		lock = qdisc_lock(q);
148 		spin_lock(lock);
149 	}
150 
151 	while (skb) {
152 		struct sk_buff *next = skb->next;
153 
154 		__skb_queue_tail(&q->gso_skb, skb);
155 
156 		/* it's still part of the queue */
157 		if (qdisc_is_percpu_stats(q)) {
158 			qdisc_qstats_cpu_requeues_inc(q);
159 			qdisc_qstats_cpu_backlog_inc(q, skb);
160 			qdisc_qstats_cpu_qlen_inc(q);
161 		} else {
162 			q->qstats.requeues++;
163 			qdisc_qstats_backlog_inc(q, skb);
164 			q->q.qlen++;
165 		}
166 
167 		skb = next;
168 	}
169 
170 	if (lock) {
171 		spin_unlock(lock);
172 		set_bit(__QDISC_STATE_MISSED, &q->state);
173 	} else {
174 		__netif_schedule(q);
175 	}
176 }
177 
178 static void try_bulk_dequeue_skb(struct Qdisc *q,
179 				 struct sk_buff *skb,
180 				 const struct netdev_queue *txq,
181 				 int *packets)
182 {
183 	int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
184 
185 	while (bytelimit > 0) {
186 		struct sk_buff *nskb = q->dequeue(q);
187 
188 		if (!nskb)
189 			break;
190 
191 		bytelimit -= nskb->len; /* covers GSO len */
192 		skb->next = nskb;
193 		skb = nskb;
194 		(*packets)++; /* GSO counts as one pkt */
195 	}
196 	skb_mark_not_on_list(skb);
197 }
198 
199 /* This variant of try_bulk_dequeue_skb() makes sure
200  * all skbs in the chain are for the same txq
201  */
202 static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
203 				      struct sk_buff *skb,
204 				      int *packets)
205 {
206 	int mapping = skb_get_queue_mapping(skb);
207 	struct sk_buff *nskb;
208 	int cnt = 0;
209 
210 	do {
211 		nskb = q->dequeue(q);
212 		if (!nskb)
213 			break;
214 		if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
215 			qdisc_enqueue_skb_bad_txq(q, nskb);
216 			break;
217 		}
218 		skb->next = nskb;
219 		skb = nskb;
220 	} while (++cnt < 8);
221 	(*packets) += cnt;
222 	skb_mark_not_on_list(skb);
223 }
224 
225 /* Note that dequeue_skb can possibly return a SKB list (via skb->next).
226  * A requeued skb (via q->gso_skb) can also be a SKB list.
227  */
228 static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
229 				   int *packets)
230 {
231 	const struct netdev_queue *txq = q->dev_queue;
232 	struct sk_buff *skb = NULL;
233 
234 	*packets = 1;
235 	if (unlikely(!skb_queue_empty(&q->gso_skb))) {
236 		spinlock_t *lock = NULL;
237 
238 		if (q->flags & TCQ_F_NOLOCK) {
239 			lock = qdisc_lock(q);
240 			spin_lock(lock);
241 		}
242 
243 		skb = skb_peek(&q->gso_skb);
244 
245 		/* skb may be null if another cpu pulls gso_skb off in between
246 		 * empty check and lock.
247 		 */
248 		if (!skb) {
249 			if (lock)
250 				spin_unlock(lock);
251 			goto validate;
252 		}
253 
254 		/* skb in gso_skb were already validated */
255 		*validate = false;
256 		if (xfrm_offload(skb))
257 			*validate = true;
258 		/* check the reason of requeuing without tx lock first */
259 		txq = skb_get_tx_queue(txq->dev, skb);
260 		if (!netif_xmit_frozen_or_stopped(txq)) {
261 			skb = __skb_dequeue(&q->gso_skb);
262 			if (qdisc_is_percpu_stats(q)) {
263 				qdisc_qstats_cpu_backlog_dec(q, skb);
264 				qdisc_qstats_cpu_qlen_dec(q);
265 			} else {
266 				qdisc_qstats_backlog_dec(q, skb);
267 				q->q.qlen--;
268 			}
269 		} else {
270 			skb = NULL;
271 			qdisc_maybe_clear_missed(q, txq);
272 		}
273 		if (lock)
274 			spin_unlock(lock);
275 		goto trace;
276 	}
277 validate:
278 	*validate = true;
279 
280 	if ((q->flags & TCQ_F_ONETXQUEUE) &&
281 	    netif_xmit_frozen_or_stopped(txq)) {
282 		qdisc_maybe_clear_missed(q, txq);
283 		return skb;
284 	}
285 
286 	skb = qdisc_dequeue_skb_bad_txq(q);
287 	if (unlikely(skb)) {
288 		if (skb == SKB_XOFF_MAGIC)
289 			return NULL;
290 		goto bulk;
291 	}
292 	skb = q->dequeue(q);
293 	if (skb) {
294 bulk:
295 		if (qdisc_may_bulk(q))
296 			try_bulk_dequeue_skb(q, skb, txq, packets);
297 		else
298 			try_bulk_dequeue_skb_slow(q, skb, packets);
299 	}
300 trace:
301 	trace_qdisc_dequeue(q, txq, *packets, skb);
302 	return skb;
303 }
304 
305 /*
306  * Transmit possibly several skbs, and handle the return status as
307  * required. Owning qdisc running bit guarantees that only one CPU
308  * can execute this function.
309  *
310  * Returns to the caller:
311  *				false  - hardware queue frozen backoff
312  *				true   - feel free to send more pkts
313  */
314 bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
315 		     struct net_device *dev, struct netdev_queue *txq,
316 		     spinlock_t *root_lock, bool validate)
317 {
318 	int ret = NETDEV_TX_BUSY;
319 	bool again = false;
320 
321 	/* And release qdisc */
322 	if (root_lock)
323 		spin_unlock(root_lock);
324 
325 	/* Note that we validate skb (GSO, checksum, ...) outside of locks */
326 	if (validate)
327 		skb = validate_xmit_skb_list(skb, dev, &again);
328 
329 #ifdef CONFIG_XFRM_OFFLOAD
330 	if (unlikely(again)) {
331 		if (root_lock)
332 			spin_lock(root_lock);
333 
334 		dev_requeue_skb(skb, q);
335 		return false;
336 	}
337 #endif
338 
339 	if (likely(skb)) {
340 		HARD_TX_LOCK(dev, txq, smp_processor_id());
341 		if (!netif_xmit_frozen_or_stopped(txq))
342 			skb = dev_hard_start_xmit(skb, dev, txq, &ret);
343 		else
344 			qdisc_maybe_clear_missed(q, txq);
345 
346 		HARD_TX_UNLOCK(dev, txq);
347 	} else {
348 		if (root_lock)
349 			spin_lock(root_lock);
350 		return true;
351 	}
352 
353 	if (root_lock)
354 		spin_lock(root_lock);
355 
356 	if (!dev_xmit_complete(ret)) {
357 		/* Driver returned NETDEV_TX_BUSY - requeue skb */
358 		if (unlikely(ret != NETDEV_TX_BUSY))
359 			net_warn_ratelimited("BUG %s code %d qlen %d\n",
360 					     dev->name, ret, q->q.qlen);
361 
362 		dev_requeue_skb(skb, q);
363 		return false;
364 	}
365 
366 	return true;
367 }
368 
369 /*
370  * NOTE: Called under qdisc_lock(q) with locally disabled BH.
371  *
372  * running seqcount guarantees only one CPU can process
373  * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
374  * this queue.
375  *
376  *  netif_tx_lock serializes accesses to device driver.
377  *
378  *  qdisc_lock(q) and netif_tx_lock are mutually exclusive,
379  *  if one is grabbed, another must be free.
380  *
381  * Note, that this procedure can be called by a watchdog timer
382  *
383  * Returns to the caller:
384  *				0  - queue is empty or throttled.
385  *				>0 - queue is not empty.
386  *
387  */
388 static inline bool qdisc_restart(struct Qdisc *q, int *packets)
389 {
390 	spinlock_t *root_lock = NULL;
391 	struct netdev_queue *txq;
392 	struct net_device *dev;
393 	struct sk_buff *skb;
394 	bool validate;
395 
396 	/* Dequeue packet */
397 	skb = dequeue_skb(q, &validate, packets);
398 	if (unlikely(!skb))
399 		return false;
400 
401 	if (!(q->flags & TCQ_F_NOLOCK))
402 		root_lock = qdisc_lock(q);
403 
404 	dev = qdisc_dev(q);
405 	txq = skb_get_tx_queue(dev, skb);
406 
407 	return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
408 }
409 
410 void __qdisc_run(struct Qdisc *q)
411 {
412 	int quota = READ_ONCE(dev_tx_weight);
413 	int packets;
414 
415 	while (qdisc_restart(q, &packets)) {
416 		quota -= packets;
417 		if (quota <= 0) {
418 			if (q->flags & TCQ_F_NOLOCK)
419 				set_bit(__QDISC_STATE_MISSED, &q->state);
420 			else
421 				__netif_schedule(q);
422 
423 			break;
424 		}
425 	}
426 }
427 
428 unsigned long dev_trans_start(struct net_device *dev)
429 {
430 	unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start);
431 	unsigned long val;
432 	unsigned int i;
433 
434 	for (i = 1; i < dev->num_tx_queues; i++) {
435 		val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start);
436 		if (val && time_after(val, res))
437 			res = val;
438 	}
439 
440 	return res;
441 }
442 EXPORT_SYMBOL(dev_trans_start);
443 
444 static void netif_freeze_queues(struct net_device *dev)
445 {
446 	unsigned int i;
447 	int cpu;
448 
449 	cpu = smp_processor_id();
450 	for (i = 0; i < dev->num_tx_queues; i++) {
451 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
452 
453 		/* We are the only thread of execution doing a
454 		 * freeze, but we have to grab the _xmit_lock in
455 		 * order to synchronize with threads which are in
456 		 * the ->hard_start_xmit() handler and already
457 		 * checked the frozen bit.
458 		 */
459 		__netif_tx_lock(txq, cpu);
460 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
461 		__netif_tx_unlock(txq);
462 	}
463 }
464 
465 void netif_tx_lock(struct net_device *dev)
466 {
467 	spin_lock(&dev->tx_global_lock);
468 	netif_freeze_queues(dev);
469 }
470 EXPORT_SYMBOL(netif_tx_lock);
471 
472 static void netif_unfreeze_queues(struct net_device *dev)
473 {
474 	unsigned int i;
475 
476 	for (i = 0; i < dev->num_tx_queues; i++) {
477 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
478 
479 		/* No need to grab the _xmit_lock here.  If the
480 		 * queue is not stopped for another reason, we
481 		 * force a schedule.
482 		 */
483 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
484 		netif_schedule_queue(txq);
485 	}
486 }
487 
488 void netif_tx_unlock(struct net_device *dev)
489 {
490 	netif_unfreeze_queues(dev);
491 	spin_unlock(&dev->tx_global_lock);
492 }
493 EXPORT_SYMBOL(netif_tx_unlock);
494 
495 static void dev_watchdog(struct timer_list *t)
496 {
497 	struct net_device *dev = from_timer(dev, t, watchdog_timer);
498 	bool release = true;
499 
500 	spin_lock(&dev->tx_global_lock);
501 	if (!qdisc_tx_is_noop(dev)) {
502 		if (netif_device_present(dev) &&
503 		    netif_running(dev) &&
504 		    netif_carrier_ok(dev)) {
505 			int some_queue_timedout = 0;
506 			unsigned int i;
507 			unsigned long trans_start;
508 
509 			for (i = 0; i < dev->num_tx_queues; i++) {
510 				struct netdev_queue *txq;
511 
512 				txq = netdev_get_tx_queue(dev, i);
513 				trans_start = READ_ONCE(txq->trans_start);
514 				if (netif_xmit_stopped(txq) &&
515 				    time_after(jiffies, (trans_start +
516 							 dev->watchdog_timeo))) {
517 					some_queue_timedout = 1;
518 					atomic_long_inc(&txq->trans_timeout);
519 					break;
520 				}
521 			}
522 
523 			if (unlikely(some_queue_timedout)) {
524 				trace_net_dev_xmit_timeout(dev, i);
525 				WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n",
526 				       dev->name, netdev_drivername(dev), i);
527 				netif_freeze_queues(dev);
528 				dev->netdev_ops->ndo_tx_timeout(dev, i);
529 				netif_unfreeze_queues(dev);
530 			}
531 			if (!mod_timer(&dev->watchdog_timer,
532 				       round_jiffies(jiffies +
533 						     dev->watchdog_timeo)))
534 				release = false;
535 		}
536 	}
537 	spin_unlock(&dev->tx_global_lock);
538 
539 	if (release)
540 		netdev_put(dev, &dev->watchdog_dev_tracker);
541 }
542 
543 void __netdev_watchdog_up(struct net_device *dev)
544 {
545 	if (dev->netdev_ops->ndo_tx_timeout) {
546 		if (dev->watchdog_timeo <= 0)
547 			dev->watchdog_timeo = 5*HZ;
548 		if (!mod_timer(&dev->watchdog_timer,
549 			       round_jiffies(jiffies + dev->watchdog_timeo)))
550 			netdev_hold(dev, &dev->watchdog_dev_tracker,
551 				    GFP_ATOMIC);
552 	}
553 }
554 EXPORT_SYMBOL_GPL(__netdev_watchdog_up);
555 
556 static void dev_watchdog_up(struct net_device *dev)
557 {
558 	__netdev_watchdog_up(dev);
559 }
560 
561 static void dev_watchdog_down(struct net_device *dev)
562 {
563 	netif_tx_lock_bh(dev);
564 	if (del_timer(&dev->watchdog_timer))
565 		netdev_put(dev, &dev->watchdog_dev_tracker);
566 	netif_tx_unlock_bh(dev);
567 }
568 
569 /**
570  *	netif_carrier_on - set carrier
571  *	@dev: network device
572  *
573  * Device has detected acquisition of carrier.
574  */
575 void netif_carrier_on(struct net_device *dev)
576 {
577 	if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
578 		if (dev->reg_state == NETREG_UNINITIALIZED)
579 			return;
580 		atomic_inc(&dev->carrier_up_count);
581 		linkwatch_fire_event(dev);
582 		if (netif_running(dev))
583 			__netdev_watchdog_up(dev);
584 	}
585 }
586 EXPORT_SYMBOL(netif_carrier_on);
587 
588 /**
589  *	netif_carrier_off - clear carrier
590  *	@dev: network device
591  *
592  * Device has detected loss of carrier.
593  */
594 void netif_carrier_off(struct net_device *dev)
595 {
596 	if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
597 		if (dev->reg_state == NETREG_UNINITIALIZED)
598 			return;
599 		atomic_inc(&dev->carrier_down_count);
600 		linkwatch_fire_event(dev);
601 	}
602 }
603 EXPORT_SYMBOL(netif_carrier_off);
604 
605 /**
606  *	netif_carrier_event - report carrier state event
607  *	@dev: network device
608  *
609  * Device has detected a carrier event but the carrier state wasn't changed.
610  * Use in drivers when querying carrier state asynchronously, to avoid missing
611  * events (link flaps) if link recovers before it's queried.
612  */
613 void netif_carrier_event(struct net_device *dev)
614 {
615 	if (dev->reg_state == NETREG_UNINITIALIZED)
616 		return;
617 	atomic_inc(&dev->carrier_up_count);
618 	atomic_inc(&dev->carrier_down_count);
619 	linkwatch_fire_event(dev);
620 }
621 EXPORT_SYMBOL_GPL(netif_carrier_event);
622 
623 /* "NOOP" scheduler: the best scheduler, recommended for all interfaces
624    under all circumstances. It is difficult to invent anything faster or
625    cheaper.
626  */
627 
628 static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
629 			struct sk_buff **to_free)
630 {
631 	__qdisc_drop(skb, to_free);
632 	return NET_XMIT_CN;
633 }
634 
635 static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
636 {
637 	return NULL;
638 }
639 
640 struct Qdisc_ops noop_qdisc_ops __read_mostly = {
641 	.id		=	"noop",
642 	.priv_size	=	0,
643 	.enqueue	=	noop_enqueue,
644 	.dequeue	=	noop_dequeue,
645 	.peek		=	noop_dequeue,
646 	.owner		=	THIS_MODULE,
647 };
648 
649 static struct netdev_queue noop_netdev_queue = {
650 	RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
651 	.qdisc_sleeping	=	&noop_qdisc,
652 };
653 
654 struct Qdisc noop_qdisc = {
655 	.enqueue	=	noop_enqueue,
656 	.dequeue	=	noop_dequeue,
657 	.flags		=	TCQ_F_BUILTIN,
658 	.ops		=	&noop_qdisc_ops,
659 	.q.lock		=	__SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
660 	.dev_queue	=	&noop_netdev_queue,
661 	.busylock	=	__SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
662 	.gso_skb = {
663 		.next = (struct sk_buff *)&noop_qdisc.gso_skb,
664 		.prev = (struct sk_buff *)&noop_qdisc.gso_skb,
665 		.qlen = 0,
666 		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
667 	},
668 	.skb_bad_txq = {
669 		.next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
670 		.prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
671 		.qlen = 0,
672 		.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
673 	},
674 };
675 EXPORT_SYMBOL(noop_qdisc);
676 
677 static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
678 			struct netlink_ext_ack *extack)
679 {
680 	/* register_qdisc() assigns a default of noop_enqueue if unset,
681 	 * but __dev_queue_xmit() treats noqueue only as such
682 	 * if this is NULL - so clear it here. */
683 	qdisc->enqueue = NULL;
684 	return 0;
685 }
686 
687 struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
688 	.id		=	"noqueue",
689 	.priv_size	=	0,
690 	.init		=	noqueue_init,
691 	.enqueue	=	noop_enqueue,
692 	.dequeue	=	noop_dequeue,
693 	.peek		=	noop_dequeue,
694 	.owner		=	THIS_MODULE,
695 };
696 
697 static const u8 prio2band[TC_PRIO_MAX + 1] = {
698 	1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
699 };
700 
701 /* 3-band FIFO queue: old style, but should be a bit faster than
702    generic prio+fifo combination.
703  */
704 
705 #define PFIFO_FAST_BANDS 3
706 
707 /*
708  * Private data for a pfifo_fast scheduler containing:
709  *	- rings for priority bands
710  */
711 struct pfifo_fast_priv {
712 	struct skb_array q[PFIFO_FAST_BANDS];
713 };
714 
715 static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
716 					  int band)
717 {
718 	return &priv->q[band];
719 }
720 
721 static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
722 			      struct sk_buff **to_free)
723 {
724 	int band = prio2band[skb->priority & TC_PRIO_MAX];
725 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
726 	struct skb_array *q = band2list(priv, band);
727 	unsigned int pkt_len = qdisc_pkt_len(skb);
728 	int err;
729 
730 	err = skb_array_produce(q, skb);
731 
732 	if (unlikely(err)) {
733 		if (qdisc_is_percpu_stats(qdisc))
734 			return qdisc_drop_cpu(skb, qdisc, to_free);
735 		else
736 			return qdisc_drop(skb, qdisc, to_free);
737 	}
738 
739 	qdisc_update_stats_at_enqueue(qdisc, pkt_len);
740 	return NET_XMIT_SUCCESS;
741 }
742 
743 static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
744 {
745 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
746 	struct sk_buff *skb = NULL;
747 	bool need_retry = true;
748 	int band;
749 
750 retry:
751 	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
752 		struct skb_array *q = band2list(priv, band);
753 
754 		if (__skb_array_empty(q))
755 			continue;
756 
757 		skb = __skb_array_consume(q);
758 	}
759 	if (likely(skb)) {
760 		qdisc_update_stats_at_dequeue(qdisc, skb);
761 	} else if (need_retry &&
762 		   READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) {
763 		/* Delay clearing the STATE_MISSED here to reduce
764 		 * the overhead of the second spin_trylock() in
765 		 * qdisc_run_begin() and __netif_schedule() calling
766 		 * in qdisc_run_end().
767 		 */
768 		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
769 		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
770 
771 		/* Make sure dequeuing happens after clearing
772 		 * STATE_MISSED.
773 		 */
774 		smp_mb__after_atomic();
775 
776 		need_retry = false;
777 
778 		goto retry;
779 	}
780 
781 	return skb;
782 }
783 
784 static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
785 {
786 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
787 	struct sk_buff *skb = NULL;
788 	int band;
789 
790 	for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
791 		struct skb_array *q = band2list(priv, band);
792 
793 		skb = __skb_array_peek(q);
794 	}
795 
796 	return skb;
797 }
798 
799 static void pfifo_fast_reset(struct Qdisc *qdisc)
800 {
801 	int i, band;
802 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
803 
804 	for (band = 0; band < PFIFO_FAST_BANDS; band++) {
805 		struct skb_array *q = band2list(priv, band);
806 		struct sk_buff *skb;
807 
808 		/* NULL ring is possible if destroy path is due to a failed
809 		 * skb_array_init() in pfifo_fast_init() case.
810 		 */
811 		if (!q->ring.queue)
812 			continue;
813 
814 		while ((skb = __skb_array_consume(q)) != NULL)
815 			kfree_skb(skb);
816 	}
817 
818 	if (qdisc_is_percpu_stats(qdisc)) {
819 		for_each_possible_cpu(i) {
820 			struct gnet_stats_queue *q;
821 
822 			q = per_cpu_ptr(qdisc->cpu_qstats, i);
823 			q->backlog = 0;
824 			q->qlen = 0;
825 		}
826 	}
827 }
828 
829 static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
830 {
831 	struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
832 
833 	memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1);
834 	if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
835 		goto nla_put_failure;
836 	return skb->len;
837 
838 nla_put_failure:
839 	return -1;
840 }
841 
842 static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
843 			   struct netlink_ext_ack *extack)
844 {
845 	unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
846 	struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
847 	int prio;
848 
849 	/* guard against zero length rings */
850 	if (!qlen)
851 		return -EINVAL;
852 
853 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
854 		struct skb_array *q = band2list(priv, prio);
855 		int err;
856 
857 		err = skb_array_init(q, qlen, GFP_KERNEL);
858 		if (err)
859 			return -ENOMEM;
860 	}
861 
862 	/* Can by-pass the queue discipline */
863 	qdisc->flags |= TCQ_F_CAN_BYPASS;
864 	return 0;
865 }
866 
867 static void pfifo_fast_destroy(struct Qdisc *sch)
868 {
869 	struct pfifo_fast_priv *priv = qdisc_priv(sch);
870 	int prio;
871 
872 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
873 		struct skb_array *q = band2list(priv, prio);
874 
875 		/* NULL ring is possible if destroy path is due to a failed
876 		 * skb_array_init() in pfifo_fast_init() case.
877 		 */
878 		if (!q->ring.queue)
879 			continue;
880 		/* Destroy ring but no need to kfree_skb because a call to
881 		 * pfifo_fast_reset() has already done that work.
882 		 */
883 		ptr_ring_cleanup(&q->ring, NULL);
884 	}
885 }
886 
887 static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
888 					  unsigned int new_len)
889 {
890 	struct pfifo_fast_priv *priv = qdisc_priv(sch);
891 	struct skb_array *bands[PFIFO_FAST_BANDS];
892 	int prio;
893 
894 	for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
895 		struct skb_array *q = band2list(priv, prio);
896 
897 		bands[prio] = q;
898 	}
899 
900 	return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len,
901 					 GFP_KERNEL);
902 }
903 
904 struct Qdisc_ops pfifo_fast_ops __read_mostly = {
905 	.id		=	"pfifo_fast",
906 	.priv_size	=	sizeof(struct pfifo_fast_priv),
907 	.enqueue	=	pfifo_fast_enqueue,
908 	.dequeue	=	pfifo_fast_dequeue,
909 	.peek		=	pfifo_fast_peek,
910 	.init		=	pfifo_fast_init,
911 	.destroy	=	pfifo_fast_destroy,
912 	.reset		=	pfifo_fast_reset,
913 	.dump		=	pfifo_fast_dump,
914 	.change_tx_queue_len =  pfifo_fast_change_tx_queue_len,
915 	.owner		=	THIS_MODULE,
916 	.static_flags	=	TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
917 };
918 EXPORT_SYMBOL(pfifo_fast_ops);
919 
920 static struct lock_class_key qdisc_tx_busylock;
921 
922 struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
923 			  const struct Qdisc_ops *ops,
924 			  struct netlink_ext_ack *extack)
925 {
926 	struct Qdisc *sch;
927 	unsigned int size = sizeof(*sch) + ops->priv_size;
928 	int err = -ENOBUFS;
929 	struct net_device *dev;
930 
931 	if (!dev_queue) {
932 		NL_SET_ERR_MSG(extack, "No device queue given");
933 		err = -EINVAL;
934 		goto errout;
935 	}
936 
937 	dev = dev_queue->dev;
938 	sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue));
939 
940 	if (!sch)
941 		goto errout;
942 	__skb_queue_head_init(&sch->gso_skb);
943 	__skb_queue_head_init(&sch->skb_bad_txq);
944 	gnet_stats_basic_sync_init(&sch->bstats);
945 	spin_lock_init(&sch->q.lock);
946 
947 	if (ops->static_flags & TCQ_F_CPUSTATS) {
948 		sch->cpu_bstats =
949 			netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
950 		if (!sch->cpu_bstats)
951 			goto errout1;
952 
953 		sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
954 		if (!sch->cpu_qstats) {
955 			free_percpu(sch->cpu_bstats);
956 			goto errout1;
957 		}
958 	}
959 
960 	spin_lock_init(&sch->busylock);
961 	lockdep_set_class(&sch->busylock,
962 			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
963 
964 	/* seqlock has the same scope of busylock, for NOLOCK qdisc */
965 	spin_lock_init(&sch->seqlock);
966 	lockdep_set_class(&sch->seqlock,
967 			  dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
968 
969 	sch->ops = ops;
970 	sch->flags = ops->static_flags;
971 	sch->enqueue = ops->enqueue;
972 	sch->dequeue = ops->dequeue;
973 	sch->dev_queue = dev_queue;
974 	netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL);
975 	refcount_set(&sch->refcnt, 1);
976 
977 	return sch;
978 errout1:
979 	kfree(sch);
980 errout:
981 	return ERR_PTR(err);
982 }
983 
984 struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
985 				const struct Qdisc_ops *ops,
986 				unsigned int parentid,
987 				struct netlink_ext_ack *extack)
988 {
989 	struct Qdisc *sch;
990 
991 	if (!try_module_get(ops->owner)) {
992 		NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
993 		return NULL;
994 	}
995 
996 	sch = qdisc_alloc(dev_queue, ops, extack);
997 	if (IS_ERR(sch)) {
998 		module_put(ops->owner);
999 		return NULL;
1000 	}
1001 	sch->parent = parentid;
1002 
1003 	if (!ops->init || ops->init(sch, NULL, extack) == 0) {
1004 		trace_qdisc_create(ops, dev_queue->dev, parentid);
1005 		return sch;
1006 	}
1007 
1008 	qdisc_put(sch);
1009 	return NULL;
1010 }
1011 EXPORT_SYMBOL(qdisc_create_dflt);
1012 
1013 /* Under qdisc_lock(qdisc) and BH! */
1014 
1015 void qdisc_reset(struct Qdisc *qdisc)
1016 {
1017 	const struct Qdisc_ops *ops = qdisc->ops;
1018 
1019 	trace_qdisc_reset(qdisc);
1020 
1021 	if (ops->reset)
1022 		ops->reset(qdisc);
1023 
1024 	__skb_queue_purge(&qdisc->gso_skb);
1025 	__skb_queue_purge(&qdisc->skb_bad_txq);
1026 
1027 	qdisc->q.qlen = 0;
1028 	qdisc->qstats.backlog = 0;
1029 }
1030 EXPORT_SYMBOL(qdisc_reset);
1031 
1032 void qdisc_free(struct Qdisc *qdisc)
1033 {
1034 	if (qdisc_is_percpu_stats(qdisc)) {
1035 		free_percpu(qdisc->cpu_bstats);
1036 		free_percpu(qdisc->cpu_qstats);
1037 	}
1038 
1039 	kfree(qdisc);
1040 }
1041 
1042 static void qdisc_free_cb(struct rcu_head *head)
1043 {
1044 	struct Qdisc *q = container_of(head, struct Qdisc, rcu);
1045 
1046 	qdisc_free(q);
1047 }
1048 
1049 static void qdisc_destroy(struct Qdisc *qdisc)
1050 {
1051 	const struct Qdisc_ops  *ops = qdisc->ops;
1052 
1053 #ifdef CONFIG_NET_SCHED
1054 	qdisc_hash_del(qdisc);
1055 
1056 	qdisc_put_stab(rtnl_dereference(qdisc->stab));
1057 #endif
1058 	gen_kill_estimator(&qdisc->rate_est);
1059 
1060 	qdisc_reset(qdisc);
1061 
1062 	if (ops->destroy)
1063 		ops->destroy(qdisc);
1064 
1065 	module_put(ops->owner);
1066 	netdev_put(qdisc_dev(qdisc), &qdisc->dev_tracker);
1067 
1068 	trace_qdisc_destroy(qdisc);
1069 
1070 	call_rcu(&qdisc->rcu, qdisc_free_cb);
1071 }
1072 
1073 void qdisc_put(struct Qdisc *qdisc)
1074 {
1075 	if (!qdisc)
1076 		return;
1077 
1078 	if (qdisc->flags & TCQ_F_BUILTIN ||
1079 	    !refcount_dec_and_test(&qdisc->refcnt))
1080 		return;
1081 
1082 	qdisc_destroy(qdisc);
1083 }
1084 EXPORT_SYMBOL(qdisc_put);
1085 
1086 /* Version of qdisc_put() that is called with rtnl mutex unlocked.
1087  * Intended to be used as optimization, this function only takes rtnl lock if
1088  * qdisc reference counter reached zero.
1089  */
1090 
1091 void qdisc_put_unlocked(struct Qdisc *qdisc)
1092 {
1093 	if (qdisc->flags & TCQ_F_BUILTIN ||
1094 	    !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1095 		return;
1096 
1097 	qdisc_destroy(qdisc);
1098 	rtnl_unlock();
1099 }
1100 EXPORT_SYMBOL(qdisc_put_unlocked);
1101 
1102 /* Attach toplevel qdisc to device queue. */
1103 struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1104 			      struct Qdisc *qdisc)
1105 {
1106 	struct Qdisc *oqdisc = dev_queue->qdisc_sleeping;
1107 	spinlock_t *root_lock;
1108 
1109 	root_lock = qdisc_lock(oqdisc);
1110 	spin_lock_bh(root_lock);
1111 
1112 	/* ... and graft new one */
1113 	if (qdisc == NULL)
1114 		qdisc = &noop_qdisc;
1115 	dev_queue->qdisc_sleeping = qdisc;
1116 	rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1117 
1118 	spin_unlock_bh(root_lock);
1119 
1120 	return oqdisc;
1121 }
1122 EXPORT_SYMBOL(dev_graft_qdisc);
1123 
1124 static void shutdown_scheduler_queue(struct net_device *dev,
1125 				     struct netdev_queue *dev_queue,
1126 				     void *_qdisc_default)
1127 {
1128 	struct Qdisc *qdisc = dev_queue->qdisc_sleeping;
1129 	struct Qdisc *qdisc_default = _qdisc_default;
1130 
1131 	if (qdisc) {
1132 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1133 		dev_queue->qdisc_sleeping = qdisc_default;
1134 
1135 		qdisc_put(qdisc);
1136 	}
1137 }
1138 
1139 static void attach_one_default_qdisc(struct net_device *dev,
1140 				     struct netdev_queue *dev_queue,
1141 				     void *_unused)
1142 {
1143 	struct Qdisc *qdisc;
1144 	const struct Qdisc_ops *ops = default_qdisc_ops;
1145 
1146 	if (dev->priv_flags & IFF_NO_QUEUE)
1147 		ops = &noqueue_qdisc_ops;
1148 	else if(dev->type == ARPHRD_CAN)
1149 		ops = &pfifo_fast_ops;
1150 
1151 	qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1152 	if (!qdisc)
1153 		return;
1154 
1155 	if (!netif_is_multiqueue(dev))
1156 		qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1157 	dev_queue->qdisc_sleeping = qdisc;
1158 }
1159 
1160 static void attach_default_qdiscs(struct net_device *dev)
1161 {
1162 	struct netdev_queue *txq;
1163 	struct Qdisc *qdisc;
1164 
1165 	txq = netdev_get_tx_queue(dev, 0);
1166 
1167 	if (!netif_is_multiqueue(dev) ||
1168 	    dev->priv_flags & IFF_NO_QUEUE) {
1169 		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1170 		qdisc = txq->qdisc_sleeping;
1171 		rcu_assign_pointer(dev->qdisc, qdisc);
1172 		qdisc_refcount_inc(qdisc);
1173 	} else {
1174 		qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1175 		if (qdisc) {
1176 			rcu_assign_pointer(dev->qdisc, qdisc);
1177 			qdisc->ops->attach(qdisc);
1178 		}
1179 	}
1180 	qdisc = rtnl_dereference(dev->qdisc);
1181 
1182 	/* Detect default qdisc setup/init failed and fallback to "noqueue" */
1183 	if (qdisc == &noop_qdisc) {
1184 		netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n",
1185 			    default_qdisc_ops->id, noqueue_qdisc_ops.id);
1186 		netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1187 		dev->priv_flags |= IFF_NO_QUEUE;
1188 		netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1189 		qdisc = txq->qdisc_sleeping;
1190 		rcu_assign_pointer(dev->qdisc, qdisc);
1191 		qdisc_refcount_inc(qdisc);
1192 		dev->priv_flags ^= IFF_NO_QUEUE;
1193 	}
1194 
1195 #ifdef CONFIG_NET_SCHED
1196 	if (qdisc != &noop_qdisc)
1197 		qdisc_hash_add(qdisc, false);
1198 #endif
1199 }
1200 
1201 static void transition_one_qdisc(struct net_device *dev,
1202 				 struct netdev_queue *dev_queue,
1203 				 void *_need_watchdog)
1204 {
1205 	struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping;
1206 	int *need_watchdog_p = _need_watchdog;
1207 
1208 	if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1209 		clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1210 
1211 	rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1212 	if (need_watchdog_p) {
1213 		WRITE_ONCE(dev_queue->trans_start, 0);
1214 		*need_watchdog_p = 1;
1215 	}
1216 }
1217 
1218 void dev_activate(struct net_device *dev)
1219 {
1220 	int need_watchdog;
1221 
1222 	/* No queueing discipline is attached to device;
1223 	 * create default one for devices, which need queueing
1224 	 * and noqueue_qdisc for virtual interfaces
1225 	 */
1226 
1227 	if (rtnl_dereference(dev->qdisc) == &noop_qdisc)
1228 		attach_default_qdiscs(dev);
1229 
1230 	if (!netif_carrier_ok(dev))
1231 		/* Delay activation until next carrier-on event */
1232 		return;
1233 
1234 	need_watchdog = 0;
1235 	netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1236 	if (dev_ingress_queue(dev))
1237 		transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1238 
1239 	if (need_watchdog) {
1240 		netif_trans_update(dev);
1241 		dev_watchdog_up(dev);
1242 	}
1243 }
1244 EXPORT_SYMBOL(dev_activate);
1245 
1246 static void qdisc_deactivate(struct Qdisc *qdisc)
1247 {
1248 	if (qdisc->flags & TCQ_F_BUILTIN)
1249 		return;
1250 
1251 	set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1252 }
1253 
1254 static void dev_deactivate_queue(struct net_device *dev,
1255 				 struct netdev_queue *dev_queue,
1256 				 void *_qdisc_default)
1257 {
1258 	struct Qdisc *qdisc_default = _qdisc_default;
1259 	struct Qdisc *qdisc;
1260 
1261 	qdisc = rtnl_dereference(dev_queue->qdisc);
1262 	if (qdisc) {
1263 		qdisc_deactivate(qdisc);
1264 		rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1265 	}
1266 }
1267 
1268 static void dev_reset_queue(struct net_device *dev,
1269 			    struct netdev_queue *dev_queue,
1270 			    void *_unused)
1271 {
1272 	struct Qdisc *qdisc;
1273 	bool nolock;
1274 
1275 	qdisc = dev_queue->qdisc_sleeping;
1276 	if (!qdisc)
1277 		return;
1278 
1279 	nolock = qdisc->flags & TCQ_F_NOLOCK;
1280 
1281 	if (nolock)
1282 		spin_lock_bh(&qdisc->seqlock);
1283 	spin_lock_bh(qdisc_lock(qdisc));
1284 
1285 	qdisc_reset(qdisc);
1286 
1287 	spin_unlock_bh(qdisc_lock(qdisc));
1288 	if (nolock) {
1289 		clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
1290 		clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
1291 		spin_unlock_bh(&qdisc->seqlock);
1292 	}
1293 }
1294 
1295 static bool some_qdisc_is_busy(struct net_device *dev)
1296 {
1297 	unsigned int i;
1298 
1299 	for (i = 0; i < dev->num_tx_queues; i++) {
1300 		struct netdev_queue *dev_queue;
1301 		spinlock_t *root_lock;
1302 		struct Qdisc *q;
1303 		int val;
1304 
1305 		dev_queue = netdev_get_tx_queue(dev, i);
1306 		q = dev_queue->qdisc_sleeping;
1307 
1308 		root_lock = qdisc_lock(q);
1309 		spin_lock_bh(root_lock);
1310 
1311 		val = (qdisc_is_running(q) ||
1312 		       test_bit(__QDISC_STATE_SCHED, &q->state));
1313 
1314 		spin_unlock_bh(root_lock);
1315 
1316 		if (val)
1317 			return true;
1318 	}
1319 	return false;
1320 }
1321 
1322 /**
1323  * 	dev_deactivate_many - deactivate transmissions on several devices
1324  * 	@head: list of devices to deactivate
1325  *
1326  *	This function returns only when all outstanding transmissions
1327  *	have completed, unless all devices are in dismantle phase.
1328  */
1329 void dev_deactivate_many(struct list_head *head)
1330 {
1331 	struct net_device *dev;
1332 
1333 	list_for_each_entry(dev, head, close_list) {
1334 		netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1335 					 &noop_qdisc);
1336 		if (dev_ingress_queue(dev))
1337 			dev_deactivate_queue(dev, dev_ingress_queue(dev),
1338 					     &noop_qdisc);
1339 
1340 		dev_watchdog_down(dev);
1341 	}
1342 
1343 	/* Wait for outstanding qdisc-less dev_queue_xmit calls or
1344 	 * outstanding qdisc enqueuing calls.
1345 	 * This is avoided if all devices are in dismantle phase :
1346 	 * Caller will call synchronize_net() for us
1347 	 */
1348 	synchronize_net();
1349 
1350 	list_for_each_entry(dev, head, close_list) {
1351 		netdev_for_each_tx_queue(dev, dev_reset_queue, NULL);
1352 
1353 		if (dev_ingress_queue(dev))
1354 			dev_reset_queue(dev, dev_ingress_queue(dev), NULL);
1355 	}
1356 
1357 	/* Wait for outstanding qdisc_run calls. */
1358 	list_for_each_entry(dev, head, close_list) {
1359 		while (some_qdisc_is_busy(dev)) {
1360 			/* wait_event() would avoid this sleep-loop but would
1361 			 * require expensive checks in the fast paths of packet
1362 			 * processing which isn't worth it.
1363 			 */
1364 			schedule_timeout_uninterruptible(1);
1365 		}
1366 	}
1367 }
1368 
1369 void dev_deactivate(struct net_device *dev)
1370 {
1371 	LIST_HEAD(single);
1372 
1373 	list_add(&dev->close_list, &single);
1374 	dev_deactivate_many(&single);
1375 	list_del(&single);
1376 }
1377 EXPORT_SYMBOL(dev_deactivate);
1378 
1379 static int qdisc_change_tx_queue_len(struct net_device *dev,
1380 				     struct netdev_queue *dev_queue)
1381 {
1382 	struct Qdisc *qdisc = dev_queue->qdisc_sleeping;
1383 	const struct Qdisc_ops *ops = qdisc->ops;
1384 
1385 	if (ops->change_tx_queue_len)
1386 		return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1387 	return 0;
1388 }
1389 
1390 void dev_qdisc_change_real_num_tx(struct net_device *dev,
1391 				  unsigned int new_real_tx)
1392 {
1393 	struct Qdisc *qdisc = rtnl_dereference(dev->qdisc);
1394 
1395 	if (qdisc->ops->change_real_num_tx)
1396 		qdisc->ops->change_real_num_tx(qdisc, new_real_tx);
1397 }
1398 
1399 void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx)
1400 {
1401 #ifdef CONFIG_NET_SCHED
1402 	struct net_device *dev = qdisc_dev(sch);
1403 	struct Qdisc *qdisc;
1404 	unsigned int i;
1405 
1406 	for (i = new_real_tx; i < dev->real_num_tx_queues; i++) {
1407 		qdisc = netdev_get_tx_queue(dev, i)->qdisc_sleeping;
1408 		/* Only update the default qdiscs we created,
1409 		 * qdiscs with handles are always hashed.
1410 		 */
1411 		if (qdisc != &noop_qdisc && !qdisc->handle)
1412 			qdisc_hash_del(qdisc);
1413 	}
1414 	for (i = dev->real_num_tx_queues; i < new_real_tx; i++) {
1415 		qdisc = netdev_get_tx_queue(dev, i)->qdisc_sleeping;
1416 		if (qdisc != &noop_qdisc && !qdisc->handle)
1417 			qdisc_hash_add(qdisc, false);
1418 	}
1419 #endif
1420 }
1421 EXPORT_SYMBOL(mq_change_real_num_tx);
1422 
1423 int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1424 {
1425 	bool up = dev->flags & IFF_UP;
1426 	unsigned int i;
1427 	int ret = 0;
1428 
1429 	if (up)
1430 		dev_deactivate(dev);
1431 
1432 	for (i = 0; i < dev->num_tx_queues; i++) {
1433 		ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1434 
1435 		/* TODO: revert changes on a partial failure */
1436 		if (ret)
1437 			break;
1438 	}
1439 
1440 	if (up)
1441 		dev_activate(dev);
1442 	return ret;
1443 }
1444 
1445 static void dev_init_scheduler_queue(struct net_device *dev,
1446 				     struct netdev_queue *dev_queue,
1447 				     void *_qdisc)
1448 {
1449 	struct Qdisc *qdisc = _qdisc;
1450 
1451 	rcu_assign_pointer(dev_queue->qdisc, qdisc);
1452 	dev_queue->qdisc_sleeping = qdisc;
1453 }
1454 
1455 void dev_init_scheduler(struct net_device *dev)
1456 {
1457 	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1458 	netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1459 	if (dev_ingress_queue(dev))
1460 		dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1461 
1462 	timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1463 }
1464 
1465 void dev_shutdown(struct net_device *dev)
1466 {
1467 	netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1468 	if (dev_ingress_queue(dev))
1469 		shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1470 	qdisc_put(rtnl_dereference(dev->qdisc));
1471 	rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1472 
1473 	WARN_ON(timer_pending(&dev->watchdog_timer));
1474 }
1475 
1476 /**
1477  * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division
1478  * @rate:   Rate to compute reciprocal division values of
1479  * @mult:   Multiplier for reciprocal division
1480  * @shift:  Shift for reciprocal division
1481  *
1482  * The multiplier and shift for reciprocal division by rate are stored
1483  * in mult and shift.
1484  *
1485  * The deal here is to replace a divide by a reciprocal one
1486  * in fast path (a reciprocal divide is a multiply and a shift)
1487  *
1488  * Normal formula would be :
1489  *  time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1490  *
1491  * We compute mult/shift to use instead :
1492  *  time_in_ns = (len * mult) >> shift;
1493  *
1494  * We try to get the highest possible mult value for accuracy,
1495  * but have to make sure no overflows will ever happen.
1496  *
1497  * reciprocal_value() is not used here it doesn't handle 64-bit values.
1498  */
1499 static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift)
1500 {
1501 	u64 factor = NSEC_PER_SEC;
1502 
1503 	*mult = 1;
1504 	*shift = 0;
1505 
1506 	if (rate <= 0)
1507 		return;
1508 
1509 	for (;;) {
1510 		*mult = div64_u64(factor, rate);
1511 		if (*mult & (1U << 31) || factor & (1ULL << 63))
1512 			break;
1513 		factor <<= 1;
1514 		(*shift)++;
1515 	}
1516 }
1517 
1518 void psched_ratecfg_precompute(struct psched_ratecfg *r,
1519 			       const struct tc_ratespec *conf,
1520 			       u64 rate64)
1521 {
1522 	memset(r, 0, sizeof(*r));
1523 	r->overhead = conf->overhead;
1524 	r->mpu = conf->mpu;
1525 	r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1526 	r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1527 	psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift);
1528 }
1529 EXPORT_SYMBOL(psched_ratecfg_precompute);
1530 
1531 void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64)
1532 {
1533 	r->rate_pkts_ps = pktrate64;
1534 	psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift);
1535 }
1536 EXPORT_SYMBOL(psched_ppscfg_precompute);
1537 
1538 void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1539 			  struct tcf_proto *tp_head)
1540 {
1541 	/* Protected with chain0->filter_chain_lock.
1542 	 * Can't access chain directly because tp_head can be NULL.
1543 	 */
1544 	struct mini_Qdisc *miniq_old =
1545 		rcu_dereference_protected(*miniqp->p_miniq, 1);
1546 	struct mini_Qdisc *miniq;
1547 
1548 	if (!tp_head) {
1549 		RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1550 	} else {
1551 		miniq = miniq_old != &miniqp->miniq1 ?
1552 			&miniqp->miniq1 : &miniqp->miniq2;
1553 
1554 		/* We need to make sure that readers won't see the miniq
1555 		 * we are about to modify. So ensure that at least one RCU
1556 		 * grace period has elapsed since the miniq was made
1557 		 * inactive.
1558 		 */
1559 		if (IS_ENABLED(CONFIG_PREEMPT_RT))
1560 			cond_synchronize_rcu(miniq->rcu_state);
1561 		else if (!poll_state_synchronize_rcu(miniq->rcu_state))
1562 			synchronize_rcu_expedited();
1563 
1564 		miniq->filter_list = tp_head;
1565 		rcu_assign_pointer(*miniqp->p_miniq, miniq);
1566 	}
1567 
1568 	if (miniq_old)
1569 		/* This is counterpart of the rcu sync above. We need to
1570 		 * block potential new user of miniq_old until all readers
1571 		 * are not seeing it.
1572 		 */
1573 		miniq_old->rcu_state = start_poll_synchronize_rcu();
1574 }
1575 EXPORT_SYMBOL(mini_qdisc_pair_swap);
1576 
1577 void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp,
1578 				struct tcf_block *block)
1579 {
1580 	miniqp->miniq1.block = block;
1581 	miniqp->miniq2.block = block;
1582 }
1583 EXPORT_SYMBOL(mini_qdisc_pair_block_init);
1584 
1585 void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1586 			  struct mini_Qdisc __rcu **p_miniq)
1587 {
1588 	miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1589 	miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1590 	miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1591 	miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1592 	miniqp->miniq1.rcu_state = get_state_synchronize_rcu();
1593 	miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state;
1594 	miniqp->p_miniq = p_miniq;
1595 }
1596 EXPORT_SYMBOL(mini_qdisc_pair_init);
1597